Lentil Fortification and Non-Conventional Yeasts as Strategy to Enhance Functionality and Aroma Profile of Craft Beer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains
2.2. Fermentation Trials
2.3. Pils Wort and Lentil Wort Preparation
2.4. By-Products and Volatile Compounds
2.5. Sensory Analysis
2.6. Yeast Vitality Assay after 3 Months of Bottling
2.7. Nutritional Values Amino Acid Composition of Final Beers
2.8. Statistical Analysis
3. Results
3.1. Fermentation Kinetics
3.2. Main Analytical Characteristics
3.3. By-Products and Volatile Profiles
3.4. Vitality Assay after 3 Months
3.5. Sensorial Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donadini, G.; Fumi, M.D.; Kordialik-Bogacka, E.; Maggi, L.; Lambri, M.; Sckokai, P. Consumer interest in specialty beers in three European markets. Food Res. Int. 2016, 85, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Euromonitor International. Beer in Brazil. 2018. Available online: https://www.euromonitor.com/beer-inbrazil/report (accessed on 17 November 2018).
- Callejo, M.J.; Navas, J.G.; Alba, R.; Escott, C.; Loira, I.; González, M.C.; Morata, A. Wort fermentation and beer conditioning with selected non-Saccharomyces yeasts in craft beers. Eur. Food Res. Technol. 2019, 245, 1229–1238. [Google Scholar] [CrossRef]
- Pires, E.J.; Teixeira, J.A.; Brányik, T.; Vicente, A.A. Yeast: The soul of beer’s aroma—a review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl. Microbiol. Biotechnol. 2014, 98, 1937–1949. [Google Scholar] [CrossRef]
- Verstrepen, K.J.; Derdelinckx, G.; Dufour, J.P.; Winderickx, J.; Thevelein, J.M.; Pretorius, I.S.; Delvaux, F.R. Flavor-active esters: Adding fruitiness to beer. J. Biosci. Bioeng. 2003, 96, 110–118. [Google Scholar] [CrossRef]
- Canonico, L.; Comitini, F.; Ciani, M. Dominance and influence of selected Saccharomyces cerevisiae strains on the analytical profile of craft beer refermentation. J. Inst. Brew. 2014, 120, 262–267. [Google Scholar] [CrossRef]
- Nachel, M.; Ettlinger, S. Getting to know the mother beer categories: Ales, lagers, and more. In Beer for Dummies; Nachel, M., Ettlinger, S., Eds.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Yeo, H.Q.; Liu, S.Q. An overview of selected specialty beers: Developments, challenges and prospects. Int. J. Food Sci. 2014, 49, 1607–1618. [Google Scholar] [CrossRef]
- Basso, R.F.; Alcarde, A.R.; Portugal, C.B. Could non-Saccharomyces yeasts contribute on innovative brewing fermentations? Food Res. Int. 2016, 86, 112–120. [Google Scholar] [CrossRef]
- Suzuki, K. 125th anniversary review: Microbiological instability of beer caused by spoilage bacteria. J. Inst. Brew. 2011, 117, 131–155. [Google Scholar] [CrossRef]
- Vriesekoop, F.; Krahl, M.; Hucker, B.; Menz, G. 125th Anniversary Review: Bacteria in brewing: The good, the bad and the ugly. J. Inst. Brew. 2012, 118, 335–345. [Google Scholar] [CrossRef]
- Etienne-Mesmin, L.; Livrelli, V.; Privat, M.; Denis, S.; Cardot, J.M.; Alric, M.; Blanquet-Diot, S. Effect of a new probiotic Saccharomyces cerevisiae strain on survival of Escherichia coli O157: H7 in a dynamic gastrointestinal model. Appl. Environ. Microbiol. 2011, 77, 1127–1131. [Google Scholar] [CrossRef] [Green Version]
- Kelesidis, T.; Pothoulakis, C. Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Therap. Adv. Gastroenterol. 2012, 5, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Capece, A.; Romaniello, R.; Pietrafesa, A.; Siesto, G.; Pietrafesa, R.; Zambuto, M.; Romano, P. Use of Saccharomyces cerevisiae var. boulardii in co-fermentations with S. cerevisiae for the production of craft beers with potential healthy value-added. Int. J. Food Microbiol. 2018, 284, 22–30. [Google Scholar] [CrossRef] [PubMed]
- de Paula, B.P.; de Souza Lago, H.; Firmino, L.; Júnior, W.J.F.L.; Corrêa, M.F.D.; Guerra, A.F.; Pereira, K.S.; Coelho, M.A.Z. Technological features of Saccharomyces cerevisiae var. boulardii for potential probiotic wheat beer development. LWT 2021, 135, 110233. [Google Scholar] [CrossRef]
- Mulero-Cerezo, J.; Briz-Redón, Á.; Serrano-Aroca, Á. Saccharomyces cerevisiae var. boulardii: Valuable probiotic starter for craft beer production. Appl. Sci. 2019, 9, 3250. [Google Scholar] [CrossRef]
- Boye, J.I.; Aksay, S.; Roufik, S.; Ribéreau, S.; Mondor, M.; Farnworth, E.; Rajamohamed, S.H. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Res. Int. 2010, 43, 537–546. [Google Scholar] [CrossRef]
- Tharanathan, R.N.; Mahadevamma, S. Grain legumes—A boon to human nutrition. Trends Food Sci. Technol. 2003, 14, 507–518. [Google Scholar] [CrossRef]
- Yadav, D.N.; Sharma, M.; Chikara, N.; Anand, T.; Bansal, S. Quality characteristics of vegetable-blended wheat–pearl millet composite pasta. Agric. Res. 2014, 3, 263–270. [Google Scholar] [CrossRef]
- de Almeida Costa, G.E.; da Silva Queiroz-Monici, K.; Reis, S.M.P.M.; de Oliveira, A.C. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem. 2006, 94, 327–330. [Google Scholar] [CrossRef]
- Tosh, S.M.; Yada, S. Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Res. Int. 2010, 43, 450–460. [Google Scholar] [CrossRef]
- Micioni Di Bonaventura, M.V.; Cecchini, C.; Vila-Donat, P.; Caprioli, G.; Cifani, C.; Coman, M.M.; Cresci, A.; Fiorini, D.; Ricciutelli, M.; Silvi, S.; et al. Evaluation of the hypocholesterolemic effect and prebiotic activity of a lentil (Lens culinaris Medik) extract. Mol. Nutr. Food Res. 2017, 61, 1700403. [Google Scholar] [CrossRef] [Green Version]
- Canonico, L.; Zannini, E.; Ciani, M.; Comitini, F. Assessment of non-conventional yeasts with potential probiotic for protein-fortified craft beer production. LWT 2021, 145, 111361. [Google Scholar] [CrossRef]
- Agarbati, A.; Canonico, L.; Marini, E.; Zannini, E.; Ciani, M.; Comitini, F. Potential probiotic yeasts sourced from natural environmental and spontaneous processed foods. Foods 2020, 9, 287. [Google Scholar] [CrossRef] [PubMed]
- Bensadoun, A.; Weinstein, D. Assay of proteins in the presence of interfering materials. Anal. Biochem. 1976, 70, 241–250. [Google Scholar] [CrossRef]
- Canonico, L.; Comitini, F.; Ciani, M. Influence of vintage and selected starter on Torulaspora delbrueckii/Saccharomyces cerevisiae sequential fermentation. Eur. Food Res. Technol. 2015, 241, 827–833. [Google Scholar] [CrossRef]
- Analytica EBC. European Brewery Convention. 13 October 1997. Available online: http://www.europeanbreweryconvention.org/ (accessed on 25 March 2022).
- Mellor, D.D.; Hanna-Khalil, B.; Carson, R. A review of the potential health benefits of low alcohol and alcohol-free beer: Effects of ingredients and craft brewing processes on potentially bioactive metabolites. Beverages 2020, 6, 25. [Google Scholar] [CrossRef]
- Ambra, R.; Pastore, G.; Lucchetti, S. The Role of Bioactive Phenolic Compounds on the Impact of Beer on Health. Molecules 2021, 26, 486. [Google Scholar] [CrossRef]
- Korcz, E.; Kerényi, Z.; Varga, L. Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: Potential health benefits with special regard to cholesterol-lowering effects. Food Funct. 2018, 9, 3057–3068. [Google Scholar] [CrossRef]
- De Vuyst, L.; Weckx, S. The cocoa bean fermentation process: From ecosystem analysis to starter culture development. J. Appl. Microbiol. 2016, 121, 5–17. [Google Scholar] [CrossRef]
- Krasnikova, E.S.; Krasnikov, A.V.; Babushkin, V.A. The influence of composite flour mixtures on saccharomyces cerevisiae biotechnological properties and bread quality. IOP Conf. Ser. Earth Environ. Sci. 2020, 521, 022008. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Tan, M.; Øiseth, S.; Buckow, R. An emerging segment of functional legume-based beverages: A review. Food Rev. Int. 2022, 38, 1064–1102. [Google Scholar] [CrossRef]
- Procopio, S.; Brunner, M.; Becker, T. Differential transcribed yeast genes involved in flavour formation and its associated amino acid metabolism during brewery fermentation. Eur. Food Res. Technol. 2014, 239, 421–439. [Google Scholar] [CrossRef]
- Black, K.; Tziboula-Clarke, A.; White, P.J.; Iannetta, P.P.; Walker, G. Optimised processing of faba bean (Vicia faba L.) kernels as a brewing adjunct. J. Inst. Brew. 2021, 127, 13–20. [Google Scholar] [CrossRef]
- Canonico, L.; Galli, E.; Ciani, E.; Comitini, F.; Ciani, M. Exploitation of three non-conventional yeast species in the brewing process. Microorganisms 2019, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Canonico, L.; Ciani, E.; Galli, E.; Comitini, F.; Ciani, M. Evolution of aromatic profile of Torulaspora delbrueckii mixed fermentation at microbrewery plant. Fermentation 2020, 6, 7. [Google Scholar] [CrossRef]
- Domizio, P.; House, J.F.; Joseph, C.M.L.; Bisson, L.F.; Bamforth, C.W. Lachancea thermotolerans as an alternative yeast for the production of beer. J. Inst. Brew. 2016, 122, 599–604. [Google Scholar] [CrossRef]
- Holt, S.; Mukherjee, V.; Lievens, B.; Verstrepen, K.J.; Thevelein, J.M. Bioflavoring by non-conventional yeasts in sequential beer fermentations. Food Microbiol. 2018, 72, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Osburn, K.; Amaral, J.; Metcalf, S.R.; Nickens, D.M.; Rogers, C.M.; Sausen, C.; Caputo, R.; Miller, J.; Hongde, L.; Tennesen, J.M.; et al. Primary souring: A novel bacteria-free method for sour beer production. Food Microbiol. 2018, 70, 76–84. [Google Scholar] [CrossRef]
- Zdaniewicz, M.; Satora, P.; Pater, A.; Bogacz, S. Low lactic acid-producing strain of Lachancea thermotolerans as a new starter for beer production. Biomolecules 2020, 10, 256. [Google Scholar] [CrossRef]
- Bhattacharya, I.; Yan, S.; Yadav, J.S.S.; Tyagi, R.; Surampalli, R.Y. Saccharomyces unisporus: Biotechnological potential and present status. Compr. Rev. Food Sci. Food Saf. 2013, 12, 353–363. [Google Scholar] [CrossRef]
PW | PWL | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
The Main Fermentation Parameters | S. cerevisiae | L. thermotolerans | K. unispora | S. cerevisiae/L. thermotolerans | S. cerevisiae/K. unispora | S. cerevisiae | L. thermotolerans | K. unispora | S. cerevisiae/ L. thermotolerans | S. cerevisiae/ K. unispora |
Residual Glucose g/L | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Residual Sucrose g/L | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Residual Maltose g/L | ND | 13.52 ± 1.50 b | 30.14 ± 0.65 a | 12.91 ± 0.15 b | 11.95 ± 1.61 b | 0.11 ± 1.10 c | 4.77 ± 0.1 b | 4.44 ± 2.164 b | 5.97 ± 0.704 b | 11.95 ± 1.61 a |
Protein g/L | 12.53 ± 3.87 a | 33.29 ± 3.71 a | 25.51 ± 16.45 a | 18.49 ± 11.32 a | 17.43 ± 13.18 a | 26.27 ± 12.99 a | 30.12 ± 3.89 a | 25.51 ± 11.68 a | 22.05 ± 8.43 a | 17.43 ± 13.18 a |
Ethanol %v/v | 3.38 ± 0.14 a | 3.04 ± 0.1 a, b | 3.03 ± 0.12 a, b | 2.99 ± 0.10 b | 3.07 ± 0.18 a, b | 3.76 ± 0.17 a | 3.3 ± 0.17 a, b | 3.78 ± 0.10 a | 3.44 ± 0.06 a, b | 3.07 ± 0.18 b |
Moisture g/100 g | 95.90 ± 0.38 a | 95.73 ± 0.38 a | 95.85 ± 0.38 a | 96.18 ± 0.38 a | 95.89 ± 0.38 a | 94.19 ± 0.38 a, b | 93.82 ± 0.38 b | 94.34 ± 0.38 a, b | 93.95 ± 0.38 a, b | 95.89 ± 0.38 a |
Fatty g/100 g | 0.050 ± 0.033 a | <LoQ a | <LoQ a | <LoQ a | <LoQ a | <LoQ a | <LoQ a | <LoQ a | <LoQ a | <LoQ a |
Ashes g/100 g | 0.15 ± 0.03 a | 0.17 ± 0.03 a | 0.19 ± 0.04 a | 0.19 ± 0.04 a | 0.20 ± 0.04 a | 03.0 ± 00.4 a | 0.29 ± 0.04 a | 0.34 ± 0.04 a | 0.30 ± 0.04 a | 0.20 ± 0.04 a |
Carbohydrates g/100 g | 3.43 ± 0.39 a | 3.63 ± 0.39 a | 3.50 ± 0.39 a | 3.14 ± 0.39 a | 3.47 ± 0.39 a | 4.30 ± 0.39 a | 4.74 ± 03.9 a | 4.15 ± 0.39 a | 4.63 ± 0.39 a | 3.47 ± 0.39 a |
Energy value kcal/100 g | 16 ± 2 a | 16 ± 2 a | 16 ± 2 a | 15 ± 2 a | 16 ± 2 a | 22 ± 2 a, b | 24 ± 2 a | 21 ± 2 a, b | 23 ± 2 a, b | 16 ± 2 b |
Dry substance g/100 g | 4.10 ± 0.38 b | 4.27 ± 0.38 b | 6.7 ± 0.38 a | 3.82 ± 0.38 b | 4.11 ± 0.38 b | 5.81 ± 0.38 a | 6.18 ± 0.38 a | 5.66 ± 0.38 a | 6.05 ± 0.38 a | 4.11 ± 0.38 b |
PW (Pils Wort) | PWL (Pils + Lentil Wort) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Amino Acid Composition (mg/L) | S. cerevisiae | L. thermotolerans | K. unispora | S. cerevisie/L. thermotolerans | S. cerevisiae/K. unispora | S. cerevisiae | L. thermotolerans | K. unispora | S. cerevisie/L. thermotolerans | S. cerevisiae/K. unispora |
Aspartic acid | 45 ± 8 a, b | 31 ± 7 a, b | 49 ± 8 a | 18 ± 7 b | 54 ± 9 a | 257 ± 26 a | 110 ± 13 b | 226 ± 23 a | 105 ± 12 b | 224 ± 23 a |
Glutamic acid | 53 ± 8 a, b | 56 ± 9 a | 26 ± 8 b | 36 ± 8 a, b | 28 ± 7 a, b | 495 ± 48 a | 246 ± 25 b | 220 ± 23 b | 234 ± 24 b | 277 ± 28 b |
Alanine | 80 ± 11 a | 81 ± 10 a | 81 ± 10 a | 66 ± 9 a | 84 ± 11 a | 318 ± 31 a | 218 ± 22 a, b | 309 ± 31 a, b | 209 ± 21 b | 313 ± 31 a |
Arginine | 72 ± 10 a | 69 ± 10 a | 79 ± 11 a | 48 ± 8 a | 80 ± 10 a | 277 ± 27 a, b | 191 ± 20 b | 303 ± 30 a | 180 ± 19 b | 303 ± 30 a |
Asparagine | 18 ± 7 a, b | 31 ± 7 a | 16 ± 7 a, b | <LoQ b | 21 ± 7 a, b | 135 ± 15 a, b | 105 ± 13 a, b | 134 ± 15 a, b | 84 ± 11 b | 151 ± 16 a |
Proline | 319 ± 32 a | 326 ± 3 a | 349 ± 35 a | 327 ± 32 a | 341 ± 34 a | 369 ± 37 a | 330 ± 33 a | 392 ± 39 a | 323 ± 32 a | 368 ± 36 a |
Phenyl alanine | 32 ± 8 a, b | 44 ± 8 a, b | 56 ± 9 a | 17 ± 7 b | 54 ± 9 a | 219 ± 22 a | 154 ± 16 a, b | 215 ± 22 a | 142 ± 16 b | 220 ± 22 a |
Glycine | 29 ± 7 a | 26 ± 7 a | 30 ± 7 a | 28 ± 7 a | 30 ± 7 a | 138 ± 15 a | 71 ± 10 b | 118 ± 14 a | 72 ± 10 b | 116 ± 13 a, b |
Glutamine | 15 ± 7 a | 10 ± 7 a | 12 ± 7 a | <LoQ a | 14 ± 7 a | 65 ± 9 a | 13 ± 7 b | 51 ± 8 a | 16 ± 7 b | 52 ± 8 a |
Isoleucine | 14 ± 7 a | 19 ± 7 a | 20 ± 7 a | <LoQ a | 20 ± 7 a | 144 ± 16 a | 89 ± 11 b | 140 ± 15 a | 75 ± 10 b | 151 ± 16 a |
Histidine | 12 ± 7 a | 30 ± 8 a | 26 ± 7 a | 18 ± 7 a | 35 ± 8 a | 78 ± 10 a | 44 ± 8 b | 63 ± 9 a, b | 43 ± 8 b | 68 ± 9 a, b |
Leucine | 30 ± 7 a | 38 ± 8 a | 42 ± 8 a | 17 ± 7 b | 42 ± 8 a | 260 ± 26 a | 166 ± 18 b | 251 ± 25 a | 151 ± 16 b | 264 ± 27 a |
Lysine | <LoQ b | 20 ± 7 a | 12 ± 7 a, b | <LoQ b | 12 ± 7 a, b | 206 ± 21 a | 112 ± 13 b | 208 ± 21 a | 101 ± 12 b | 218 ± 22 a |
Methionine | <LoQ | <LoQ | <LoQ | <LoQ | <LoQ | 59 ± 9 a | 39 ± 8 a | 54 ± 9 a | 34 ± 8 a | 58 ± 9 a |
Ornithine | <LoQ | <LoQ | <LoQ | <LoQ | <LoQ | 20 ± 7 a | 14 ± 7 a | 21 ± 7 a | 14 ± 7 a | 21 ± 7 a |
Serine | 14 ± 7 a | 18 ± 7 a | 14 ± 7 a | <LoQ | 17 ± 7 a | 192 ± 20 a | 103 ± 12 b | 183 ± 19 a | 87 ± 11 b | 193 ± 20 a |
Tyrosine | 49 ± 8 a | 61 ± 9 a | 66 ± 10 a | 36 ± 8 a | 64 ± 9 a | 209 ± 21 a | 141 ± 16 b | 193 ± 20 a, b | 135 ± 15 b | 192 ± 20 a, b |
Threonine | <LoQ | <LoQ | <LoQ | <LoQ | <LoQ | 98 ± 12 a | 48 ± 8 b | 95 ± 11 a | 37 ± 8 b | 106 ± 12 a |
Valine | 39 ± 8 a | 56 ± 9 a | 52 ± 8 a | 28 ± 7 a | 52 ± 9 a | 304 ± 30 a | 200 ± 20 b, c | 280 ± 28 a, b | 183 ± 19 c | 292 ± 29 a, b |
Gamma aminobutyric acid | 71 ± 10 a | 64 ± 9 a | 82 ± 10 a | 70 ± 10 a | 82 ± 10 a | 136 ± 15 b | 104 ± 12 b | 283 ± 28 a | 104 ± 12 b | 242 ± 24 a |
Total free amino acid | 892 ± 45 a | 980 ± 46 a | 1012 ± 48 a | 709 ± 41 b | 1030 ± 48 a | 3979 ± 104 a | 2498 ± 72 c | 3739 ± 97 a, b | 2 329 ± 68 c | 3829 ± 97 b |
PW | PWL | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
The Main By-Products (OTVs *) | S. cerevisiae | L. thermotolerans | K. unispora | S. cerevisie/L. thermotolerans | S. cerevisiae/K. unispora | S. cerevisiae | L. thermotolerans | K. unispora | S. cerevisie/L. thermotolerans | S. cerevisiae/K. unispora |
Ethyl butyrate (0.14–0.37) | 0.117 ± 0.025 b | 0.067 ± 0.021 c | 0.053 ± 0.007 c | 0.083 ± 0.068 b, c | 0.268 ± 0.016 a | 0.335 ± 0.029 a | 0.016 ± 0.009 c | 0.055 ± 0.028 b | 0.087 ± 0.037 b | 0.060 ± 0.006 b |
Ethyl acetate (7.5–31) | 4.04 ± 0.52 c | 7.08 ± 0.55 a | 6.01 ± 0.89 b, c | 7.74 ± 0.75 a | 6.26 ± 0.47 a, b | 15.81 ± 1.04 a, b | 15.64 ± 1.08 a, b | 20.54 ± 0.88 a | 15.29 ± 3.43 a, b | 11.73 ± 2.38 b |
Linalool (0.0006–0.001) | 0.047 ± 0.029 a | 0.046 ± 0.022 a | 0.037 ± 0.004 a | 0.028 ± 0.020 a | 0.031 ± 0.012 a | 0.055 ± 0.033 a | 0.031 ± 0.008 a, b | 0.024 ± 0.002 b | 0.032 ± 0.004 a, b | 0.028 ± 0.00 a, b |
Ethyl hexanoate (0.17–0.20) | 0.027 ± 0.009 a | 0.025 ± 0.005 a | 0.028 ± 0.004 a | 0.031 ± 0.00 a | 0.020 ± 0.007 a | 0.025 ± 0.004 a | 0.023 ± 0.001 a | 0.014 ± 0.007 a | 0.019 ± 0.004 a | 0.032 ± 0.010 a |
Isoamyl acetate (0.30–0.72) | 0.40 ± 0.05 a | 0.11 ± 0.18 b | 0.26 ± 0.22 a, b | 0.32 ± 0.03 a, b | 0.40 ± 0.01 a | 0.820 ± 0.143 b | 0.527 ± 0.021 c | 1.514 ± 0.349 a | 1.070 ± 0.063 a | 0.851 ± 0.065 b |
n-propanol (0.8–5.0) | 18.09 ± 1.12 b | 16.17 ± 1.01 b | 17.01 ± 1.13 b | 22.85 ± 1.69 a | 18.35 ± 0.96 b | 25.85 ± 2.18 a | 18.28 ± 2.43 c | 24.64 ± 1.70 a, b | 20.92 ± 2.59 b, c | 23.37 ± 3.20 a, b, c |
Isobutanol (3.2–14.5) | 8.838 ± 0.542 a, b | 7.425 ± 0.510 c | 9.937 ± 0.628 b, c | 12.70 ± 2.36 a | 11.19 ± 0.40 a, b | 24.51 ± 3.69 a | 13.56 ± 1.64 b | 20.88 ± 2.48 a | 12.52 ± 2.33 b | 23.37 ± 3.20 a |
Amylic alcohol (0.32–15.0) | 6.722 ± 0.572 a, b | 5.336 ± 0.104 c | 6.404 ± 1.048 b, c | 7.756 ± 0.491 a | 7.689 ± 0.239 a | 15.67 ± 2.01 a | 6.727 ± 0.098 c | 10.65 ± 0.92 b | 7.822 ± 1.657 c | 8.140 ± 1.755 b, c |
Isoamylic alcohol (0.77–16.8) | 46.74 ± 1.90 a | 38.04 ± 1.81 b, c | 36.47 ± 3.40 c | 45.84 ± 3.15 a | 39.45 ± 0.73 b | 75.45 ± 0.19 a | 53.50 ± 2.86 c | 66.22 ± 0.62 b | 53.51 ± 2.08 c | 58.20 ± 3.03 b, c |
β-phenyl ethanol (1.0–1.88) | 2.384 ± 0.044 a | 1.335 ± 0.472 a, b | 0.794 ± 0.098 b | 1.359 ± 0.382 a, b | 1.093 ± 0.456 a, b | 0.533 ± 0.004 a, b | 0.450 ± 0.043 a, b, c | 0.323 ± 0.030 b, c | 0.551 ± 0.179 a | 0.320 ± 0.034 c |
Acetaldehyde (0.02–0.12) | 49.46 ± 1.42 a, b | 56.14 ± 4.99 a | 52.14 ± 3.28 a, b | 54.07 ± 8.72 a | 35.08 ± 2.43 c | 8.959 ± 1.216 d | 144.46 ± 13.96 a | 28.11 ± 0.53 c | 5.039 ± 0.536 d | 77.15 ± 21.80 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canonico, L.; Agarbati, A.; Zannini, E.; Ciani, M.; Comitini, F. Lentil Fortification and Non-Conventional Yeasts as Strategy to Enhance Functionality and Aroma Profile of Craft Beer. Foods 2022, 11, 2787. https://doi.org/10.3390/foods11182787
Canonico L, Agarbati A, Zannini E, Ciani M, Comitini F. Lentil Fortification and Non-Conventional Yeasts as Strategy to Enhance Functionality and Aroma Profile of Craft Beer. Foods. 2022; 11(18):2787. https://doi.org/10.3390/foods11182787
Chicago/Turabian StyleCanonico, Laura, Alice Agarbati, Emanuele Zannini, Maurizio Ciani, and Francesca Comitini. 2022. "Lentil Fortification and Non-Conventional Yeasts as Strategy to Enhance Functionality and Aroma Profile of Craft Beer" Foods 11, no. 18: 2787. https://doi.org/10.3390/foods11182787
APA StyleCanonico, L., Agarbati, A., Zannini, E., Ciani, M., & Comitini, F. (2022). Lentil Fortification and Non-Conventional Yeasts as Strategy to Enhance Functionality and Aroma Profile of Craft Beer. Foods, 11(18), 2787. https://doi.org/10.3390/foods11182787