A Novel, Rapid Screening Technique for Sugar Syrup Adulteration in Honey Using Fluorescence Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Preparation
2.3. Fluorescence and Frequency Doubled Peak (FDP) Measurements
2.4. Statistical Analyses
3. Results and Discussion
3.1. Fluorescence Spectra Characteristics of Honey and Syrup
3.2. The Fluorescence Spectra Profiles of Different Honeys and Syrups
3.3. The Fluorescence Spectra Profiles of Adulterated Honey
3.4. Application to Adulterated Market Samples
3.5. Interpretation of Differences in FDP between Honey and Syrup
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osman, K.A.; Al-Doghairi, M.A.; Al-Rehiayani, S.; Helal, M.I.D. Mineral contents and physicochemical properties of natural honey produced in Al-Qassim region, Saudi Arabia. J. Food Agric. Environ. 2007, 5, 142–146. [Google Scholar]
- Al, M.L.; Daniel, D.; Moise, A.; Bobis, O.; Laslo, L.; Bogdanov, S. Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chem. 2009, 112, 863–867. [Google Scholar] [CrossRef]
- Wu, L.; Du, B.; Vander Heyden, Y.; Chen, L.; Zhao, L.; Wang, M.; Xue, X. Recent advancements in detecting sugar-based adulterants in honey—A challenge. TrAC Trends Anal. Chem. 2017, 86, 25–38. [Google Scholar] [CrossRef]
- Siddiqui, A.J.; Musharraf, S.G.; Choudhary, M.I. Application of analytical methods in authentication and adulteration of honey. Food Chem. 2017, 217, 687–698. [Google Scholar] [CrossRef]
- Naila, A.; Flint, S.H.; Sulaiman, A.Z.; Ajit, A.; Weeds, Z. Classical and novel approaches to the analysis of honey and detection of adulterants. Food Control 2018, 90, 152–165. [Google Scholar] [CrossRef]
- Tsagkaris, A.S.; Koulis, G.A.; Danezis, G.P.; Martakos, I.; Dasenaki, M.; Georgiou, C.A.; Thomaidis, N.S. Honey authenticity: Analytical techniques, state of the art and challenges. RSC Adv. 2021, 11, 11273–11294. [Google Scholar] [CrossRef]
- Puscas, A.; Hosu, A.; Cimpoiu, C. Application of a newly developed and validated high-performance thin-layer chromatographic method to control honey adulteration. J. Chromatogr. A 2013, 1272, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Guler, A.; Kocaokutgen, H.; Garipoglu, A.V.; Onder, H.; Ekinci, D.; Biyik, S. Detection of adulterated honey produced by honeybee (Apis mellifera L.) colonies fed with different levels of commercial industrial sugar (C3 and C4 plants) syrups by the carbon isotope ratio analysis. Food Chem. 2014, 155, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Matute, A.I.; Soria, A.C.; Martínez-Castro, I.; Sanz, M.L. A new methodology based on GC-MS to detect honey adulteration with commercial syrups. J. Agric. Food Chem. 2007, 55, 7264–7269. [Google Scholar] [CrossRef] [PubMed]
- Megherbi, M.; Herbreteau, B.; Faure, R.; Salvador, A. Polysaccharides as a Marker for Detection of Corn Sugar Syrup Addition in Honey. J. Agric. Food Chem. 2009, 57, 2105–2111. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Wang, Q.; Li, Y.; Wu, L.; Chen, L.; Zhao, J.; Liu, F. 2-acetylfuran-3-glucopyranoside as a novel marker for the detection of honey adulterated with rice syrup. J. Agric. Food Chem. 2013, 61, 7488–7493. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Guo, Q.; Wang, L.; Lin, L.; Shi, H.; Cao, H.; Cao, B. Detection of honey adulteration with starch syrup by high performance liquid chromatography. Food Chem. 2015, 172, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Sobrino-Gregorio, L.; Bataller, R.; Soto, J.; Escriche, I. Monitoring honey adulteration with sugar syrups using an automatic pulse voltammetric electronic tongue. Food Control 2018, 91, 254–260. [Google Scholar] [CrossRef]
- Sobrino-Gregorio, L.; Vilanova, S.; Prohens, J.; Escriche, I. Detection of honey adulteration by conventional and real-time PCR. Food Control 2019, 95, 57–62. [Google Scholar] [CrossRef]
- de Souza, R.R.; Fernandes, D.D.S.; Diniz, P. Honey authentication in terms of its adulteration with sugar syrups using UV-Vis spectroscopy and one-class classifiers. Food Chem. 2021, 365, 130467. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.D.; Petisco, C.; Downey, G. Application of Fourier Transform Midinfrared Spectroscopy to the Discrimination between Irish Artisanal Honey and Such Honey Adulterated with Various Sugar Syrups. J. Agric. Food Chem. 2006, 54, 6166–6171. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Xue, X.; Ye, Z.; Zhou, J.; Chen, F.; Zhao, J. Determination of Chinese honey adulterated with high fructose corn syrup by near infrared spectroscopy. Food Chem. 2011, 128, 1110–1114. [Google Scholar] [CrossRef]
- Li, S.; Yang, S.; Zhu, X.; Zhang, X.; Ling, G. Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy. J. Food Compos. Anal. 2012, 28, 69–74. [Google Scholar] [CrossRef]
- Liu, T.; Ming, K.; Wang, W.; Qiao, N.; Qiu, S.; Yi, S.; Huang, X.; Luo, L. Discrimination of honey and syrup-based adulteration by mineral element chemometrics profiling. Food Chem. 2021, 343, 128455. [Google Scholar] [CrossRef]
- Bertelli, D.; Lolli, M.; Papotti, G.; Bortolotti, L.; Serra, G.; Plessi, M. Detection of Honey Adulteration by Sugar Syrups Using One-Dimensional and Two-Dimensional High-Resolution Nuclear Magnetic Resonance. J. Agric. Food Chem. 2010, 58, 8495–8501. [Google Scholar] [CrossRef]
- Guelpa, A.; Marini, F.; du Plessis, A.; Slabbert, R.; Manley, M. Verification of authenticity and fraud detection in South African honey using NIR spectroscopy. Food Control 2017, 73, 1388–1396. [Google Scholar] [CrossRef]
- Lenhardt, L.; Bro, R.; Zeković, I.; Dramićanin, T.; Dramićanin, M.D. Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey. Food Chem. 2015, 175, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Ruoff, K.; Karoui, R.; Dufour, E.; Luginbühl, W.; Bosset, J.O.; Bogdanov, S.; Amado, R. Authentication of the Botanical Origin of Honey by Front-Face Fluorescence Spectroscopy. A Preliminary Study. J. Agric. Food Chem. 2005, 53, 1343–1347. [Google Scholar] [CrossRef] [PubMed]
- Ruoff, K.; Luginbühl, W.; Künzli, R.; Bogdanov, S.; Bosset, J.O.; von der Ohe, K.; von der Ohe, W.; Amadò, R. Authentication of the Botanical and Geographical Origin of Honey by Front-Face Fluorescence Spectroscopy. J. Agric. Food Chem. 2006, 54, 6858–6866. [Google Scholar] [CrossRef] [PubMed]
- Sergiel, I.; Pohl, P.; Biesaga, M.; Mironczyk, A. Suitability of three-dimensional synchronous fluorescence spectroscopy for fingerprint analysis of honey samples with reference to their phenolic profiles. Food Chem. 2014, 145, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Mehretie, S.; Al Riza, D.F.; Yoshito, S.; Kondo, N. Classification of raw Ethiopian honeys using front face fluorescence spectra with multivariate analysis. Food Control 2018, 84, 83–88. [Google Scholar] [CrossRef]
- Santana, J.E.G.; Coutinho, H.D.M.; da Costa, J.G.M.; Menezes, J.M.C.; Pereira Teixeira, R.N. Fluorescent characteristics of bee honey constituents: A brief review. Food Chem. 2021, 362, 130174. [Google Scholar] [CrossRef] [PubMed]
- Valinger, D.; Longin, L.; Grbeš, F.; Benković, M.; Jurina, T.; Gajdoš Kljusurić, J.; Tušek, A.J. Detection of honey adulteration—The potential of UV-VIS and NIR spectroscopy coupled with multivariate analysis. LWT-Food Sci. Technol. 2021, 145, 111316. [Google Scholar] [CrossRef]
- Cabañero, A.I.; Recio, J.L.; Rupérez, M. Liquid chromatography coupled to isotope ratio mass spectrometry: A new perspective on honey adulteration detection. J. Agric. Food Chem. 2006, 54, 9719–9727. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Li, J.; Liu, X.; Yuan, J.; Yuan, W.; Tian, Y.; Xuan, H. Authentication of acacia honey using fluorescence spectroscopy. Food Control 2021, 130, 108327. [Google Scholar] [CrossRef]
- Kečkeš, S.; Gašić, U.; Veličković, T.Ć.; Milojković-Opsenica, D.; Natić, M.; Tešić, Ž. The determination of phenolic profiles of Serbian unifloral honeys using ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry. Food Chem. 2013, 138, 32–40. [Google Scholar] [CrossRef]
- Ghosh, N.; Verma, Y.; Majumder, S.K.; Gupta, P.K. A fluorescence spectroscopic study of honey and cane sugar syrup. Food Sci. Technol. Res. 2005, 11, 59–62. [Google Scholar] [CrossRef] [Green Version]
- Kenjerić, D.; Mandić, M.L.; Primorac, L.; Bubalo, D.; Perl, A. Flavonoid profile of Robinia honeys produced in Croatia. Food Chem. 2007, 102, 683–690. [Google Scholar] [CrossRef]
- Wang, J.; Xue, X.; Du, X.; Cheng, N.; Chen, L.; Zhao, J.; Zheng, J.; Cao, W. Identification of acacia honey adulteration with rape honey using liquid chromatography–electrochemical detection and chemometrics. Food Anal. Method 2014, 7, 2003–2012. [Google Scholar] [CrossRef]
Honey | Fluorescence Emission Spectra | FDP | |
---|---|---|---|
Apex Wavelength (nm) | Area ± RSD | Area ± RSD | |
Medlar honey | 471 ± 2 nm | 3783 ± 169.3 | 1088 ± 30.4 |
Acacia honey | 470 ± 3 nm | 1897 ± 50.7 | 1221 ± 29.7 |
Linden honey | 467 ± 4 nm | 3324 ± 151.5 | 1006 ± 20.4 |
Chaste honey | 465 ± 3 nm | 3151 ± 80.1 | 935 ± 19.9 |
Rape honey | 466 ± 2 nm | 1615 ± 26.2 | 1080 ± 29.6 |
Average | 468 ± 2.8 nm | 2754 ±95.6 | 1064 ± 26.0 |
Syrup | |||
Beet syrup | 448 ± 4 nm | 3280 ± 189.2 | 34 ± 5.1 |
Cassava syrup | 438 ± 3 nm | 573 ± 56.5 | 181 ± 16.8 |
Malt syrup | 450 ± 3 nm | 1664 ± 21.1 | 46 ± 4.9 |
Rice syrup | 445 ± 2 nm | 619 ± 30.8 | 103 ± 9.6 |
HFCS | 427 ±5 nm | 2311 ± 230.0 | 53 ± 5.5 |
Average | 442 ± 3.4 nm | 1689 ± 105.2 | 83.4 ± 8.4 |
Items | Fluorescence Emission Spectra | FDP | |
---|---|---|---|
Apex (nm) | Area ± RSD | Area ± RSD | |
Honey | 472 ± 5 nm | 1699 ± 41.9 | 976 ± 35.8 a |
10% syrup | 468 ± 4 nm | 2605 ± 42.8 | 813 ± 39.0 b |
20% syrup | 467 ± 5 nm | 2530 ± 41.6 | 765 ± 33.2 bc |
30% syrup | 461 ± 4 nm | 2375 ±39.3 | 713 ± 32.0 cd |
40% syrup | 460 ± 5 nm | 2270 ± 38.3 | 623 ± 34.7 de |
50% syrup | 458 ± 4 nm | 2076 ± 37.6 | 584 ± 28.9 ef |
60% syrup | 458 ± 6 nm | 1873 ± 36.4 | 503 ± 25.6 fg |
70% syrup | 454 ± 5 nm | 1776 ± 30.9 | 410 ± 27.5 gh |
80% syrup | 449 ± 3 nm | 1519 ± 27.1 | 335 ± 25.5 h |
90% syrup | 446 ± 2 nm | 1267 ± 21.6 | 200 ± 30.4 i |
Positive Sample Information | Total Numbers | Glucose, Fructose, Sucrose and Maltose Analysis | Stable Carbon Isotopic Ratio Analysis | TLC Method | Fluorescence Method |
---|---|---|---|---|---|
High-fructose corn syrup-adulterated honey | 15 | +(0) a | +(15) | +(4) | +(11) |
Beet syrup-adulterated honey | 2 | +(0) | +(0) | +(0) | +(2) |
Rice syrup-adulterated honey | 2 | +(0) | +(0) | +(0) | +(1) |
Maltose syrup-adulterated honey | 1 | +(1) | +(0) | +(1) | +(1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, S.; Sun, M.; Wang, X.; Shan, J.; Xue, X. A Novel, Rapid Screening Technique for Sugar Syrup Adulteration in Honey Using Fluorescence Spectroscopy. Foods 2022, 11, 2316. https://doi.org/10.3390/foods11152316
Yan S, Sun M, Wang X, Shan J, Xue X. A Novel, Rapid Screening Technique for Sugar Syrup Adulteration in Honey Using Fluorescence Spectroscopy. Foods. 2022; 11(15):2316. https://doi.org/10.3390/foods11152316
Chicago/Turabian StyleYan, Sha, Minghui Sun, Xuan Wang, Jihao Shan, and Xiaofeng Xue. 2022. "A Novel, Rapid Screening Technique for Sugar Syrup Adulteration in Honey Using Fluorescence Spectroscopy" Foods 11, no. 15: 2316. https://doi.org/10.3390/foods11152316
APA StyleYan, S., Sun, M., Wang, X., Shan, J., & Xue, X. (2022). A Novel, Rapid Screening Technique for Sugar Syrup Adulteration in Honey Using Fluorescence Spectroscopy. Foods, 11(15), 2316. https://doi.org/10.3390/foods11152316