Residues of Pesticides and Heavy Metals in Polish Varietal Honey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Determination of Pesticide Residues
2.2.1. LC-MS/MS
2.2.2. GC-MS/MS
2.3. Determination of Heavy Metals (Pb, Cd, Hg, Cu, and Zn)
2.4. Data Analysis
3. Results and Discussion
3.1. Pesticide Residues
3.1.1. Insecticides
3.1.2. Fungicides
3.1.3. Residues of Veterinary Drugs
3.2. Concentration of Metals
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mititelu, M.; Udeanu, D.I.; Nedelescu, M.; Neacsu, S.M.; Nicoara, A.C.; Oprea, E.; Ghica, M. Quality Control of Different Types of Honey and Propolis Collected from Romanian Accredited Beekeepers and Consumer’s Risk Assessment. Crystals 2022, 12, 87. [Google Scholar] [CrossRef]
- Piven, O.T.; Khimych, M.S.; Salata, V.Z.; Gutyj, B.V.; Naidich, O.V.; Skrypka, H.A.; Koreneva, Z.B.; Dvylyuk, I.V.; Gorobey, O.M.; Rud, V.O. Contamination of heavy metals and radionuclides in the honey with different production origin. Ukr. J. Ecol. 2020, 10, 405–409. [Google Scholar] [CrossRef]
- Oymen, B.; Aşır, S.; Türkmen, D.; Denizli, A. Determination of multi-pesticide residues in honey with a modified QuEChERS procedure followed by LC-MS/MS and GC-MS/MS. J. Apic. Res. 2022, 61, 530–542. [Google Scholar] [CrossRef]
- Hernández, A.F.; González-Alzaga, B.; López-Flores, I.; Lacasaña, M. Systematic reviews on neurodevelopmental and neurodegenerative disorders linked to pesticide exposure: Methodological features and impact on risk assessment. Environ. Int. 2016, 92, 657–679. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, M.M.; Tran, L.; McKee, C.G.; Polo, R.O.; Newman, T.; Lansing, L.; Griffiths, J.S.; Bilodeau, G.J.; Rott, M.; Guarna, M.M. Honey bees as biomonitors of environmental contaminants, pathogens, and climate change. Ecol. Indic. 2022, 134, 108457. [Google Scholar] [CrossRef]
- Auteri, D.; Devos, Y.; Fabrega, J.; Pagani, S.; Rortais, A.; de Seze, G.; Heppner, C.; Hugas, M. Advancing the Environmental Risk Assessment of Chemicals to Better Protect Insect Pollinators (IPol-ERA). EFSA Support. Publ. 2022, 19, e200505. [Google Scholar] [CrossRef]
- More, S.J.; Auteri, D.; Rortais, A.; Pagani, S. EFSA is working to protect bees and shape the future of environmental risk assessment. EFSA J. 2021, 19, e190101. [Google Scholar] [CrossRef]
- Rolke, D.; Fuchs, S.; Grünewald, B.; Gao, Z.; Blenau, W. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: Effects on honey bees (Apis mellifera). Ecotoxicology 2016, 25, 1648–1665. [Google Scholar] [CrossRef] [Green Version]
- Paradis, D.; Bérail, G.; Bonmatin, J.M.; Belzunce, L.P. Sensitive analytical methods for 22 relevant insecticides of 3 chemical families in honey by GC-MS /MS and LC-MS/MS. Anal. Bioanal. Chem. 2014, 406, 621–633. [Google Scholar] [CrossRef]
- Scripcă, L.A.; Amariei, S. The Influence of Chemical Contaminants on the Physicochemical Properties of Unifloral and Multifloral Honey. Foods 2021, 10, 1039. [Google Scholar] [CrossRef]
- The Agency for Toxic Substances and Disease Registry (ATSDR). Priority List of Hazardous Substances; ATSDR: Atlanta, GA, USA, 2019. Available online: https://www.atsdr.cdc.gov/spl/resources (accessed on 29 June 2022).
- Fakhri, Y.; Abtahi, M.; Atamaleki, A.; Raoofi, A.; Atabati, H.; Asadi, A.; Miri, A.; Shamloo, E.; Alinejad, A.; Keramati, H.; et al. The concentration of potentially toxic elements (PTEs) in honey: A global systematic review and meta-analysis and risk assessment. Trends Food Sci. Technol. 2019, 91, 498–506. [Google Scholar] [CrossRef]
- Ciobanu, O.; Rădulescu, H. Monitoring of heavy metals residues in honey. Res. J. Agric. Sci. 2016, 48, 9–13. [Google Scholar]
- Oroian, M.; Prisacaru, A.; Hretcany, E.C.; Stroe, S.G.; Leahu, A.; Buculei, A. Heavy Metals Profile in Honey as a Potential Indicator of Botanical and Geographical Origin. Int. J. Food Prop. 2016, 19, 1825–1836. [Google Scholar] [CrossRef]
- De Souza, A.P.F.; Petrarca, M.H.; de Campos Braga, P.A.; Rodrigues, N.R.; Reyes, F.G. Analysis of insecticide residues in honey by liquid chromatography tandem mass spectrometry using QuEChERS optimized by the Plackett Burman design. CYT—J. Food 2021, 19, 326–332. [Google Scholar] [CrossRef]
- European Comission. Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. Off. J. Eur. Union 2005, L70, 1–16. [Google Scholar]
- European Comission. Commission Regulation (EU) No 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin. Off. J. Eur. Union 2009, L15, 1–72. [Google Scholar]
- Minister of Agriculture and Rural Development. Regulation of 21 June 2017 on the Monitoring of Prohibited Substances, Chemical and Biological Residues, Medicinal Products and Radioactive Contamination. J. Laws 2017, 1246, 1–12. [Google Scholar]
- Mitchell, E.A.; Mulhauser, B.; Mulot, M.; Mutabazi, A.; Glauser, G.; Aebi, A. A worldwide survey of neonicotinoids in honey. Science 2017, 358, 109–111. [Google Scholar] [CrossRef] [Green Version]
- Gaweł, M.; Kiljanek, T.; Niewiadowska, A.; Semeniuk, S.; Goliszek, M.; Burek, O.; Posyniak, A. Determination of neonicotinoids and 199 other pesticide residues in honey by liquid and gas chromatography coupled with tandem mass spectrometry. Food Chem. 2019, 282, 36–47. [Google Scholar] [CrossRef]
- Kędzierska-Matysek, M.; Teter, A.; Stryjecka, M.; Skałecki, P.; Domaradzki, P.; Rudaś, M.; Florek, M. Relationships linking the colour and elemental concentrations of blossom honeys with their antioxidant activity: A chemometric approach. Agriculture 2021, 11, 702. [Google Scholar] [CrossRef]
- World Health Organization. WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification, 2019th ed.; World Health Organization: Geneva, Switzerland, 2020; pp. 85–96. [Google Scholar]
- European Comission. Commission Implementing Regulation (EU) 2020/23 of 13 January 2020 Concerning the Non-Renewal of the Approval of the Active Substance Thiacloprid, in Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market, and Amending the Annex to Commission Implementing Regulation (EU) No 540/2011. Off. J. Eur. Union 2020, L8, 8–11. [Google Scholar]
- Cabrera, L.C.; Pastor, P.M. The 2019 European Union report on pesticide residues in food. EFSA J. 2021, 19, e06491. [Google Scholar] [CrossRef]
- European Parliament. Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on Classification, Labelling and Packaging of Substances and Mixtures, Amending and Repealing Directives 67/548/EEC and 1999/45/EC, and Amending Regulation (EC) No 1907/2006. Off. J. Eur. Union 2008, L353, 1–1355. [Google Scholar]
- European Parliament. Regulations Commission Regulation (EU) 2019/521 of 27 March 2019 Amending, for the Purposes of its Adaptation to Technical and Scientific Progress Regulation (EC) No 1272/2008 of the European Parliament and of the Council on Classification, Labelling and Packaging of Substances and Mixtures. Off. J. Eur. Union 2019, L86, 1–36. [Google Scholar]
- Wilczyńska, A.; Przybyłowski, P. Residues of organochlorine pesticides in Polish honeys. Apiacta 2007, 42, 16–24. [Google Scholar]
- Ruiz-Toledo, J.; Vandame, R.; Castro-Chan, R.A.; Penilla-Navarro, R.P.; Gómez, J.; Sánchez, D. Organochlorine Pesticides in Honey and Pollen Samples from Managed Colonies of the Honey Bee Apis mellifera Linnaeus and the Stingless Bee Scaptotrigona mexicana Guérin from Southern, Mexico. Insects 2018, 9, 54. [Google Scholar] [CrossRef] [Green Version]
- El-Nahhal, Y. Pesticide residues in honey and their potential reproductive toxicity. Sci. Total Environ. 2020, 741, 139953. [Google Scholar] [CrossRef]
- Bargańska, Ż.; Ślebioda, M.; Namieśnik, J. Pesticide residues levels in honey from apiaries located of Northern Poland. Food Control 2013, 31, 196–201. [Google Scholar] [CrossRef]
- Biddinger, D.J.; Robertson, J.L.; Mullin, C.; Frazier, J.; Ashcraft, S.A.; Rajotte, E.G.; Neelendra, K.J.; Vaughn, M. Comparative Toxicities and Synergism of Apple Orchard Pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLoS ONE 2013, 8, e72587. [Google Scholar] [CrossRef] [Green Version]
- Locke, B.; Thaduri, S.; Stephan, J.G.; Low, M.; Blacquière, T.; Dahle, B.; Le Conte, Y.; Neumann, P.; de Miranda, J.R. Adapted tolerance to virus infections in four geographically distinct Varroa destructor-resistant honeybee populations. Sci. Rep. 2021, 11, 12359. [Google Scholar] [CrossRef]
- O’Neal, S.T.; Brewster, C.C.; Bloomquist, J.R.; Anderson, T.D. Amitraz and its metabolite modulate honey bee cardiac function and tolerance to viral infection. J. Invertebr. Pathol. 2017, 149, 119–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaimanee, V.; Pettis, J.S. Gene expression, sperm viability, and queen (Apis mellifera) loss following pesticide exposure under laboratory and field conditions. Apidologie 2019, 50, 304–316. [Google Scholar] [CrossRef]
- Chaimanee, V.; Johnson, J.; Pettis, J.S. Determination of amitraz and its metabolites residue in honey and beeswax after Apivar® treatment in honey bee (Apis mellifera) colonies. J. Apic. Res. 2022, 61, 213–218. [Google Scholar] [CrossRef]
- Altunatmaz, S.S.; Tarhan, D.; Aksu, F.; Ozsobaci, N.P.; Or, M.E.; Barutçu, U.B. Levels of Chromium, Copper, Iron, Magnesium, Manganese, Selenium, Zinc, Cadmium, Lead and Aluminium of honey varieties produced in Turkey. Food Sci. Technol. Campinas 2019, 39, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Brodziak-Dopierała, B.; Mendak-Oleś, P.; Fischer, A. Occurrence of mercury in various types of honey. Med. Srod. 2020, 23, 39–43. [Google Scholar] [CrossRef]
- Commission of the European Communities. Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Off. J. Eur. Union 2006, L364, 5–24. [Google Scholar]
- Tomczyk, M.; Zaguła, G.; Puchalski, C.; Dżugan, M. Transfer of some toxic metals from soil to honey depending on bee habitat conditions. Acta Univ. Cibiniensis Ser. E Food Technol. 2020, 24, 49–59. [Google Scholar] [CrossRef]
- Aghamirlou, H.M.; Khadem, M.; Rahmani, A.; Sadeghian, M.; Mahvi, A.H.; Akbarzadeh, A.; Nazmara, S. Heavy metals determination in honey samples using inductively coupled plasmaoptical emission spectrometry. J. Environ. Health Sci. Eng. 2015, 13, 39. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority. Lead dietary exposure in the European population. EFSA J. 2012, 10, 2831. [Google Scholar] [CrossRef]
- Dżugan, M.; Zaguła, G.; Wesołowska, M.; Sowa, P.; Puchalski, C. Levels of toxic and essential metals in varietal honeys from Podkarpacie. J. Elem. 2017, 22, 1039–1048. [Google Scholar] [CrossRef]
- Tarapatskyy, M.; Sowa, P.; Zaguła, G.; Dżugan, M.; Puchalski, C. Assessment of the Botanical Origin of Polish Honeys Based on Physicochemical Properties and Bioactive Components with Chemometric Analysis. Molecules 2021, 26, 4801. [Google Scholar] [CrossRef] [PubMed]
- Formicki, G.; Greń, A.; Stawarz, R.; Zyśk, B.; Gał, A. Metal Content in Honey, Propolis, Wax, and Bee Pollen and Implications for Metal Pollution Monitoring. Pol. J. Environ. Stud. 2013, 22, 99–106. [Google Scholar]
- Roman, A.; Popiela, E. Studies of chosen toxic elements concentration in multiflower bee honey. Potravin. Slovak J. Food Sci. 2011, 5, 67–69. [Google Scholar] [CrossRef]
- Kacaniová, M.; Knazovicka, V.; Melich, M.; Fikselova, M.; Massanyi, P.; Stawarz, R.; Hascik, P.; Pechociak, T.; Kuczkowska, A.; Putała, A. Environmental concentration of selected elements and relation to physicochemical parameters in honey. J. Environ. Sci. Health Part A 2009, 44, 414–422. [Google Scholar] [CrossRef]
- Tutun, H.; Kahraman, H.A.; Aluc, Y.; Avci, T.; Ekici, H. Investigation of some metals in honey samples from West Mediterranean region of Turkey. Vet. Res. Forum 2019, 10, 181–186. [Google Scholar] [CrossRef]
- Bartha, S.; Taut, I.; Goji, G.; Vlad, I.A.; Dinulică, F. Heavy Metal Content in Polyfloral Honey and Potential Health Risk. A Case Study of Copșa Mică, Romania. Int. J. Environ. Res. Public Health 2020, 17, 1507. [Google Scholar] [CrossRef] [Green Version]
- Klym, O.; Stadnytska, O. Concentrations of heavy metals in multifloral honey from the different terrestrial ecosystems of the Carpathians. Acta Sci. Pol. Zootech. 2019, 18, 11–14. [Google Scholar] [CrossRef]
- Dobrzański, Z.; Roman, A.; Górecka, H.; Kołacz, R. Content of hazardous elements and macro- and micronutrients in bee honeys from areas of industrial pollution. Bromatol. Chem. Toksykol. 1994, 27, 157–160. (In Polish) [Google Scholar]
Category of Use | Compound * |
---|---|
Herbicides | 6-chloro-4-hydroxy-3-phenyl pyridazine (metabolite of Pyridate), 6-hydroxy bentazone (metabolite of bentazone), Acetochlor, Amidosulfuron, Asulam, Bentazone, Bifenox, Quinochlamine, Chizalofop-P-ethyl, Chizalofop-P-tefuryl, Chlomazone, Chlorosulfuron, Chlortoluron, Chloridazon, Cycloxydim, Desmedipham, Diflufenican, Dimethachlor, Etofumesate, Fenmedipham, Phenoxaprop-P-ethyl, Flazasulfuron, Florasulam, Fluazifop-P-butyl, Flufenacet, Flurochloridone, Foramsulfuron, Isoproturon, Iodosulfuron-methyl-sodium, Carbetamide, Carfentrazone-ethyl, Kletodim, Lenacyl, Linuron, Metamitron, Metazachlor, Metolachlor-S, Metribuzin, Metsulfuron-methyl, Mesosulfuron-methyl, Mesotrione, Napropamide, Nicosulfuron, Pendimethalin, Pethoxamide, Propachizafop, Propoxycarbazone sodium, Propyzamide, Prosulfocarb, Rimsulfuron, Sulfosulfuron, Sulcotrione, Tembotrione, Tepraloxydim, Terbutylazine, Thifensulfuron-methyl, Tralkoxydim |
Insecticides | 2,4′-DDT, 4,4′-DDD, 4,4′-DDE, 4,4′-DDT, 4,4-Methoxychlor, Acetamiprid, Aldrin, alpha-Cypermethrin, alpha-Endosulfan, alpha-HCH, azinphos-ethyl, azinphos-methyl, beta-Cyfluthrin, beta-Endosulfan, beta-HCH, Bifenthrin, Chlorantraniliprole, Chlorfenvinphos, Chlorpyriphos-methyl, Chlorpyriphos, cis-Chlordane, cis-Heptachlor epoxide, cis-Permethrin, Deltamethrin, Diazinon, Dieldrin, Diflubenzuron, Dimethoate, Endrin, Esfenvalerate, Etofenprox, Etoprophos, Fenitrothion, Fention, Fention-sulfone (metabolite of fenthion), Fention-sulfoxide (metabolite of fenthion), Fipronil, Fipronil-desulfinyl (metabolite of fipronil), Fipronil-carboxamide (metabolite of fipronil), Fipronil-sulfide (metabolite of fipronil), Fipronil-sulfone (fipronil metabolite), Flonicamid, Phoxim, Phosalon, Fosmet, HCB, Heptachlor, Heptenofos, Imidacloprid, Imidacloprid-olefin (imidacloprid metabolite), Imidacloprid-urea derivative (imidacloprid metabolite), Indoxacarb, Clothianidin, Lambda-Cyhalothrin, Lindane (gamma-HCH), Malathion, Methiocarb sulphone (methiocarb metabolite), Methiocarb sulfoxide (methiocarb metabolite), Methiocarb, Methoxyfenozide, Methidathion, MITC (Methyl isothiocyanate) (metabolite of Metam and Dazomet), Nitenpyram, Oxychlordane, Parathion ethyl, Parathion methyl, Pyrimiphos ethyl, Pyrimiphos methyl, Pyrimicarb, Pyrimicarb-desmethyl (metabolite of Pyrimicarb), Pyriproxyfen, Profenofos, Resmethrin, Endosulfan sulphate, Spinosin A, Spirodiclofen, Spirotetramat, Spirotetramat-enol (spirotetramat metabolite), Spirotetramat-enol glucoside (spirotetramat metabolite), Spirotetramat-keto hydroxy (spirotetramat metabolite) tau-Fluvalinate, Tebufenozide, Teflubenzuron, Tefluthrin, Tetramethrin, Thiacloprid, Thiacloprid-amide (metabolite of thiacloprid), Thiamethoxam, trans-Chlordane, trans-Heptachlor epoxide, trans-Permethrin, Triazinphos, zeta-Cypermethrin |
Fungicides | Azoxystrobin, Bixafen, Boscalid, Bupirimate, Quinoxyfen, Chlorothalonil, Chymexazole, Cyflufenamide, Cyazofamid, Cymoxanil, Cyprodinil, Cyproconazole, Difenoconazole, Dimethomorph, Dimoxystrobin, Epoxiconazole, Fenbuconazole, Fenhexamid, Fenpropidin, Fenpropimorph, Fluchinkonazole, Fludioxonil, Flusilazole, Flutriafol, Imazalil, Ipconazole, Iprodione, Isopyrazam, Carbendazim, Carboxin, Kresoxim-methyl, Mandipropamid, Mepaniprym, Metalaxyl-M (Metalaxyl), Metconazole, Metrafenone, Myclobutanil, Pencycuron, Picoxystrobin, Pyrimethanil, Proquinazid, Prochloraz, Propamocarb, Propiconazole, Prothioconazole-desthio (a metabolite of prothioconazole), Pyraclostrobin, Pyrazophos, Silthiopham, Spiroxamine, Tebuconazole, Tetraconazole, Thiophanate-methyl, Triadimefon, Triadimenol, Trifloxystrobin, Triticonazole, Vinclozolin |
Acaricides | Bifenazate, Bromopropylate, Etoxazole, Fenazaquin, Fenpyroximate, Hexithiazox, Clofentezine, Propargit, Tebufenpyrad |
Veterinary drugs | Cymiazole, DMF (2,4-dimethylphenylformamide) (amitraz metabolite), DMPF (N-(2,4-dimethylphenyl)-N′-methylformamidine) (amitraz metabolite), Coumaphos |
Plant growth regulators | Chlorpropham, IBA (Indolylbutyric acid), NAD (1-Naphthylacetamide) |
Compound | Category of Use | WHO Category [22] | Chemical Group | LOQ | MRL | Positive Samples | |
---|---|---|---|---|---|---|---|
n | % | ||||||
Acetamiprid | I | II | cyano-substituted neonicotinoid | 0.001 | 0.05 | 26 | 86.66 |
Carbendazim | F | U | benzimidazole | 0.001 | 1 | 18 | 60.00 |
Thiacloprid | I | II | cyano-substituted neonicotinoid | 0.001 | 0.2 | 27 | 90.00 |
DMF (N-2,4-Dimethylphenyl-formamide) | V | - | - | 0.005 | - | 17 | 56.66 |
Total amitraz | V | II | - | - | - | 16 | 53.33 |
Thiacloprid-amide | I | II | cyano-substituted neonicotinoid | 0.005 | - | 4 | 13.33 |
Thiamethoxam | I | II | nitro-substituted neonicotinoid | 0.001 | - | 8 | 26.66 |
Dimethoate | I | II | organophosphate | 0.001 | - | 3 | 10.00 |
Azoxystrobin | F | U | strobilurin methoxyacrylate | 0.001 | 0.05 | 3 | 10.00 |
Tebuconazole | F | II | triazole | 0.001 | 0.05 | 2 | 6.66 |
Boscalid | F | U | anilide pyridine-carboxamide | 0.001 | 0.05 | 1 | 3.33 |
Compoud | Mean | Median | Min | Max | 25th Percentile | 75th Percentile | |
---|---|---|---|---|---|---|---|
1 | Acetamiprid | 0.0127 | 0.0065 | <LOQ | 0.0610 | 0.0020 | 0.0160 |
2 | Carbendazim | 0.0074 | 0.0020 | <LOQ | 0.0490 | 0.0000 | 0.0130 |
3 | Thiacloprid | 0.0527 | 0.0240 | <LOQ | 0.3370 | 0.0040 | 0.0520 |
4 | DMF | 0.0061 | 0.0030 | <LOQ | 0.0380 | 0.0000 | 0.0100 |
5 | Total Amitraz | 0.0112 | 0.0050 | <LOQ | 0.0750 | 0.0000 | 0.0160 |
6 | Thiacloprid-Amide | 0.0013 | 0.0000 | <LOQ | 0.0120 | 0.0000 | 0.0000 |
7 | Thiamethoxam | 0.0005 | 0.0000 | <LOQ | 0.0040 | 0.0000 | 0.0010 |
8 | Dimethoate | 0.0002 | 0.0000 | <LOQ | 0.0030 | 0.0000 | 0.0000 |
9 | Azoxystrobin | 0.0001 | 0.0000 | <LOQ | 0.0020 | 0.0000 | 0.0000 |
10 | Tebuconazole | 0.0001 | 0.0000 | <LOQ | 0.0020 | 0.0000 | 0.0000 |
11 | Boscalid | 0.0000 | 0.0000 | <LOQ | 0.0010 | 0.0000 | 0.0000 |
Compoud | Honey | Mean | Median | Min | Max | 25th Percentile | 75th Percentile | Positive Samples | ||
---|---|---|---|---|---|---|---|---|---|---|
n | % | |||||||||
1 | Acetamiprid | RS | 0.0300 | 0.030 | 0.009 | 0.061 | 0.015 | 0.035 | 5 | 100.0 |
2 | Carbendazim | RS | 0.0242 | 0.020 | 0.007 | 0.049 | 0.014 | 0.031 | 5 | 100.0 |
3 | Thiacloprid | RS | 0.0702 | 0.053 | 0.043 | 0.118 | 0.044 | 0.093 | 5 | 100.0 |
4 | DMF | RS | 0.0072 | 0.003 | <LOQ | 0.027 | 0.002 | 0.004 | 4 | 80.0 |
5 | Total Amitraz | RS | 0.0144 | 0.006 | <LOQ | 0.054 | 0.004 | 0.008 | 4 | 80.0 |
6 | Thiacloprid-Amide | RS | 0.0016 | 0.000 | <LOQ | 0.008 | 0.000 | 0.000 | 1 | 20.0 |
7 | Thiamethoxam | RS | 0.0012 | 0.001 | <LOQ | 0.002 | 0.001 | 0.002 | 4 | 80.0 |
8 | Azoxystrobin | RS | 0.0004 | 0.000 | <LOQ | 0.002 | 0.000 | 0.000 | 1 | 20.0 |
9 | Tebuconazole | RS | 0.0004 | 0.000 | <LOQ | 0.002 | 0.000 | 0.000 | 1 | 20.0 |
10 | Boscalid | RS | 0.0002 | 0.000 | <LOQ | 0.001 | 0.000 | 0.000 | 1 | 20.0 |
Total | 0.1498 | |||||||||
1 | Acetamiprid | MF | 0.0150 | 0.009 | 0.001 | 0.042 | 0.003 | 0.026 | 10 | 100.0 |
2 | Carbendazim | MF | 0.0060 | 0.002 | <LOQ | 0.028 | 0.000 | 0.013 | 6 | 60.0 |
3 | Thiacloprid | MF | 0.1062 | 0.042 | 0.004 | 0.337 | 0.015 | 0.178 | 10 | 100.0 |
4 | DMF | MF | 0.0122 | 0.011 | <LOQ | 0.038 | 0.007 | 0.014 | 9 | 90.0 |
5 | Total Amitraz | MF | 0.0216 | 0.018 | <LOQ | 0.075 | 0.006 | 0.028 | 8 | 80.0 |
6 | Thiacloprid-Amide | MF | 0.0031 | 0.000 | <LOQ | 0.012 | 0.000 | 0.008 | 3 | 30.0 |
7 | Thiamethoxam | MF | 0.0004 | 0.000 | <LOQ | 0.002 | 0.000 | 0.000 | 2 | 20.0 |
8 | Azoxystrobin | MF | 0.0001 | 0.000 | <LOQ | 0.001 | 0.000 | 0.000 | 1 | 10.0 |
Total | 0.1646 | |||||||||
1 | Acetamiprid | BW | 0.0086 | 0.004 | <LOQ | 0.020 | 0.004 | 0.015 | 4 | 80.0 |
2 | Carbendazim | BW | 0.0056 | 0.004 | <LOQ | 0.018 | 0.000 | 0.006 | 3 | 60.0 |
3 | Thiacloprid | BW | 0.0122 | 0.005 | 0.002 | 0.027 | 0.003 | 0.024 | 5 | 100.0 |
4 | DMF | BW | 0.0012 | 0.000 | <LOQ | 0.006 | 0.000 | 0.000 | 1 | 20.0 |
5 | Total Amitraz | BW | 0.0024 | 0.000 | <LOQ | 0.012 | 0.000 | 0.000 | 1 | 20.0 |
6 | Thiamethoxam | BW | 0.0010 | 0.000 | <LOQ | 0.004 | 0.000 | 0.001 | 2 | 40.0 |
7 | Dimethoate | BW | 0.0014 | 0.002 | <LOQ | 0.003 | 0.000 | 0.002 | 3 | 60.0 |
Total | 0.0324 | |||||||||
1 | Acetamiprid | HD | 0.0023 | 0.001 | <LOQ | 0.007 | 0.000 | 0.005 | 2 | 50.0 |
2 | Carbendazim | HD | 0.0003 | 0.000 | <LOQ | 0.001 | 0.000 | 0.001 | 1 | 25.0 |
3 | Thiacloprid | HD | 0.0025 | 0.001 | <LOQ | 0.008 | 0.000 | 0.005 | 2 | 50.0 |
4 | DMF | HD | 0.0025 | 0.000 | <LOQ | 0.010 | 0.000 | 0.005 | 1 | 25.0 |
5 | Total Amitraz | HD | 0.0050 | 0.000 | <LOQ | 0.020 | 0.000 | 0.010 | 1 | 25.0 |
Total | 0.0125 | |||||||||
1 | Acetamiprid | LI | 0.0047 | 0.002 | <LOQ | 0.016 | 0.001 | 0.007 | 5 | 83.3 |
2 | Carbendazim | LI | 0.0018 | 0.002 | <LOQ | 0.005 | 0.000 | 0.003 | 3 | 50.0 |
3 | Thiacloprid | LI | 0.0160 | 0.015 | <LOQ | 0.032 | 0.003 | 0.031 | 5 | 83.3 |
4 | DMF | LI | 0.0013 | 0.000 | <LOQ | 0.005 | 0.000 | 0.003 | 2 | 33.3 |
5 | Total Amitraz | LI | 0.0027 | 0.000 | <LOQ | 0.010 | 0.000 | 0.006 | 2 | 33.3 |
6 | Azoxystrobin | LI | 0.0002 | 0.000 | <LOQ | 0.001 | 0.000 | 0.000 | 1 | 16.6 |
7 | Tebuconazole | LI | 0.0002 | 0.000 | <LOQ | 0.001 | 0.000 | 0.000 | 1 | 16.6 |
Total | 0.0268 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kędzierska-Matysek, M.; Teter, A.; Skałecki, P.; Topyła, B.; Domaradzki, P.; Poleszak, E.; Florek, M. Residues of Pesticides and Heavy Metals in Polish Varietal Honey. Foods 2022, 11, 2362. https://doi.org/10.3390/foods11152362
Kędzierska-Matysek M, Teter A, Skałecki P, Topyła B, Domaradzki P, Poleszak E, Florek M. Residues of Pesticides and Heavy Metals in Polish Varietal Honey. Foods. 2022; 11(15):2362. https://doi.org/10.3390/foods11152362
Chicago/Turabian StyleKędzierska-Matysek, Monika, Anna Teter, Piotr Skałecki, Barbara Topyła, Piotr Domaradzki, Ewa Poleszak, and Mariusz Florek. 2022. "Residues of Pesticides and Heavy Metals in Polish Varietal Honey" Foods 11, no. 15: 2362. https://doi.org/10.3390/foods11152362
APA StyleKędzierska-Matysek, M., Teter, A., Skałecki, P., Topyła, B., Domaradzki, P., Poleszak, E., & Florek, M. (2022). Residues of Pesticides and Heavy Metals in Polish Varietal Honey. Foods, 11(15), 2362. https://doi.org/10.3390/foods11152362