Rheology and Tribology of Ethylcellulose-Based Oleogels and W/O Emulsions as Fat Substitutes: Role of Glycerol Monostearate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Oleogels and Emulsions
2.3. Characterization of Oleogels and Emulsions
2.3.1. Macro Morphology and Microstructural Observation
2.3.2. Oil Binding Capacity
2.3.3. Differential Scanning Calorimetry (DSC) Analysis
2.3.4. FTIR Spectra
2.3.5. Rheological Analysis
2.3.6. Textural Property
2.3.7. Tribological Properties
2.3.8. Stability of Oleogels and Emulsions
2.3.9. Statistical Analysis
3. Results and Discussion
3.1. Properties of EC oleogels
3.1.1. Morphology
3.1.2. DSC Analysis, FTIR and Oil Binding Capacity
3.1.3. Rheological Properties
3.2. Properties of EC Oleogel-Based Emulsions
3.2.1. Morphology
3.2.2. FTIR and Oil Binding Capacity
3.2.3. Rheological Properties of the Emulsions
3.3. Oral Processing Properties
3.3.1. Textural Properties
3.3.2. Shearing Viscosity
3.3.3. Tribology Properties
3.4. Stability of Oleogels and Emulsions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hong, X.; Zhao, Q.; Liu, Y.; Li, J. Recent advances on food-grade water-in-oil emulsions: Instability mechanism, fabrication, characterization, application, and research trends. Crit. Rev. Food Sci. Nutr. 2021; in press. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Wei, Z.; Xue, C. Recent advances on food-grade oleogels: Fabrication, application and research trends. Crit. Rev. Food Sci. Nutr. 2021; in press. [Google Scholar] [CrossRef]
- Mao, L.; Lu, Y.; Cui, M.; Miao, S.; Gao, Y. Design of gel structures in water and oil phases for improved delivery of bioactive food ingredients. Crit. Rev. Food Sci. Nutr. 2020, 60, 1651–1666. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Cui, M.; Ye, J.; Yuan, D.; Mao, L. Physicochemical stability of oleogel-in-water emulsions loaded with β-carotene against environmental stresses. LWT 2022, 155, 112965. [Google Scholar] [CrossRef]
- Zembyla, M.; Murray, B.S.; Sarkar, A. Water-in-oil emulsions stabilized by surfactants, biopolymers and/or particles: A review. Trends Food Sci. Technol. 2020, 104, 49–59. [Google Scholar] [CrossRef]
- Lee, M.C.; Tan, C.; Ravanfar, R.; Abbaspourrad, A. Ultrastable Water-in-Oil High Internal Phase Emulsions Featuring Interfacial and Biphasic Network Stabilization. ACS Appl. Mater. Interfaces 2019, 11, 26433–26441. [Google Scholar] [CrossRef] [PubMed]
- Douaire, M.; Stephenson, T.; Norton, I.T. Soft tribology of oil-continuous emulsions. J. Food Eng. 2014, 139, 24–30. [Google Scholar] [CrossRef]
- Davidovich-Pinhas, M.; Barbut, S.; Marangoni, A.G. The role of surfactants on ethylcellulose oleogel structure and mechanical properties. Carbohydr. Polym. 2015, 127, 355–362. [Google Scholar] [CrossRef]
- Davidovich-Pinhas, M.; Barbut, S.; Marangoni, A.G. Development, Characterization, and Utilization of Food-Grade Polymer Oleogels. Annu. Rev. Food Sci. Technol. 2016, 7, 65–91. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhang, R.; Yu, J.; Gao, Y.; Mao, L. Tuning the rheological and tribological properties to simulate oral processing of novel high internal phase oleogel-in-water emulsions. Food Hydrocoll. 2022, 131, 107757. [Google Scholar] [CrossRef]
- Almeida, M.L.; Charin, R.M.; Nele, M.; Tavares, F.W. Stability studies of high-stable water-in-oil model emulsions. J. Disper. Sci. Technol. 2017, 38, 82–88. [Google Scholar] [CrossRef]
- Ushikubo, F.Y.; Cunha, R.L. Stability mechanisms of liquid water-in-oil emulsions. Food Hydrocoll. 2014, 34, 145–153. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Y.; Zhang, R.; Gao, Y.; Mao, L. Novel high internal phase emulsions with gelled oil phase: Preparation, characterization and stability evaluation. Food Hydrocoll. 2021, 121, 106995. [Google Scholar] [CrossRef]
- Zhang, R.; Yu, J.; Liu, N.; Gao, Y.; Mao, L. W/O emulsions featuring ethylcellulose structuring in the water phase, interface and oil phase for multiple delivery. Carbohydr. Polym. 2022, 283, 119158. [Google Scholar] [CrossRef]
- Wijarnprecha, K.; Vries, A.D.; Santiwattana, P.; Sonwai, S.; Rousseau, D. Rheology and structure of oleogelled water-in-oil emulsions containing dispersed aqueous droplets as inactive fillers. LWT 2019, 115, 108058. [Google Scholar] [CrossRef]
- Sarkar, A.; Soltanahmadi, S.; Chen, J.; Stokes, J.R. Oral tribology: Providing insight into oral processing of food colloids. Food Hydrocoll. 2021, 117, 106635. [Google Scholar] [CrossRef]
- Nguyen, P.T.M.; Bhandari, B.; Prakash, S. Tribological method to measure lubricating properties of dairy products. J. Food Eng. 2016, 168, 27–34. [Google Scholar] [CrossRef]
- Chojnicka, A.; Sala, G.; de Kruif, C.G.; van de Velde, F. The interactions between oil droplets and gel matrix affect the lubrication properties of sheared emulsion-filled gels. Food Hydrocoll. 2009, 23, 1038–1046. [Google Scholar] [CrossRef]
- James, J. Benner; Farshid Sadeghi; Michael, R. Hoeprich; Frank, M.C. Lubricating properties of water in oil emulsions. J. Tribol. 2006, 128, 296–311. [Google Scholar]
- Zetzl, A.K.; Gravelle, A.J.; Kurylowicz, M.; Dutcher, J.; Barbut, S.; Marangoni, A.G. Microstructure of ethylcellulose oleogels and its relationship to mechanical properties. Food Struct. 2014, 2, 27–40. [Google Scholar] [CrossRef]
- Krop, E.M.; Hetherington, M.M.; Holmes, M.; Miquel, S.; Sarkar, A. On relating rheology and oral tribology to sensory properties in hydrogels. Food Hydrocoll. 2019, 88, 101–113. [Google Scholar] [CrossRef]
- Lopez-Martínez, A.; Charó-Alonso, M.A.; Marangoni, A.G.; Toro-Vazquez, J.F. Monoglyceride organogels developed in vegetable oil with and without ethylcellulose. Food Res. Int. 2015, 72, 37–46. [Google Scholar] [CrossRef]
- Isaac Contreras-Ramírez, J.; Alberto Gallegos-Infante, J.; Rosas-Flores, W.; Francisco González-Laredo, R.; Fernando Toro-Vázquez, J.; David Pérez-Martínez, J. Relationship of rheological and thermal properties in organogel emulsions (W/O): Influence of temperature, time, and surfactant concentration on thermomechanical behavior. J. Mol. Liq. 2021, 337, 116403. [Google Scholar] [CrossRef]
- Davidovich-Pinhas, M.; Barbut, S.; Marangoni, A.G. Physical structure and thermal behavior of ethylcellulose. Cellulose 2014, 21, 3243–3255. [Google Scholar] [CrossRef]
- Davidovich-Pinhas, M.; Barbut, S.; Marangoni, A.G. The gelation of oil using ethyl cellulose. Carbohydr. Polym. 2015, 117, 869–878. [Google Scholar] [CrossRef]
- Liu, N.; Lu, Y.; Zhang, Y.; Gao, Y.; Mao, L. Surfactant addition to modify the structures of ethylcellulose oleogels for higher solubility and stability of curcumin. Int. J. Biol. Macromol. 2020, 165, 2286–2294. [Google Scholar] [CrossRef]
- Dickinson, E. Emulsion gels The structuring of soft solids with protein-stabilized oil droplets. Food Hydrocoll. 2012, 28, 224–241. [Google Scholar] [CrossRef]
- Garcia-Ortega, M.L.; Toro-Vazquez, J.F.; Ghosh, S. Development and characterization of structured water-in-oil emulsions with ethyl cellulose oleogels. Food Res. Int. 2021, 150 Pt B, 110763. [Google Scholar] [CrossRef]
- Aguilar-Zarate, M.; Macias-Rodriguez, B.A.; Toro-Vazquez, J.F.; Marangoni, A.G. Engineering rheological properties of edible oleogels with ethylcellulose and lecithin. Carbohydr. Polym. 2019, 205, 98–105. [Google Scholar] [CrossRef]
- Lu, Y.; Ma, Y.; Zhang, Y.; Gao, Y.; Mao, L. Facile synthesis of zein-based emulsion gels with adjustable texture, rheology and stability by adding β-carotene in different phases. Food Hydrocoll. 2021, 124, 107178. [Google Scholar] [CrossRef]
- Ahuja, A.; Potanin, A.; Joshi, Y.M. Two step yielding in soft materials. Adv. Colloid Interface Sci. 2020, 282, 102179. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Wang, K.; Wu, K.; Corke, H.; Nishinari, K.; Jiang, F. Stability, microstructure and rheological behavior of konjac glucomannan-zein mixed systems. Carbohydr. Polym. 2018, 188, 260–267. [Google Scholar] [CrossRef]
- Rodriguez-Hernandez, A.K.; Perez-Martinez, J.D.; Gallegos-Infante, J.A.; Toro-Vazquez, J.F.; Ornelas-Paz, J.J. Rheological properties of ethyl cellulose-monoglyceride-candelilla wax oleogel vis-a-vis edible shortenings. Carbohydr. Polym. 2021, 252, 117171. [Google Scholar] [CrossRef] [PubMed]
- Murdan, S.; Bergh, B.V.D.; Gregoriadis, G.; Florence, A.A.T. Water-in-sorbitan monostearate organogels (water-in-oil gels). J. Pharm. Sci. 1999, 88, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Hermes, M.; Clegg, P.S. Yielding and flow of concentrated Pickering emulsions. Soft Matter 2013, 9, 7568–7575. [Google Scholar] [CrossRef]
- Laia, O.M.; Ghazalia, H.M.; Cho, F.; Chong, C.L. Physical and textural properties of an experimental table margarine prepared from lipase-catalysed transesterified palm stearin: Palm kernel olein mixture during storage. Food Chem. 2000, 71, 173–179. [Google Scholar] [CrossRef]
- Gwartney, E.A.; Larick, D.K.; Foegeding, E.A. Sensory Texture and Mechanical Properties of Stranded and Particulate Whey Protein Emulsion Gels. J. Food Sci. 2006, 69, 1365–2621. [Google Scholar] [CrossRef]
- Foegeding, E.A.; Drake, M.A. Invited Review: Sensory and Mechanical Properties of Cheese Texture-ScienceDirect. J. Dairy Sci. 2007, 90, 1611–1624. [Google Scholar] [CrossRef]
- Prakash, S.; Tan, D.D.Y.; Chen, J. Applications of tribology in studying food oral processing and texture perception. Food Res. Int. 2013, 54, 1627–1635. [Google Scholar] [CrossRef]
- Shama, F.; Sherman, P. Identification of stimuli controlling the sensory evaluation of viscosity II. oral methods. J. Texture Stud. 1973, 4, 118. [Google Scholar] [CrossRef]
- Mu, S.; Ren, F.; Shen, Q.; Zhou, H.; Luo, J. Creamy mouthfeel of emulsion-filled gels with different fat contents: Correlating tribo–rheology with sensory measurements. Food Hydrocoll. 2022, 131, 107754. [Google Scholar] [CrossRef]
- Liu, K.; Stieger, M.; van der Linden, E.; van de Velde, F. Fat droplet characteristics affect rheological, tribological and sensory properties of food gels. Food Hydrocol. 2015, 44, 244–259. [Google Scholar] [CrossRef]
- Hamilton, I.E.; Norton, I.T. Modification to the lubrication properties of xanthan gum fluid gels as a result of sunflower oil and triglyceride stabilised water in oil emulsion addition. Food Hydrocoll. 2016, 55, 220–227. [Google Scholar] [CrossRef]
- Ouyang, C.; Bai, P.; Wen, X.; Zhang, X.; Meng, Y.; Ma, L.; Tian, Y. Effects of conformational entropy on antiwear performances of organic friction modifiers. Tribol. Int. 2021, 156, 106848. [Google Scholar] [CrossRef]
Samples | ɣLVR/% | G′LVR/Pa | G″LVR/Pa | η*LVR/Pa·s | TanδLVR | τLVR (Pa) |
---|---|---|---|---|---|---|
OG0 | 0.419 ± 0.054 BC | 1468.511 ± 280.721 D | 144.219 ± 21.496 D | 258.750 ± 10.960 D | 0.103 ± 0.009 D | 5.958 ± 1.384 D |
OG1 | 0.627 ± 0.009 A | 7699.102 ± 367.695 C | 1174.193 ± 183.141 C | 1196.333 ± 123.747 C | 0.154 ± 0.010 C | 49.675 ± 1.944 C |
OG2 | 0.622 ± 0.015 A | 10,275.510 ± 359.917 B | 2400.212 ± 219.203 B | 1606.103 ± 166.170 B | 0.227 ± 0.015 A | 64.345 ± 6.003 B |
OG5 | 0.455 ± 0.017 B | 197,250.890 ± 230,163.257 A | 54,400.002 ± 3818.377 A | 56,001.610 ± 1751.411A | 0.163 ± 0.004 B | 1529.503 ± 112.429 A |
E-OG0 | 0.429 ± 0.021 b | 1838.552 ± 210.011 d | 179.150 ± 7.282 d | 268.601 ± 24.890 d | 0.100 ± 0.003 d | 6.883 ± 1.332 d |
E-OG1 | 0.406 ± 0.019 b | 2181.213 ± 118.087 c | 300.453 ± 19.021 c | 338.504 ± 36.062 c | 0.126 ± 0.012 c | 8.638 ± 0.479 c |
E-OG2 | 0.623 ± 0.014 a | 3596.131 ± 9.192 b | 827.502 ± 51.619 b | 564.850 ± 35.143 b | 0.231 ± 0.008 a | 22.230 ± 1.739 b |
E-OG5 | 0.273 ± 0.082 c | 40,906.303 ± 1829.992 a | 8096.003 ± 244.659 a | 6479.333 ± 508.410 a | 0.189 ± 0.007 b | 89.520 ± 3.564 a |
Samples | K′ | n′ | R2 |
---|---|---|---|
OG0 | 4743 ± 40.820 E | 0.067 ± 0.002 E | 0.966 |
OG1 | 7553 ± 45.393 D | 0.166 ± 0.002 B | 0.969 |
OG2 | 13,330 ± 50.866 C | 0.176 ± 0.007 A | 0.954 |
OG5 | 276000 ± 220.276 A | 0.124 ± 0.012 CD | 0.983 |
lard | 57,340 ± 516.210 B | 0.148 ± 0.010 C | 0.960 |
E-OG0 | 159.7 ± 37.70 f | 0.220 ± 0.005 a | 0.994 |
E-OG1 | 886.2 ± 59.74 e | 0.217 ± 0.008 a | 0.994 |
E-OG2 | 7927 ± 52.01 c | 0.112 ± 0.009 c | 0.984 |
E-OG5 | 71,009 ± 160.97 a | 0.115 ± 0.007 c | 0.987 |
Mayonnaise | 1730 ± 60.21 d | 0.057 ± 0.002 d | 0.999 |
Cream cheese | 8660 ± 68.17 b | 0.165 ± 0.011 b | 0.997 |
Sample | Hardness (N) | Adhesiveness (mJ) | Springiness (mJ) | Cohesiveness | Chewiness (N) |
---|---|---|---|---|---|
OG0 | 0.045 ± 0.005 D | 0.055 ± 0.005 C | 0.034 ± 0.005 D | 0.26 ± 0.05 C | 0.045 ± 0.007 D |
OG1 | 0.033 ± 0.0043 E | 0.070 ± 0.011 C | 0.056 ± 0.006 C | 0.21 ± 0.04 C | 0.023 ± 0.009 E |
OG2 | 0.066 ± 0.0090 C | 0.12 ± 0.0082 B | 0.079 ± 0.008 C | 0.27 ± 0.025 C | 0.067 ± 0.005 C |
OG5 | 2.00 ± 0.17 A | 2.98 ± 0.22 A | 1.14 ± 0.19 B | 0.43 ± 0.08 B | 1.62 ± 1.01 B |
Lard | 1.51 ± 0.071 B | 2.76 ± 0.15 A | 1.80 ± 0.51 A | 0.68 ± 0.069 A | 6.04 ± 0.90 A |
E-OG0 | 0.15 ± 0.030 c | 0.11 ± 0.034 f | 0.037 ± 0.074 e | 0.027 ± 0.004 e | 0.014 ± 0.004 e |
E-OG1 | 0.09 ± 0.0042 d | 0.17 ± 0.042 e | 0.087 ± 0.010 d | 0.043 ± 0.0094 d | 0.32 ± 0.029 d |
E-OG2 | 0.14 ± 0.0094 c | 0.34 ± 0.017 d | 0.24 ± 0.025 c | 0.090 ± 0.0082 c | 0.46 ± 0.056 c |
E-OG5 | 0.54 ± 0.052 a | 0.76 ± 0.06 a | 0.61 ± 0.027 a | 0.31 ± 0.026 b | 2.56 ± 0.21 a |
Mayonnaise | 0.14 ± 0.021 c | 0.43 ± 0.04 b | 0.21 ± 0.02 c | 0.63 ± 0.05 a | 0.47 ± 0.092 c |
Cream cheese | 0.37 ± 0.031 b | 0.51 ± 0.059 b | 0.22 ± 0.041 b | 0.65 ± 0.038 a | 1.10 ± 0.14 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Zhang, Y.; Yu, J.; Gao, Y.; Mao, L. Rheology and Tribology of Ethylcellulose-Based Oleogels and W/O Emulsions as Fat Substitutes: Role of Glycerol Monostearate. Foods 2022, 11, 2364. https://doi.org/10.3390/foods11152364
Zhang R, Zhang Y, Yu J, Gao Y, Mao L. Rheology and Tribology of Ethylcellulose-Based Oleogels and W/O Emulsions as Fat Substitutes: Role of Glycerol Monostearate. Foods. 2022; 11(15):2364. https://doi.org/10.3390/foods11152364
Chicago/Turabian StyleZhang, Ruoning, Yanhui Zhang, Jingjing Yu, Yanxiang Gao, and Like Mao. 2022. "Rheology and Tribology of Ethylcellulose-Based Oleogels and W/O Emulsions as Fat Substitutes: Role of Glycerol Monostearate" Foods 11, no. 15: 2364. https://doi.org/10.3390/foods11152364
APA StyleZhang, R., Zhang, Y., Yu, J., Gao, Y., & Mao, L. (2022). Rheology and Tribology of Ethylcellulose-Based Oleogels and W/O Emulsions as Fat Substitutes: Role of Glycerol Monostearate. Foods, 11(15), 2364. https://doi.org/10.3390/foods11152364