Physico-Chemical Attributes of Lemon Fruits as Affected by Growing Substrate and Rootstock
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Morphological Characterization
2.3. Internal and External Color Determination
2.4. Chemical and Nutritional Characterization
2.4.1. Antioxidant Activity and Total Phenolic Content
2.4.2. Sugars and Organic Acids Content
2.5. Statistical Analysis
3. Results and Discussion
3.1. Morphological Characterization of Lemon Fruits
3.2. Internal and External Color
3.3. Chemical Characterization
3.4. Antioxidant Activity and Total Phenolic Content
3.5. Sugars and Organic Acids
3.6. Treatment Difference Identification
3.7. Principal Component Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lorente, J.; Vegara, S.; Martí, N.; Ibarz, A.; Coll, L.; Hernández, J.; Valero, M.; Saura, D. Chemical guide parameters for Spanish lemon (Citrus limon (L.) Burm.) juices. Food Chem. 2014, 162, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Arbona, V.; Iglesias, D.J.; Gómez-Cadenas, A. Non-targeted metabolite profiling of citrus juices as a tool for variety discrimination and metabolite flow analysis. BMC Plant Biol. 2015, 15, 38. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Bravo, P.; Noguera-Artiaga, L.; Martínez-Tomé, J.; Hernández, F.; Sendra, E. Effect of Organic and Conventional Production on the Quality of Lemon “Fino 49”. Agronomy 2022, 12, 980. [Google Scholar] [CrossRef]
- Del Río, J.A.; Fuster, M.D.; Gómez, P.; Porras, I.; García-Lidón, A.; Ortuño, A. Citrus limon: A source of flavonoids of pharmaceutical interest. Food Chem. 2004, 84, 457–461. [Google Scholar] [CrossRef]
- Mamede, A.M.G.N.; de Coelho, C.C.S.; Freitas-Silva, O.; Barboza, H.T.G.; Soares, A.G. Lemon. Nutr. Compos. Antioxid. Prop. Fruits Veg. 2020, 377–392. [Google Scholar] [CrossRef]
- Turner, T.; Burri, B.J. Potential Nutritional Benefits of Current Citrus Consumption. Agriculture 2013, 3, 170–187. [Google Scholar] [CrossRef]
- Tounsi, M.S.; Wannes, W.A.; Ouerghemmi, I.; Jegham, S.; Njima, Y.B.; Hamdaoui, G.; Zemni, H.; Marzouk, B. Juice components and antioxidant capacity of four Tunisian Citrus varieties. J. Sci. Food Agric. 2011, 91, 142–151. [Google Scholar] [CrossRef]
- Ahmed, W.; Azmat, R. Citrus: An Ancient Fruits of Promise for Health Benefits. Citrus-Health Benefits Prod. Technol. 2019, 19–22. [Google Scholar] [CrossRef]
- Aguilar-Hernández, M.; Núñez-Gómez, D.; Forner-Giner, M.-Á.; Hernández, F.; Pastor-Pérez, J.J.; Legua, P. Quality Parameters of Spanish Lemons with Commercial Interest. Foods 2020, 10, 62. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of United Nations; Rome, Italy. 2020. Available online: https://www.fao.org/faostat/en/#home (accessed on 31 May 2022).
- IVIA. Patrones y Variedades de Cítricos; Generalitat Valenciana, Spain. 2001. Available online: https://ivia.gva.es/documents/161862582/161863614/Patrones+y+variedades+de+c%C3%ADtricos/ce05b440-e4f7-484c-947a-0fd153bff63d (accessed on 31 May 2022).
- IVIA VARIETATS Comercials de Cítrics. Available online: https://ivia.gva.es/va/variedades/ (accessed on 31 May 2022).
- Lopez-Mondejar, R.; Bernal-Vicente, A.; Ros, M.; Tittarelli, F.; Canali, S.; Intrigiolo, F.; Pascual, J.A. Utilisation of citrus compost-based growing media amended with Trichoderma harzianum T-78 in Cucumis melo L. seedling production. Bioresour. Technol. 2010, 101, 3718–3723. [Google Scholar] [CrossRef]
- Zaller, J.G. Vermicompost as a substitute for peat in potting media: Effects on germination, biomass allocation, yields and fruit quality of three tomato varieties. Sci. Hortic. 2007, 112, 191–199. [Google Scholar] [CrossRef]
- Tilahun, S.; Seo, M.H.; Park, D.S.; Jeong, C.S. Effect of cultivar and growing medium on the fruit quality attributes and antioxidant properties of tomato (Solanum lycopersicum L.). Hortic. Environ. Biotechnol. 2018, 59, 215–223. [Google Scholar] [CrossRef]
- Ayesha, R.; Fatima, N.; Ruqayya, M.; Qureshi, K.M.; Hafiz, I.A.; Saifullah Khan, K.; Kamal, A. Influence of different growth media on the fruit quality and reproductive growth parameters of strawberry (Fragaria ananassa). J. Med. Plants Res. 2011, 5, 6224–6232. [Google Scholar] [CrossRef]
- Hernández-Apaolaza, L.; Gascó, A.M.; Gascó, J.M.; Guerrero, F. Reuse of waste materials as growing media for ornamental plants. Bioresour. Technol. 2005, 96, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Gruda, N. Sustainable peat alternative growing media. Acta Hortic. 2012, 927, 973–980. [Google Scholar] [CrossRef]
- Gavilanes-Terán, I.; Jara-Samaniego, J.; Idrovo-Novillo, J.; Bustamante, M.; Pérez-Murcia, M.D.; Pérez-Espinosa, A.; López, M.; Paredes, C. Agroindustrial compost as a peat alternative in the horticultural industry of Ecuador. J. Environ. Manag. 2017, 186, 79–87. [Google Scholar] [CrossRef]
- Vaughn, S.F.; Deppe, N.A.; Palmquist, D.E.; Berhow, M.A. Extracted sweet corn tassels as a renewable alternative to peat in greenhouse substrates. Ind. Crops Prod. 2011, 33, 514–517. [Google Scholar] [CrossRef]
- Melgarejo, P.; Legua, P.; Pérez-Sarmiento, F.; Martínez-Font, R.; José Martínez-Nicolás, J.; Hernández, F. Effect of a New Remediated Substrate on Fruit Quality and Bioactive Compounds in Two Strawberry Cultivars Effect of a New Remediated Substrate on Fruit Quality and Bioactive Compounds in Two Strawberry Cultivars. J. Food Nutr. Res. 2017, 5, 579–586. [Google Scholar] [CrossRef]
- Ugolini, F.; Calzolari, C.; Lanini, G.; Massetti, L.; Pollaki, S.; Raschi, A.; Sabatini, F.; Tagliaferri, G.; Ungaro, F.; Massa, D.; et al. Testing decontaminated sediments as a substrate for ornamentals in field nursery plantations. J. Environ. Manag. 2017, 197, 681–693. [Google Scholar] [CrossRef]
- Martínez-Nicolás, J.J.; Legua, P.; Núñez-Gómez, D.; Martínez-Font, R.; Hernández, F.; Giordani, E.; Melgarejo, P. Potential of dredged bioremediated marine sediment for strawberry cultivation. Sci. Rep. 2020, 10, 19878. [Google Scholar] [CrossRef]
- Kim, K.; Yoon, S.; Kwon, H.; Choi, Y. Effects of treatment agents during acid washing and pH neutralization on the fertility of heavy metal-impacted dredged marine sediment as plant-growing soil. Environ. Pollut. 2020, 267, 115466. [Google Scholar] [CrossRef] [PubMed]
- Tozzi, F.; Del Bubba, M.; Petrucci, W.A.; Pecchioli, S.; Macci, C.; Hernández García, F.; Martínez Nicolás, J.J.; Giordani, E. Use of a remediated dredged marine sediment as a substrate for food crop cultivation: Sediment characterization and assessment of fruit safety and quality using strawberry (Fragaria x ananassa Duch.) as model species of contamination transfer. Chemosphere 2020, 238, 124651. [Google Scholar] [CrossRef] [PubMed]
- Tozzi, F.; Pecchioli, S.; Renella, G.; Melgarejo, P.; Legua, P.; Macci, C.; Doni, S.; Masciandaro, G.; Giordani, E.; Lenzi, A. Remediated marine sediment as growing medium for lettuce production: Assessment of agronomic performance and food safety in a pilot experiment. J. Sci. Food Agric. 2019, 99, 5624–5630. [Google Scholar] [CrossRef] [PubMed]
- Tozzi, F.; Renella, G.; Cristina, M.; Masciandaro, G.; Gonnelli, C.; Colzi, I.; Giagnoni, L.; Pecchioli, S.; Nin, S.; Giordani, E. Agronomic performance and food safety of strawberry cultivated on a remediated sediment. Sci. Total Environ. 2021, 796, 148803. [Google Scholar] [CrossRef] [PubMed]
- Masciandaro, G.; Di Biase, A.; Macci, C.; Peruzzi, E.; Iannelli, R.; Doni, S. Phytoremediation of dredged marine sediment: Monitoring of chemical and biochemical processes contributing to sediment reclamation. J. Environ. Manag. 2014, 134, 166–174. [Google Scholar] [CrossRef]
- Martínez-nicolás, J.J.; Legua, P.; Hernández, F.; Martínez-font, R.; Giordani, E.; Melgarejo, P. Effect of phytoremediated port sediment as an agricultural medium for pomegranate cultivation: Mobility of contaminants in the plant. Sustainability 2021, 13, 9661. [Google Scholar] [CrossRef]
- European Commission (EC). Commission Delegated Regulation (EU) 2019/428 of 12 July 2018 Amending Implementing Regulation (EU) No 543/2011 as Regards Marketing Standards in the Fruit and Vegetables Sector; Commission Delegated Regulation (EU): Brussels, Belgium, 2018. [Google Scholar]
- Billmeyer, F. Commission Internationale de l’Éclairage, Standard on Colorimetric Illuminants. Color Res. Appl. 1988, 13, 65–66. [Google Scholar] [CrossRef]
- Ohta, N.; Robertson, A.R. Application of CIE Standard Colorimetric System. Colorimetry 2006, 229–269. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Robles, J.M.; Botía, P.; Pérez-Pérez, J.G. Sour orange rootstock increases water productivity in deficit irrigated ‘Verna’ lemon trees compared with Citrus macrophylla. Agric. Water Manag. 2017, 186, 98–107. [Google Scholar] [CrossRef]
- Cantuarias-Avilés, T.; Mourão de Filho, F.A.A.; Stuchi, E.S.; da Silva, S.R.; Espinoza-Núñez, E. Tree performance and fruit yield and quality of ‘Okitsu’ Satsuma mandarin grafted on 12 rootstocks. Sci. Hortic. 2010, 123, 318–322. [Google Scholar] [CrossRef]
- Zekri, M. Citrus rootstocks affect scion nutrition, fruit quality, growth, yield and economical return. Fruits 2000, 55, 231–239. [Google Scholar] [CrossRef]
- Quaggio, J.A.; Mattos, D.; Cantarella, H.; Almeida, E.L.E.; Cardoso, S.A.B. Lemon yield and fruit quality affected by NPK fertilization. Sci. Hortic. 2002, 96, 151–162. [Google Scholar] [CrossRef]
- Sun, Y.; Singh, Z.; Tokala, V.Y.; Heather, B. Harvest maturity stage and cold storage period influence lemon fruit quality. Sci. Hortic. 2019, 249, 322–328. [Google Scholar] [CrossRef]
- Ennab, H. Effect of Organic Manures, Biofertilizers and NPK on Vegetative Growth, Yield, Fruit Quality and Soil Fertility of Eureka Lemon Trees (Citrus limon (L.) Burm). J. Soil Sci. Agric. Eng. Mansoura Univ. 2016, 7, 767–774. [Google Scholar] [CrossRef]
- Serna-Escolano, V.; Valverde, J.M.; García-Pastor, M.E.; Valero, D.; Castillo, S.; Guillén, F.; Martínez-Romero, D.; Zapata, P.J.; Serrano, M. Pre-harvest methyl jasmonate treatments increase antioxidant systems in lemon fruit without affecting yield or other fruit quality parameters. J. Sci. Food Agric. 2019, 99, 5035–5043. [Google Scholar] [CrossRef]
- Cairone, F.; Carradori, S.; Locatelli, M.; Casadei, M.A.; Cesa, S. Reflectance colorimetry: A mirror for food quality—A mini review. Eur. Food Res. Technol. 2020, 246, 259–272. [Google Scholar] [CrossRef]
- Dubey, A.K.; Sharma, R.M. Effect of rootstocks on tree growth, yield, quality and leaf mineral composition of lemon (Citrus limon (L.) Burm.). Sci. Hortic. 2016, 200, 131–136. [Google Scholar] [CrossRef]
- Perez-Perez, J.G.; Castillo, I.P.; Garcia-Lidon, A.; Botia, P.; Garcia-Sanchez, F. Fino lemon clones compared with the lemon varieties Eureka and Lisbon on two rootstocks in Murcia (Spain). Sci. Hortic. 2005, 106, 530–538. [Google Scholar] [CrossRef]
- Lado, J.; Gambetta, G.; Zacarias, L. Key determinants of citrus fruit quality: Metabolites and main changes during maturation. Sci. Hortic. 2018, 233, 238–248. [Google Scholar] [CrossRef]
- Manuel, J.; Martínez, B.; Porras, I.; Manera, F.J. Quality and fruit colour change in Verna lemon View project SIGEAM View project. Artic. J. Appl. Bot. Food Qual. 2015, 88, 215–221. [Google Scholar] [CrossRef]
- González-Molina, E.; Moreno, D.A.; García-Viguera, C. Comparison of ‘Verna’ lemon juice quality for new ingredients and food products. Sci. Hortic. 2009, 120, 353–359. [Google Scholar] [CrossRef]
- Nasrin, T.A.A.; Rahman, M.A.; Arfin, M.S.; Islam, M.N.; Ullah, M.A. Effect of novel coconut oil and beeswax edible coating on postharvest quality of lemon at ambient storage. J. Agric. Food Res. 2020, 2, 100019. [Google Scholar] [CrossRef]
- Dong, X.; Hu, Y.; Li, Y.; Zhou, Z. The maturity degree, phenolic compounds and antioxidant activity of Eureka lemon [Citrus limon (L.) Burm. f.]: A negative correlation between total phenolic content, antioxidant capacity and soluble solid content. Sci. Hortic. 2019, 243, 281–289. [Google Scholar] [CrossRef]
- Czech, A.; Malik, A.; Sosnowska, B.; Domaradzki, P. Bioactive Substances, Heavy Metals, and Antioxidant Activity in Whole Fruit, Peel, and Pulp of Citrus Fruits. Int. J. Food Sci. 2021, 2021, 6662259. [Google Scholar] [CrossRef]
- Mcharek, N.; Hanchi, B. Maturational effects on phenolic constituents, antioxidant activities and LC-MS / MS profiles of lemon (Citrus limon) peels. J. Appl. Bot. Food Qual. 2017, 89, 1–9. [Google Scholar] [CrossRef]
- Xi, W.; Lu, J.; Qun, J.; Jiao, B. Characterization of phenolic profile and antioxidant capacity of different fruit part from lemon (Citrus limon Burm.) cultivars. J. Food Sci. Technol. 2017, 54, 1108–1118. [Google Scholar] [CrossRef]
- Liu, L.; Chen, C.X.; Zhu, Y.F.; Xue, L.; Liu, Q.W.; Qi, K.J.; Zhang, S.L.; Wu, J. Maternal inheritance has impact on organic acid content in progeny of pear (Pyrus spp.) fruit. Euphytica 2016, 209, 305–321. [Google Scholar] [CrossRef]
- Rampersaud, G.; Valim, F. 100% citrus juice: Nutritional contribution, dietary benefits, and association with anthropometric measures. Crit. Rev. Food Sci. Nutr. 2017, 57, 129–140. [Google Scholar] [CrossRef]
- Bononi, M.; Quaglia, G.; Tateo, F. Preliminary LC-IRMS Characterization of Italian Pure Lemon Juices and Evaluation of Commercial Juices Distributed in the Italian Market. Food Anal. Methods 2016, 9, 2824–2831. [Google Scholar] [CrossRef]
- Randhawa, M.A.; Rashid, A.; Saeed, M.; Javed, M.S.; Khan, A.A.; Sajid, M.W. Characterization of Organic Acids in Juices of Some Pakistani Citrus Species and Their Retention during Refrigerated Storage. J. Anim. Plant Sci. 2014, 24, 211–215. [Google Scholar]
- Karadeniz, F. Main Organic Acid Distribution of Authentic Citrus Juices in Main Organic Acid Distribution of Authentic Citrus Juices in Turkey. Available online: https://www.researchgate.net/publication/283928385_Main_organic_acid_distribution_of_authentic_citrus_juices_in_Turkey (accessed on 31 May 2022).
- Klimek-szczykutowicz, M.; Szopa, A.; Ekiert, H. Citrus limon (Lemon) Phenomenon—A Review of the Chemistry, Pharmacological Properties, Applications in the Modern Pharmaceutical, Food, and Cosmetics Industries, and Biotechnological Studies. Plants 2020, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Kabasakalis, V.; Siopidou, D.; Moshatou, E. Ascorbic acid content of commercial fruit juices and its rate of loss upon storage. Food Chem. 2000, 70, 325–328. [Google Scholar] [CrossRef]
- Bassal, M.A. Growth, yield and fruit quality of ‘Marisol’ clementine grown on four rootstocks in Egypt. Sci. Hortic. 2009, 119, 132–137. [Google Scholar] [CrossRef]
Rootstock | Grown Media | Acronym |
---|---|---|
Citrus macrophylla | 75% peat + 25% sediment | 25 M |
Citrus macrophylla | 50% peat + 50% sediment | 50 M |
Citrus macrophylla | 25% peat + 75% sediment | 75 M |
Citrus aurantium | 75% peat + 25% sediment | 25 A |
Citrus aurantium | 50% peat + 50% sediment | 50 A |
Citrus aurantium | 25% peat + 75% sediment | 75 A |
Citrus aurantium/Citrus sinensis | 75% peat + 25% sediment | 25 CA-MI |
Citrus aurantium/Citrus sinensis | 50% peat + 50% sediment | 50 CA-MI |
Citrus aurantium/Citrus sinensis | 25% peat + 75% sediment | 75 CA-MI |
No. of Fruits/Tree | Yield (kg Tree−1) | Total No. of Fruits | Total Yield (kg) | |
---|---|---|---|---|
Type of substrate (sediment content, %) | ||||
25% | 9.63 (9.75) c | 1.68 (1.59) a | 289 c | 50.51 b |
50% | 19.66 (15.73) a | 3.12 (2.21) b | 590 b | 90.53 a |
75% | 4.13 (7.13) b | 0.58 (0.96) c | 124 a | 17.28 c |
Type of rootstock | ||||
Citrus macrophylla | 14.83 (13.45) a | 2.35 (2.09) a | 445 b | 70.78 b |
Citrus aurantium | 3.03 (4.84) b | 0.65 (0.98) b | 91 a | 18.86 a |
Citrus aurantium/Citrus sinensis | 15.56 (14.67) a | 2.28 (2.06) a | 467 c | 68.67 c |
Fruit Weight (g) | Equatorial Diameter (mm) | Fruit Length (mm) | Mamelon Length (mm) | Peel Thickness (mm) | Number of Carpelly | Number of Seeds | Juice Content (w:w) | |
---|---|---|---|---|---|---|---|---|
Substrate (sediment content, %) | ||||||||
25% | 168.15 (48.80) a | 63.10 (6.16) a | 93.66 (12.54) a | 15.24 (4.83) a | 7.08 (1.49) a | 9.31 (1.19) a | 1.59 (0.91) a | 0.27 (0.07) a |
50% | 168.91 (34.78) b | 63.32 (4.47) b | 96.39 (10.02) ab | 16.18 (4.20) ab | 6.73 (1.30) a | 8.92 (1.59) a | 1.66 (1.74) a | 0.27 (0.07) a |
75% | 142.42 (33.00) b | 59.78 (4.59) b | 94.10 (10.13) b | 16.69 (3.97) b | 6.75 (1.49) a | 9.06 (1.04) a | 1.31 (0.48) a | 0.24 (0.12) a |
Rootstock | ||||||||
Citrus macrophylla | 163.25 (44.01) a | 62.60 (5.76) ab | 94.26 (10.97) a | 15.01 (4.23) a | 6.74 (1.27) a | 9.15 (1.14) a | 1.36 (0.69) a | 0.26 (0.08) a |
citrus aurantium | 176.13 (45.14) b | 64.07 (5.67) b | 98.05 (12.46) b | 16.90 (5.23) b | 6.83 (1.70) a | 9.02 (1.83) a | 2.31 (2.46) b | 0.27 (0.11) a |
Citrus aurantium/Citrus sinensis | 159.25 (35.92) a | 61.96 (4.57) a | 94.37 (10.53) a | 16.51 (4.10) b | 6.97 (1.41) a | 9.08 (1.13) a | 1.35 (0.62) a | 0.25 (0.08) a |
L* | a* | b* | C* | H° | CI | |
---|---|---|---|---|---|---|
External color | ||||||
Substrate (sediment content, %) | ||||||
25% | 70.12 (3.90) a | 4.90 (3.04) a | 53.02 (4.17) a | 53.32 (4.83) a | 84.92 (3.24) c | 1.29 (0.74) a |
50% | 71.62 (2.69) b | 7.45 (2.59) b | 56.54 (3.41) b | 57.08 (3.57) b | 82.56 (2.43) a | 2.02 (0.59) b |
75% | 71.86 (2.34) b | 6.82 (2.57) b | 57.17 (2.74) b | 57.62 (2.89) b | 83.26 (2.48) b | 1.28 (0.68) a |
Rootstock | ||||||
Citrus macrophylla | 70.80 (3.54) a | 6.22 (2.95) a | 55.24 (4.19) a | 55.66 (4.33) a | 83.74 (2.97) a | 1.48 (0.60) a |
Citrus aurantium | 71.70 (2.75) b | 6.61 (2.72) a | 54.93 (4.08) a | 55.38 (4.24) a | 83.23 (2.60) a | 2.38 (0.35) b |
Citrus aurantium/Citrus sinensis | 71.18 (3.05) ab | 6.48 (3.14) a | 55.55 (4.40) a | 56.00 (4.57) a | 83.51 (3.10) a | 1.62 (0.83) a |
Internal color | ||||||
Substrate (sediment content, %) | ||||||
25% silt | 42.02 (1.86) b | −067 (0.23) a | 2.08 (0.68) a | 2.21 (0.63) a | 109.48 (9.79) b | −8.85 (5.85) a |
50% sediment | 41.82 (1.47) b | −0.56 (0.36) a | 2.36 (0.69) b | 2.45 (0.72) a | 102.73 (8.88) a | −5.55 (4.12) b |
75% sediment | 41.21 (0.93) a | −0.55 (0.31) a | 2.71 (0.58) c | 2.78 (0.61) b | 100.77 (5.70) a | −4.67 (2.50) b |
Rootstock | ||||||
Citrus macrophylla | 41.75 (1.61) a | −0.52 (0.29) b | 2.30 (0.70) a | 2.38 (0.68) a | 102.72 (9.38) a | −5.54 (4.27) b |
Citrus aurantium | 41.65 (1.10) a | 0.80 (0.28) a | 2.57 (0.68) b | 2.70 (0.72) b | 107.32 (3.82) b | −7.49 (1.66) a |
Citrus aurantium/Citrus sinensis | 41.75 (1.74) a | −0.54 (0.29) b | 2.25 (0.70) a | 2.35 (0.65) a | 104.48 (11.43) ab | −6.72 (6.64) ab |
pH | TSS (°Brix) | TA (g Citric Acid L−1) | MI | |
---|---|---|---|---|
Substrate (sediment content, %) | ||||
25% | 2.54 (0.50) a | 8.96 (0.31) a | 59.71 (3.56) a | 1.50 (0.06) a |
50% | 3.04 (0.54) a | 9.10 (0.55) b | 62.79 (3.03) ab | 1.45 (0.09) ab |
75% | 2.49 (0.51) b | 9.02 (0.56) b | 64.32 (6.05) b | 1.41 (0.10) b |
Rootstock | ||||
Citrus macrophylla | 2.54 (0.50) a | 8.96 (0.38) a | 62.33 (2.86) ab | 1.44 (0.07) a |
Citrus aurantium | 3.04 (0.54) b | 9.10 (0.69) a | 59.75 (6.23) a | 1.52 (0.07) b |
Citrus aurantium/Citrus sinensis | 2.49 (0.51) a | 9.04 (0.36) a | 63.88 (3.93) b | 1.42 (0.09) a |
ABTS (mmol Trolox L−1) | DPPH (mmol Trolox L−1) | FRAP (mmol Trolox L−1) | TPC (mg GAE 100 mL−1) | |
---|---|---|---|---|
Substrate (sediment content, %) | ||||
25% | 1.49 (0.11) a | 3.08 (0.20) a | 1.08 (0.11) a | 93.63 (19.08) a |
50% | 1.51 (0.18) a | 3.10 (0.31) a | 1.14 (0.13) ab | 83.49 (10.65) a |
75% | 1.58 (0.22) a | 3.13 (0.15) a | 1.25 (0.21) b | 93.16 (22.85) a |
Rootstock | ||||
Citrus macrophylla | 1.48 (0.14) a | 3.25 (0.10) b | 1.05 (0.14) a | 80.77 (8.96) a |
Citrus aurantium | 1.61 (0.23) a | 3.12 (0.18) b | 1.16 (0.13) ab | 104.80 (19.89) b |
Citrus aurantium/Citrus sinensis | 1.49 (0.12) a | 2.91 (0.24) a | 1.25 (0.15) b | 87.69 (17.01) a |
Glucose (g 100 mL−1) | Fructose (g 100 mL−1) | Citric Acid (g 100 mL−1) | Malic Acid (g 100 mL−1) | Ascorbic Acid (g 100 mL−1) | Succinic Acid (g 100 mL−1) | |
---|---|---|---|---|---|---|
Substrate (sediment content, %) | ||||||
25% | 0.75 (0.05) a | 0.58 (0.04) a | 4.34 (0.19) a | 0.43 (0.08) a | 0.06(0. 00) a | 0.59 (0.06) a |
50% | 0.79 (0.03) a | 0.55 (0.05) a | 4.41 (0.17) a | 0.41 (0.06) a | 0.06(0. 00) a | 0.61 (0.16) a |
75% | 0.79 (0.06) a | 0.55 (0.06) a | 4.46 (0.22) a | 0.38 (0.08) a | 0.06(0. 00) a | 0.61 (0.12) a |
Rootstock | ||||||
Citrus macrophylla | 0.77 (0.03) a | 0.57 (0.02) a | 4.40 (0.13) a | 0.42 (0.07) b | 0.06(0. 00) a | 0.57 (0.09) a |
Citrus aurantium | 0.76 (0.07) a | 0.54 (0.09) a | 0.32 (0.29) a | 0.35 (0.07) a | 0.06 (0.00) b | 0.66 (0.18) a |
Citrus aurantium/Citrus sinensis | 0.78 (0.04) a | 0.58 (0.01) a | 4.46 (0.14) a | 0.44 (0.03) b | 0.06 (0.00) ab | 0.59 (0.08) a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Nicolas, J.J.; Núñez-Gómez, D.; Lidón, V.; Martínez-Font, R.; Melgarejo, P.; Hernández, F.; Legua, P. Physico-Chemical Attributes of Lemon Fruits as Affected by Growing Substrate and Rootstock. Foods 2022, 11, 2487. https://doi.org/10.3390/foods11162487
Martínez-Nicolas JJ, Núñez-Gómez D, Lidón V, Martínez-Font R, Melgarejo P, Hernández F, Legua P. Physico-Chemical Attributes of Lemon Fruits as Affected by Growing Substrate and Rootstock. Foods. 2022; 11(16):2487. https://doi.org/10.3390/foods11162487
Chicago/Turabian StyleMartínez-Nicolas, Juan José, Dámaris Núñez-Gómez, Vicente Lidón, Rafael Martínez-Font, Pablo Melgarejo, Francisca Hernández, and Pilar Legua. 2022. "Physico-Chemical Attributes of Lemon Fruits as Affected by Growing Substrate and Rootstock" Foods 11, no. 16: 2487. https://doi.org/10.3390/foods11162487
APA StyleMartínez-Nicolas, J. J., Núñez-Gómez, D., Lidón, V., Martínez-Font, R., Melgarejo, P., Hernández, F., & Legua, P. (2022). Physico-Chemical Attributes of Lemon Fruits as Affected by Growing Substrate and Rootstock. Foods, 11(16), 2487. https://doi.org/10.3390/foods11162487