Enhancing the Emulsification and Photostability Properties of Pectin from Different Sources Using Genipin Crosslinking Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of SBP
2.3. Genipin-Crosslinking Modification of Pectin
2.4. Composition Analysis
2.5. Ultraviolet Spectroscopy
2.6. Molecular Weight Determination
2.7. Viscosity Measurement
2.8. Emulsions Preparation and Characterization
2.9. Photostability Test of Encapsulated β-Carotene in Pectin-Stabilized Emulsions
2.10. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition and Macromolecular Characteristics
3.2. Genipin-Crosslinking Modification
3.3. Emulsifying Activity
3.4. Emulsifying Stability
3.5. Photostability of Encapsulated β-Carotene in Emulsions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Funami, T.; Nakauma, M.; Katayama, T.; Sakata, M.; Ogasawara, T.; Nishino, M.; Sasaki, Y. Outputs through the collaborative works with Prof. G. O. Phillips on hydrocolloid emulsifiers. Food Hydrocoll. 2018, 78, 47–54. [Google Scholar] [CrossRef]
- Dickinson, E. Hydrocolloids acting as emulsifying agents–How do they do it? Food Hydrocoll. 2018, 78, 2–14. [Google Scholar] [CrossRef]
- Liu, Z.P.; Guo, X.M.; Meng, H.C. Added ferulic acid enhances the emulsifying properties of pectins from different sources. Food Hydrocoll. 2020, 100, 105439. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Z.; Meng, H.; Guo, X. Genipin crosslinked gum arabic: Synthesis, characterization, and emulsification properties. Carbohydr. Polym. 2021, 261, 117880. [Google Scholar] [CrossRef] [PubMed]
- Piorkowski, D.T.; McClements, D.J. Beverage emulsions: Recent developments in formulation, production, and applications. Food Hydrocoll. 2014, 42, 5–41. [Google Scholar] [CrossRef]
- Nakauma, M.; Funami, T.; Noda, S.; Ishihara, S.; Al-Assaf, S.; Nishinari, K.; Phillips, G.O. Comparison of sugar beet pectin, soybean soluble polysaccharide, and gum arabic as food emulsifiers. 1. Effect of concentration, pH, and salts on the emulsifying properties. Food Hydrocoll. 2008, 22, 1254–1267. [Google Scholar] [CrossRef]
- Jung, J.Y.; Wicker, L. Laccase mediated conjugation of sugar beet pectin and the effect on emulsion stability. Food Hydrocoll. 2012, 28, 168–173. [Google Scholar] [CrossRef]
- Funami, T.; Nakauma, M.; Ishihara, S.; Tanaka, R.; Inoue, T.; Phillips, G.O. Structural modifications of sugar beet pectin and the relationship of structure to functionality. Food Hydrocoll. 2011, 25, 221–229. [Google Scholar] [CrossRef]
- Lin, J.; Yu, S.; Ai, C.; Zhang, T.; Guo, X. Emulsion stability of sugar beet pectin increased by genipin crosslinking. Food Hydrocoll. 2020, 101, 105459. [Google Scholar] [CrossRef]
- Guo, X.; Li, X.; Chan, L.; Huang, W.; Chen, T. Edible CaCO3 nanoparticles stabilized Pickering emulsion as calcium-fortified formulation. J. Nanobiotechnol. 2021, 19, 67. [Google Scholar] [CrossRef]
- Xu, F.-Y.; Lin, J.-W.; Wang, R.; Chen, B.-R.; Li, J.; Wen, Q.-H.; Zeng, X.-A. Succinylated whey protein isolate-chitosan core-shell composite particles as a novel carrier: Self-assembly mechanism and stability studies. Food Res. Int. 2022, 160, 111695. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Z.; Guo, X.; Yu, S.; Zhang, T.; Tang, X.; Yang, Z.; Meng, H. Tannic Acid-Aminated Sugar Beet Pectin Nanoparticles as a Stabilizer of High-Internal-Phase Pickering Emulsions. J. Agric. Food Chem. 2022, 70, 8052–8063. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, W.W.; Lim, H.P.; Low, L.E.; Tey, B.T.; Chan, E.S. Food-grade Pickering emulsions for encapsulation and delivery of bioactives. Trends Food Sci. Technol. 2020, 100, 320–332. [Google Scholar] [CrossRef]
- Liang, B.; Shu, Y.; Wan, P.; Zhao, H.; Dong, S.; Hao, W.; Yin, P. Genipin-enhanced nacre-inspired montmorillonite-chitosan film with superior mechanical and UV-blocking properties. Compos. Sci. Technol. 2019, 182, 107747. [Google Scholar] [CrossRef]
- Lin, J.; Guo, X.; Ai, C.; Zhang, T.; Yu, S. Genipin crosslinked sugar beet pectin-whey protein isolate/bovine serum albumin conjugates with enhanced emulsifying properties. Food Hydrocoll. 2020, 105, 105802. [Google Scholar] [CrossRef]
- Yapo, B.M.; Robert, C.; Etienne, I.; Wathelet, B.; Paquot, M. Effect of extraction conditions on the yield, purity and surface properties of sugar beet pulp pectin extracts. Food Chem. 2007, 100, 1356–1364. [Google Scholar] [CrossRef]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef]
- Garna, H.; Mabon, N.; Wathelet, B.; Paquot, M. New method for a two-step hydrolysis and chromatographic analysis of pectin neutral sugar chains. J. Agric. Food Chem. 2004, 52, 4652–4659. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Oosterveld, A.; Beldman, G.; Schols, H.A.; Voragen, A.G.J. Characterization of arabinose and ferulic acid rich pectic polysaccharides and hemicelluloses from sugar beet pulp. Carbohydr. Res. 2000, 328, 185–197. [Google Scholar] [CrossRef]
- Pi, F.; Liu, Z.P.; Guo, X.B.; Guo, X.M.; Meng, H.C. Chicory root pulp pectin as an emulsifier as compared to sugar beet pectin. Part 1: Influence of structure, concentration, counterion concentration. Food Hydrocoll. 2019, 89, 792–801. [Google Scholar] [CrossRef]
- Ai, C.; Guo, X.; Lin, J.; Zhang, T.; Meng, H. Characterization of the properties of amphiphilic, alkaline soluble polysaccharides from sugar beet pulp. Food Hydrocoll. 2019, 94, 199–209. [Google Scholar] [CrossRef]
- Ai, C.; Meng, H.; Lin, J.; Tang, X.; Guo, X. Emulsification properties of alkaline soluble polysaccharide from sugar beet pulp: Effect of acetylation and methoxylation. Food Hydrocoll. 2022, 124, 107361. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, H.; Huang, Q. Curcumin-loaded Pickering emulsion stabilized by insoluble complexes involving ovotransferrin-gallic acid conjugates and carboxymethyldextran. Food Funct. 2019, 10, 4911–4923. [Google Scholar] [CrossRef]
- Jalali-Jivan, M.; Fathi-Achachlouei, B.; Ahmadi-Gavlighi, H.; Jafari, S.M. Improving the extraction efficiency and stability of β-carotene from carrot by enzyme-assisted green nanoemulsification. Innov. Food Sci. Emerg. Technol. 2021, 74, 102836. [Google Scholar] [CrossRef]
- Thibault, J.-F.; Renard, C.M.G.C.; Axelos, M.A.V.; Roger, P.; Crépeau, M.-J. Studies of the length of homogalacturonic regions in pectins by acid hydrolysis. Carbohydr. Res. 1993, 238, 271–286. [Google Scholar] [CrossRef]
- Diaz, J.V.; Anthon, G.E.; Barrett, D.M. Nonenzymatic degradation of citrus pectin and pectate during prolonged heating: Effects of pH, temperature, and degree of methyl esterification. J. Agric. Food Chem. 2007, 55, 5131–5136. [Google Scholar] [CrossRef]
- Phatak, L.; Chang, K.C.; Brown, G. Isolation and Characterization of Pectin in Sugar-Beet Pulp. J. Food Sci. 1988, 53, 830–833. [Google Scholar] [CrossRef]
- Niu, H.; Chen, X.; Luo, T.; Chen, H.; Fu, X. Relationships between the behavior of three different sources of pectin at the oil-water interface and the stability of the emulsion. Food Hydrocoll. 2022, 128, 107566. [Google Scholar] [CrossRef]
- Michel, F.; Thibault, J.-F.; Mercier, C.; Heitz, F.; Pouillaude, F. Extraction and Charcterization of Pectins from Sugar Beet Pulp. J. Food Sci. 1985, 50, 1499–1500. [Google Scholar] [CrossRef]
- Alba, K.; Kontogiorgos, V. Pectin at the oil-water interface: Relationship of molecular composition and structure to functionality. Food Hydrocoll. 2017, 68, 211–218. [Google Scholar] [CrossRef]
- Axelos, M.A.V.; Thibault, J.F. Influence of the substituents of the carboxyl groups and of the rhamnose content on the solution properties and flexibility of pectins. Int. J. Biol. Macromol. 1991, 13, 77–82. [Google Scholar] [CrossRef]
- Lin, J.; Tang, Z.-S.; Brennan, C.S.; Zeng, X.-A. Thermomechanically micronized sugar beet pulp: Dissociation mechanism, physicochemical characteristics, and emulsifying properties. Food Res. Int. 2022, 160, 111675. [Google Scholar] [CrossRef]
- Butler, M.F.; Ng, Y.F.; Pudney, P.D.A. Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. J. Polym. Sci. Part A Polym. Chem. 2003, 41, 3941–3953. [Google Scholar] [CrossRef]
- Lin, J.; Meng, H.; Yu, S.; Wang, Z.; Ai, C.; Zhang, T.; Guo, X. Genipin-crosslinked sugar beet pectin-bovine serum albumin nanoparticles as novel pickering stabilizer. Food Hydrocoll. 2021, 112, 106306. [Google Scholar] [CrossRef]
- Ai, C.; Meng, H.; Lin, J.; Zhang, T.; Guo, X. Combined membrane filtration and alcohol-precipitation of alkaline soluble polysaccharides from sugar beet pulp: Comparision of compositional, macromolecular, and emulsifying properties. Food Hydrocoll. 2020, 109, 106049. [Google Scholar] [CrossRef]
- Wang, Z.M.; Meng, H.C.; Zhang, T.; Guo, X.M. Investigation into the polymerization and changes of physicochemical properties of sugar beet pectin through controlled dry-heating. Food Hydrocoll. 2021, 110, 106212. [Google Scholar] [CrossRef]
SBP1 | SBP2 | SBP3 | CP | AP | |
---|---|---|---|---|---|
Yield (% w/w) | 10.42 ± 0.81a | 14.83 ± 0.56b | 18.93 ± 1.03c | - | - |
Gal-A (% w/w) | 58.34 ± 1.21a | 64.25 ± 0.82b | 68.74 ± 1.03c | 76.23 ± 1.51d | 77.65 ± 0.93d |
Rha | 4.11 ± 0.03e | 3.30 ± 0.02d | 2.03 ± 0.02c | 1.23 ± 0.01b | 1.06 ± 0.01a |
NS (% w/w) | 24.28 ± 0.40e | 19.43 ± 0.31d | 15.54 ± 0.24c | 13.33 ± 0.13b | 12.15 ± 0.10a |
Protein (% w/w) | 6.72 ± 0.21d | 3.76 ± 0.12c | 2.35 ± 0.06a | 3.15 ± 0.08b | 2.78 ± 0.04b |
FA (% w/w) | 0.96 ± 0.06c | 0.65 ± 0.03b | 0.48 ± 0.05a | n. a. b | n. a. |
DM (%) | 53.41 ± 0.53c | 42.63 ± 1.08b | 38.17 ± 0.76a | 52.42 ± 1.15c | 67.62 ± 1.32d |
DA (%) | 29.32 ± 0.54e | 22.55 ± 0.26d | 17.24 ± 0.27c | 1.49 ± 0.06a | 3.6 ± 0.03b |
Mw (kg/mol) | Rg (nm) | Mw/Rg | η (mPa·s) | ||||
---|---|---|---|---|---|---|---|
Control | Crosslinked | Control | Crosslinked | (kg/mol/nm) | Control | Crosslinked | |
SBP1 | 582.6 ± 23.1d | 1441.6 ± 32.7e * | 32.1 ± 1.2c | 37.2 ± 0.9c * | 18.1 ± 0.2e | 14.12 ± 0.18c | 23.2 ± 0.18c * |
SBP2 | 392.1 ± 17.2c | 834.3 ± 26.8d * | 28.5 ± 0.8b | 31.3 ± 0.3b * | 13.8 ± 0.2d | 11.26 ± 0.22b | 17.3 ± 0.13b * |
SBP3 | 278.6 ± 13.4a | 573.5 ± 19.3c * | 24.7 ± 1.0a | 27.4 ± 0.5a * | 11.3 ± 0.2c | 9.53 ± 0.16a | 13.5 ± 0.09a * |
CP | 324.5 ± 12.3b | 468.3 ± 22.4a * | 39.3 ± 1.6d | 43.2 ± 1.2d * | 8.3 ± 0.1b | 26.38 ± 0.32d | 37.6 ± 0.24d * |
AP | 376.7 ± 16.8c | 493.3 ± 15.7b * | 46.8 ± 2.1e | 53.8 ± 1.8e * | 8.0 ± 0.1a | 39.24 ± 0.42e | 51.8 ± 0.38e * |
SBP1 | SBP2 | SBP3 | CP | AP | |
---|---|---|---|---|---|
Control | 12.30 ± 0.38aA | 14.31 ± 0.16bA | 17.63 ± 0.13cA | 22.18 ± 0.34eA | 19.56 ± 0.26dA |
Crosslinked | 14.14 ± 0.14aB | 15.15 ± 0.19bB | 18.01 ± 0.09cB | 23.23 ± 0.15eB | 20.75 ± 0.21dB |
D0 (μm) | D5 (μm) | Changes (μm) | ||||
---|---|---|---|---|---|---|
Control | Crosslinked | Control | Crosslinked | Control | Crosslinked | |
SBP1 | 0.36 ± 0.01a | 3.15 ± 0.11d | 0.45 ± 0.01b | 0.51 ± 0.01c | 2.79 | 0.06 |
SBP2 | 3.12 ± 0.04b | 10.32 ± 0.31d | 1.16 ± 0.03a | 4.24 ± 0.12c | 7.20 | 3.08 |
SBP3 | 7.35 ± 0.14c | 17.27 ± 0.48d | 3.61 ± 0.09a | 4.87 ± 0.13b | 9.92 | 1.26 |
CP | 6.09 ± 0.21b | 10.64 ± 0.35d | 5.12 ± 0.05a | 7.06 ± 0.15c | 4.56 | 1.94 |
AP | 3.79 ± 0.03b | 6.85 ± 0.21d | 3.01 ± 0.01a | 4.52 ± 0.08c | 3.06 | 1.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Meng, H.; Guo, X.; Yu, S. Enhancing the Emulsification and Photostability Properties of Pectin from Different Sources Using Genipin Crosslinking Technique. Foods 2022, 11, 2392. https://doi.org/10.3390/foods11162392
Lin J, Meng H, Guo X, Yu S. Enhancing the Emulsification and Photostability Properties of Pectin from Different Sources Using Genipin Crosslinking Technique. Foods. 2022; 11(16):2392. https://doi.org/10.3390/foods11162392
Chicago/Turabian StyleLin, Jiawei, Hecheng Meng, Xiaobing Guo, and Shujuan Yu. 2022. "Enhancing the Emulsification and Photostability Properties of Pectin from Different Sources Using Genipin Crosslinking Technique" Foods 11, no. 16: 2392. https://doi.org/10.3390/foods11162392
APA StyleLin, J., Meng, H., Guo, X., & Yu, S. (2022). Enhancing the Emulsification and Photostability Properties of Pectin from Different Sources Using Genipin Crosslinking Technique. Foods, 11(16), 2392. https://doi.org/10.3390/foods11162392