Effectiveness of Fish Oil-DHA Supplementation for Cognitive Function in Thai Children: A Randomized, Doubled-Blind, Two-Dose, Placebo-Controlled Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Investigational Product
2.4. Assessment of Cognitive Function
2.4.1. Cognitive Battery Testing
2.4.2. Event-Related Potential (ERP) Recording Procedure
2.5. Behavioral Recording and Analyses
2.6. Outcome Measurements
2.7. Statistical Analysis
2.8. Ethics and Trial Registration
3. Results
3.1. Participant Demographics
3.2. Behavioral Effects of Fish Oil
3.2.1. Go/NoGo
3.2.2. N-Back
3.2.3. Digit Span
3.3. Effects of Fish Oil on Brain Activity
3.3.1. Go/NoGo
3.3.2. N-Back
3.3.3. Digit Span
3.4. Adverse Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Von Schacky, C. Importance of EPA and DHA Blood Levels in Brain Structure and Function. Nutrients 2021, 13, 1074. [Google Scholar] [CrossRef] [PubMed]
- Kaewsutas, M.; Sarikaphuti, A.; Nararatwanchai, T.; Sittiprapaporn, P.; Patchanee, P. The effects of dietary microalgae (Schizochytrium spp.) and fish oil in layers on docosahexaenoic acid omega-3 enrichment of the eggs. J. Appl. Anim. Nutr. 2016, 4, E7. [Google Scholar] [CrossRef]
- Carver, J.D.; Benford, V.J.; Han, B.; Cantor, A.B. The relationship between age and the fatty acid composition of cerebral cortex and erythrocytes in human subjects. Brain Res. Bull. 2001, 56, 79–85. [Google Scholar] [CrossRef]
- McNamara, R.K.; Able, J.; Jandacek, R.; Rider, T.; Tso, P.; Eliassen, J.C.; Alfieri, D.; Weber, W.; Jarvis, K.; DelBello, M.P.; et al. Docosahexaenoic acid supplementation increases prefrontal cortex activation during sustained attention in healthy boys: A placebo-controlled, dose-ranging, functional magnetic resonance imaging study. Am. J. Clin. Nutri. 2010, 91, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Lauritzen, L.; Hansen, H.S.; Jørgensen, M.H.; Michaelsen, K.F. The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog. Lipid Res. 2001, 40, 1–94. [Google Scholar] [CrossRef]
- Anderson, V.; Fenwick, T.; Manly, T.; Robertson, I. Attentional skills following traumatic brain injury in childhood: A componential analysis. Brain Inj. 1998, 12, 937–949. [Google Scholar] [CrossRef]
- Haag, M. Essential fatty acids and the brain. Can. J. Psychiatry 2003, 48, 195–203. [Google Scholar] [CrossRef]
- Fontani, G.; Corradeschi, F.; Felici, A.; Alfatti, F.; Migliorini, S.; Lodi, L. Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects. Eur. J. Clin. Investig. 2005, 35, 691–699. [Google Scholar] [CrossRef]
- Yang, G.-Y.; Wu, T.; Huang, S.Y.; Huang, B.X.; Wang, H.L.; Lan, Q.Y.; Li, C.L.; Zhu, H.L.; Fang, A.P. No effect of 6-month supplementation with 300 mg/d docosahexaenoic acid on executive functions among healthy school-aged children: A randomized, double-blind, placebo-controlled trial. Eur. J. Nutr. 2021, 60, 1985–1997. [Google Scholar] [CrossRef]
- Stevens, C.; Bavelier, D. The role of selective attention on academic foundations: A cognitive neuroscience perspective. Dev. Cogn. Neurosci. 2012, 2 (Suppl. 1), S30–S48. [Google Scholar] [CrossRef]
- Jacob, R.; Parkinson, J. The potential for school-based interventions that target executive function to improve academic achievement. Rev. Educ. Res. 2015, 85, 512–552. [Google Scholar] [CrossRef]
- Weintraub, S.; Dikmen, S.S.; Heaton, R.K.; Tulsky, D.S.; Zelazo, P.D.; Bauer, P.J.; Carlozzi, N.E.; Slotkin, J.; Blitz, D.; Wallner-Allen, K.; et al. Cognition assessment using the NIH Toolbox. Neurology 2013, 80, S54–S64. [Google Scholar] [CrossRef]
- Benton, D.; ILSI Europe a.i.s.b.l. The influence of children’s diet on their cognition and behavior. Eur. J. Nutr. 2008, 47, 25–37. [Google Scholar] [CrossRef]
- Duncan, C.C.; Barry, R.J.; Connolly, J.F.; Fischer, C.; Michie, P.T.; Näänen, R.; Polich, J.; Reinvang, I.; Van Petten, C. Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin. Neurophysiol. 2009, 120, 1883–1908. [Google Scholar] [CrossRef]
- Riggins, T.; Scott, L.S. P300 development from infancy to adolescence. Psychophysiology 2020, 57, e13346. [Google Scholar] [CrossRef]
- Liao, K.; McCandliss, B.D.; Carlson, S.E.; Colombo, J.; Shaddy, D.J.; Kerling, E.H.; Lepping, R.J.; Sittiprapaporn, W.; Cheatham, C.L.; Gustafson, K.M. Event-related potential differences in children supplemented with long-chain polyunsaturated fatty acids during infancy. Dev. Sci. 2017, 20, e12455. [Google Scholar] [CrossRef]
- Brown, T.A.; Chorpita, B.F.; Korotitsch, W.; Barlow, D.H. Psychometric properties of the Depression Anxiety Stress Scales (DASS) in clinical samples. Behav. Res. Ther. 1997, 35, 79–89. [Google Scholar] [CrossRef]
- Woods, D.L.; Kishiyama, M.M.; Yund, E.W.; Herron, T.J.; Edwards, B.; Poliva, O.; Hink, R.F.; Reed, B. Improving digit span assessment of short-term verbal memory. J. Clin. Exp. Neuropsychol. 2011, 33, 101–111. [Google Scholar] [CrossRef]
- Lehmann, D.; Skrandies, W. Principles of spatial analysis. In Methods of Analysis of Brain Electrical and Magnetic Signals. Handbook of Electroencephalography and Clinical Neurophysiology, Revised Series; Gevins, A.S., Remond, A., Eds.; Elsevier Science Ltd.: Amsterdam, The Netherlands, 1987; Volume 1, pp. 309–354. [Google Scholar]
- Pascual-Marqui, R.D.; Michel, C.M.; Lehmann, D. Segmentation of brain electrical activity into microstates: Model estimation and validation. IEEE Trans. Biomed. Eng. 1995, 42, 658–665. [Google Scholar] [CrossRef]
- Skrandies, W. Global field power and topographic similarity. Brain Topogr. 1990, 3, 137–141. [Google Scholar] [CrossRef]
- Bann, S.A.; Herdman, A.T. Event Related Potentials Reveal Early Phonological and Orthographic Processing of Single Letters in Letter-Detection and Letter-Rhyme Paradigms. Front. Hum. Neurosci. 2016, 10, 176. [Google Scholar] [CrossRef]
- Liddle, P.F.; Kiehl, K.A.; Smith, A.M. Event-related fMRI study of response inhibition. Hum. Brain Mapp. 2001, 12, 100–109. [Google Scholar] [CrossRef]
- Jiao, J.; Li, Q.; Chu, J.; Zeng, W.; Yang, M.; Zhu, S. Effect of n−3 PUFA supplementation on cognitive function throughout the life span from infancy to old age: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2014, 100, 1422–1436. [Google Scholar] [CrossRef]
- Cao, D.; Kevala, K.; Kim, J.; Moon, H.S.; Jun, S.B.; Lovinger, D.; Kim, H.Y. Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. J. Neurochem. 2009, 111, 510–521. [Google Scholar] [CrossRef]
- Jensen, C.L.; Jensen, C.L.; Voigt, R.G.; Llorente, A.M.; Peters, S.U.; Prager, T.C.; Zou, Y.L.; Rozelle, J.C.; Turcich, M.R.; Fraley, J.K.; et al. Effects of early maternal docosahexaenoic acid intake on neuropsychological status and visual acuity at five years of age of breast-fed term infants. J. Pediatr. 2010, 157, 900–905. [Google Scholar] [CrossRef]
- Muthayya, S.; Eilander, A.; Transler, C.; Thomas, T.; van der Knaap, H.C.; Srinivasan, K.; van Klinken, B.J.; Osendarp, S.J.; Kurpad, A.V. Effect of fortification with multiple micronutrients and n-3 fatty acids on growth and cognitive performance in Indian schoolchildren: The CHAMPION (Children’s Health and Mental Performance Influenced by Optimal Nutrition) Study. Am. J. Clin. Nutr. 2009, 89, 1766–1775. [Google Scholar] [CrossRef]
- Bauer, I.; Hughes, M.; Rowsell, R.; Cockerell, R.; Pipingas, A.; Crewther, S.; Crewther, D. Omega-3 supplementation improves cognition and modifies brain activation in young adults. Hum. Psychopharmacol. 2014, 29, 133–144. [Google Scholar] [CrossRef]
- Calderon, F.; Kim, H.-Y. Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J. Neurochem. 2004, 90, 979–988. [Google Scholar] [CrossRef]
- Burns-Whitmore, B.; Haddad, E.; Sabaté, J.; Rajaram, S. Effects of supplementing n-3 fatty acid enriched eggs and walnuts on cardiovascular disease risk markers in healthy free-living lacto-ovo-vegetarians: A randomized, crossover, free-living intervention study. Nutr. J. 2014, 13, 29. [Google Scholar] [CrossRef]
- Ali, S.A.; Begum, T.; Reza, M.F.; Fadzil, N.A.; Mustafar, F. Post-attentive integration and topographic map distribution during audiovisual processing in dyslexia: A P300 event-related component analysis. Malays. J. Med. Sci. 2020, 27, 130–138. [Google Scholar] [CrossRef]
- Burch, R. Dietary omega 3 fatty acids for migraine. BMJ 2021, 374, n1535. [Google Scholar] [CrossRef]
Demographic and Baseline Characteristics | FO-A (n = 42) | FO-B (n = 39) | P (n = 39) | p-Value |
---|---|---|---|---|
Age (years), mean (SD) | 9.45 (±1.88) | 10.18 (±1.47) | 9.74 (±1.50) | 0.14 |
Male | 16 | 16 | 20 | - |
Female | 26 | 23 | 19 | - |
Education | ||||
1st grade | 12 | - | 4 | - |
2nd grade | 3 | 8 | 2 | - |
3rd grade | 1 | 6 | 11 | - |
4th grade | 14 | 4 | 13 | - |
5th grade | 4 | 13 | 1 | - |
6th grade | 8 | 8 | 8 | - |
Content | FO-A | FO-B | Placebo |
---|---|---|---|
Docosahexaenoic acid (DHA) | 260 mg | 520 mg | - |
Eicosapentanoeic acid (EPA) | 60 mg | 120 mg | - |
Total omega-3 triglycerides | 320 mg | 640 mg | 36 mg * |
Cognitive Function Test | Groups | Mean (SD) Score at Baseline | Mean (SD) Score at 12th Week |
---|---|---|---|
Go/NoGo | |||
(%) Accuracy (Go) | FO-A (n = 42) | 94.72 | 96.11 |
FO-B (n = 39) | 98.50 | 99.19 | |
P (n = 39) | 96.92 | 98.33 | |
(%) Error (Go) | FO-A (n = 42) | 5.28 | 3.89 |
FO-B (n = 39) | 1.50 | 0.81 | |
P (n = 39) | 3.08 | 1.67 | |
Reaction time (ms) (Go) | FO-A (n = 42) | 601.39 (±10.63) | 601.46 (±31.21) |
FO-B (n = 39) | 563.23 (±40.65) | 534.94 (±20.70) | |
P (n = 39) | 580.60 (±66.90) | 575.90 (±24.49) | |
(%) Accuracy (NoGo) | FO-A (n = 42) | 85.24 | 91.55 |
FO-B (n = 39) | 86.28 | 89.87 | |
P (n = 39) | 87.18 | 87.56 | |
(%) Error (NoGo) | FO-A (n = 42) | 14.76 | 8.45 |
FO-B (n = 39) | 13.72 | 10.13 | |
P (n = 39) | 12.82 | 12.44 | |
N-Back | |||
(%) Accuracy | FO-A (n = 42) | 90.20 | 94.72 |
FO-B (n = 39) | 90.73 | 95.13 | |
P (n = 39) | 92.44 | 95.21 | |
(%) Error | FO-A (n = 42) | 9.80 | 5.28 |
FO-B (n = 39) | 9.27 | 4.87 | |
P (n = 39) | 7.56 | 4.79 | |
Reaction time (ms) | FO-A (n = 42) | 479.69 (±50.879) | 466.33 (±55.154) |
FO-B (n = 39) | 462.20 (±38.190) | 452.98 (±93.199) | |
P (n = 39) | 428.33 (±95.728) | 418.83 (±16.502) | |
Digit Span | |||
(%) Accuracy | FO-A (n = 42) | 70.08 | 72.22 |
FO-B (n = 39) | 81.20 | 76.32 | |
P (n = 39) | 74.53 | 78.59 | |
(%) Error | FO-A (n = 42) | 29.92 | 27.78 |
FO-B (n = 39) | 18.80 | 23.68 | |
P (n = 39) | 25.47 | 21.41 | |
Reaction time (ms) | FO-A (n = 42) | 1063.71 (±129.87) | 1124.75 (±85.827) |
FO-B (n = 39) | 1240.0 (±519.10) | 1121.27 (±53.455) | |
P (n = 39) | 1039.9 (±156.67) | 1133.71 (±13.806) |
Cognitive Function Test | Groups | Mean (SD) Scores at Baseline | Mean (SD) Scores at 12th week |
---|---|---|---|
Go/NoGo | |||
Latency (ms) | FO-A (n = 42) | 477.68 (±9.81) | 479.35 (±6.82) |
FO-B (n = 39) | 474.66 (±5.18) | 456.35 (±10.38) | |
P (n = 39) | 476.66 (±11.12) | 476.66 (±2.79) | |
Amplitude (µV) | FO-A (n = 42) | 3.69 (±0.91) | 5.64 (±0.85) * |
FO-B (n = 39) | 2.16 (±0.20) | 6.95 (±0.23) *** | |
P (n = 39) | 2.90 (±0.90) | 3.51 (±0.70) | |
N-Back | |||
Latency (ms) | FO-A (n = 42) | 462.20 (±14.49) | 455.17 (±7.81) * |
FO-B (n = 39) | 463.44 (±9.10) | 455.33 (±15.44) *** | |
P (n = 39) | 466.95 (±4.45) | 467.75 (±19.83) | |
Amplitude (µV) | FO-A (n = 42) | 2.93 (±0.86) | 5.62 (±1.17) * |
FO-B (n = 39) | 2.12 (±0.55) | 7.71 (±0.30) *** | |
P (n = 39) | 2.70 (±0.47) | 3.31 (±0.59) | |
Digit Span | |||
Latency (ms) | FO-A (n = 42) | 457.59 (±9.91) | 454.42 (±7.99) |
FO-B (n = 39) | 467.45 (±0.46) | 453.12 (±10.54) | |
P (n = 39) | 464.94 (±10.37) | 444.91 (±1.76) | |
Amplitude (µV) | FO-A (n = 42) | 3.40 (±0.56) | 5.42 (±1.09) ** |
FO-B (n = 39) | 2.52 (±0.67) | 7.22 (±0.53) *** | |
P (n = 39) | 2.85 (±0.58) | 3.53 (±0.79) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sittiprapaporn, P.; Bumrungpert, A.; Suyajai, P.; Stough, C. Effectiveness of Fish Oil-DHA Supplementation for Cognitive Function in Thai Children: A Randomized, Doubled-Blind, Two-Dose, Placebo-Controlled Clinical Trial. Foods 2022, 11, 2595. https://doi.org/10.3390/foods11172595
Sittiprapaporn P, Bumrungpert A, Suyajai P, Stough C. Effectiveness of Fish Oil-DHA Supplementation for Cognitive Function in Thai Children: A Randomized, Doubled-Blind, Two-Dose, Placebo-Controlled Clinical Trial. Foods. 2022; 11(17):2595. https://doi.org/10.3390/foods11172595
Chicago/Turabian StyleSittiprapaporn, Phakkharawat, Akkarach Bumrungpert, Prayoon Suyajai, and Con Stough. 2022. "Effectiveness of Fish Oil-DHA Supplementation for Cognitive Function in Thai Children: A Randomized, Doubled-Blind, Two-Dose, Placebo-Controlled Clinical Trial" Foods 11, no. 17: 2595. https://doi.org/10.3390/foods11172595
APA StyleSittiprapaporn, P., Bumrungpert, A., Suyajai, P., & Stough, C. (2022). Effectiveness of Fish Oil-DHA Supplementation for Cognitive Function in Thai Children: A Randomized, Doubled-Blind, Two-Dose, Placebo-Controlled Clinical Trial. Foods, 11(17), 2595. https://doi.org/10.3390/foods11172595