Assessment of the Authenticity of Whisky Samples Based on the Multi-Elemental and Multivariate Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Samples Preparation and Equipment
- ICP-OES, ICP-MS and CV-AAS
- pH-Metr
2.3. Data Analysis
3. Results and Discussion
3.1. Level of Metals in Analyzed Whisky Samples
3.2. Comparison of Elemental Profiles of Authentic and Counterfeit Whisky
3.3. Counterfeit Whisky Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luykx, D.M.A.M.; van Ruth, S.M. An overview of analytical methods for determining the geographical origin of food products. Food Chem. 2008, 107, 897–911. [Google Scholar] [CrossRef]
- Lakshmi, V. Food adulteration. Int. J. Sci. Invent. Today 2012, 1, 101–113. [Google Scholar]
- Everstine, K. Economically Motivated Adulteration: Implications for Food Protection and Alternate Approaches to Detection. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2013. [Google Scholar]
- Ellis, D.I.; Brewster, V.L.; Dunn, W.B.; Allwood, J.W.; Golovanov, A.P.; Goodacre, R. Fingerprinting food: Current technologies for the detection of food adulteration and contamination. Chem. Soc. Rev. 2012, 41, 5706. [Google Scholar] [CrossRef] [PubMed]
- Tsagkaris, A.S.; Koulis, G.A.; Danezis, G.P.; Martakos, I.; Dasenaki, M.; Georgiou, C.A.; Thomaidis, N.S. Honey authenticity: Analytical techniques, state of the art and challenges. RSC Adv. 2021, 11, 11273. [Google Scholar] [CrossRef] [PubMed]
- Makowicz, E.; Jasicka-Misiak, I.; Teper, D.; Kafarski, P. HPTLC Fingerprinting—Rapid Method for the Differentiation of Honeys of Different Botanical Origin Based on the Composition of the Lipophilic Fractions. Molecules 2018, 23, 1811. [Google Scholar] [CrossRef] [PubMed]
- Gonzalvez, A.; Armenta, S.; de la Guardia, M. Trace-element composition and stable-isotope ratio for discrimination of foods with Protected Designation of Origin. Trends Anal. Chem. 2009, 28, 1295–1311. [Google Scholar] [CrossRef]
- Collins, E.J.T. Food adulteration and food safety in Britain in the 19th and early 20th centuries. Food Policy 1993, 18, 95–109. [Google Scholar] [CrossRef]
- Teletchea, F.; Maudet, C.; Hänni, C. Food and forensic molecular identification: Up-date and challenges. Trends Biotechnol. 2005, 23, 359–366. [Google Scholar] [CrossRef]
- Mori, C.; Matsumura, S. Current issues for mammalian species identification in forensic science: A review. Int. J. Legal Med. 2021, 135, 3–12. [Google Scholar] [CrossRef]
- Rossi Scalco, A.; Miller Devós Ganga, G.; Cristina De Oliveira, S.; Baker, G. Development and validation of a scale for identification of quality attributes of agri-food products in short chains. Geoforum 2020, 111, 165–175. [Google Scholar] [CrossRef]
- Lim, J.H.; Bae, D.; Fong, A. Titanium dioxide in food products: Quantitative analysis using ICP-MS and Raman spectroscopy. J. Agric. Food Chem. 2018, 66, 13533–13540. [Google Scholar] [CrossRef]
- Grassi, S.; Casiraghi, E.; Alamprese, C. Handheld NIR device: A non-targeted approach to assess authenticity of fish fillets and patties. Food Chem. 2018, 243, 382–388. [Google Scholar] [CrossRef]
- Manfredi, M.; Robotti, E.; Quasso, F.; Mazzucco, E.; Calabrese, G.; Marengo, E. Fast classification of hazelnut cultivars through portable infrared spectroscopy and chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 189, 427–435. [Google Scholar] [CrossRef]
- Gajek, M.; Pawlaczyk, A.; Szynkowska-Jozwik, M.I. Multi-Elemental Analysis of Wine Samples in Relation to Their Type, Origin, and Grape Variety. Molecules 2021, 26, 214. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, Y.; Song, W.; Cai, H.; Wang, Y.; Granato, D. Characterization of Brazilian coffee based on isotope ratio mass spectrometry (δ13C, δ18O, δ2H, and δ15N) and supervised chemometrics. Food Chem. 2019, 297, 124963. [Google Scholar] [CrossRef]
- Park, J.H.; Choi, S.H.; Bong, Y.S. Geographical origin authentication of onions using stable isotope ratio and compositions of C, H, O, N, and S. Food Control 2019, 101, 121–125. [Google Scholar] [CrossRef]
- Barberis, E.; Amede, E.; Dondero, F.; Marengo, E.; Manfredi, M. New Non-Invasive Method for the Authentication of Apple Cultivars. Foods 2022, 11, 89. [Google Scholar] [CrossRef]
- Datta, A.; Sharma, A.N.G.V. Quantification of minor and trace elements in raw and branded turmeric samples using instrumental neutron activation analysis utilizing apsara-U reactor for possible applications to forensic science. J. Radioanal. Nucl. Chem. 2020, 325, 967–975. [Google Scholar] [CrossRef]
- Saadata, S.; Pandyaa, H.; Deya, A.; Rawtani, D. Food forensics: Techniques for authenticity determination of food products. Forensic Sci. Int. 2022, 333, 111243. [Google Scholar] [CrossRef]
- Laursen, K.H.; Schjoerring, J.K.; Kelly, S.D.; Husted, S. Authentication of organically grown plants—Advantages and limitations of atomic spectroscopy for multi-element and stable isotope analysis. TrAC Trends Anal. Chem. 2014, 59, 73–82. [Google Scholar] [CrossRef]
- Barbosa, R.M.; Nacano, L.R.; Freitas, R.; Batista, B.L.; Barbosa Jr, F. The use of decision trees and naïve bayes algorithms and trace element patterns for controlling the authenticity of free-range-pastured hens’ eggs. J. Food Sci. 2014, 79, 1672–1677. [Google Scholar] [CrossRef]
- Rodrigues, S.M.; Otero, M.; Alves, A.A.; Coimbra, J.; Coimbra, M.A.; Pereira, E.; Duarte, A.C. Elemental analysis for categorization of wines and authentication of their certified brand of origin. J. Food Compos. Anal. 2011, 24, 548–562. [Google Scholar] [CrossRef]
- Farmaki, E.G.; Thomaidis, N.S.; Minioti, K.S.; Ioannou, E.; Georgiu, C.A.; Efstathiou, C.E. Geographical characterization of Greek olive oils using rare earth elements content and supervised chemometric techniques. Anal. Lett. 2012, 45, 920–932. [Google Scholar] [CrossRef]
- Baroni, M.V.; Podio, N.S.; Badini, R.; Inga, C.M.; Ostera, H.; Cagnoni, M.; Gautier, E.A.; Peral-Garcia, P.; Hoogewerff, J.; Wunderlin, D.A. Linking soil, water, and honey composition to assess the geo-graphical origin of Argentinean honey by multielemental and isotopic analyses. J. Agric. Food Chem. 2015, 63, 4638–4645. [Google Scholar] [CrossRef]
- Barbosa, R.M.; Batista, B.L.; Varrique, R.M.; Coelho, V.A.; Campiglia, A.D.; Barbosa, F., Jr. The use of advanced chemometric techniques and trace element levels for controlling the authenticity of organic coffee. Food Res. Int. 2014, 61, 246–251. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, Y.; Zhang, J.; Wang, G.; Chen, L.; Zhang, M.; Liu, T.; Liu, X.; Lu, C. Determining the geographical origin of Chinese green tea by linear discriminant analysis of trace metals and rare earth elements: Taking Dongting Biluochun as an example. Food Control 2016, 59, 714–720. [Google Scholar] [CrossRef]
- Camin, F.; Wehrens, R.; Bertoldi, D.; Bontempo, L.; Ziller, L.; Perini, M.; Nicolini, G.; Nocetti, M.; Larcher, R. H, C, N and S stable isotopes and mineral profiles to objectively guarantee the authenticity of grated hard cheeses. Anal. Chim. Acta 2012, 711, 54–59. [Google Scholar] [CrossRef]
- Drivelos, S.A.; Higgins, K.; Kalivas, J.H.; Haroutounian, S.A.; Georgiou, C.A. Data fusion for food authentication. Combining rare earth elements and trace metals to discriminate ‘‘Fava Santorinis’’ from other yellow split peas using chemometric tools. Food Chem. 2014, 165, 316–322. [Google Scholar] [CrossRef]
- Danezis, G.P.; Tsagkaris, A.S.; Brusic, V.; Georgiou, C.A. Food authentication: State of the art and prospects. Curr. Opin. Food Sci. 2016, 10, 22–31. [Google Scholar] [CrossRef]
- Ibáñez, C.; García-Cañas, V.; Valdés, A.; Simó, C. Novel MS-based approaches and applications in food metabolomics. Trends Anal. Chem. 2013, 52, 100–111. [Google Scholar] [CrossRef]
- Bat, K.B.; Vodopivec, B.M.; Eler, K.; Ogrinc, N.; Mulič, I.; Masuero, D.; Vrhovšek, U. Primary and secondary metabolites as a tool for differentiation of apple juice according to cultivar and geographical origin. LWT 2018, 90, 238–245. [Google Scholar] [CrossRef]
- Guo, J.; Yuan, Y.; Dou, P.; Yue, T. Multivariate statistical analysis of the polyphenolic constituents in kiwifruit juices to trace fruit varieties and geographical origins. Food Chem. 2017, 232, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Sagratini, G.; Maggi, F.; Caprioli, G.; Cristalli, G.; Ricciutelli, M.; Torregiani, E.; Vittori, S. Comparative study of aroma profile and phenolic content of montepulcano monovarietal red wines from the marches and abruzzo regions of Italy using HS-SPME–GC–MS and HPLC–MS. Food Chem. 2012, 132, 1592–1599. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, N.; Yang, J.; Yang, B.; Ouyang, Z.; Wu, C.; Yuan, Y.; Wang, W.; Chen, M. An integrated approach combining HPLC, GC/MS, NIRS, and chemometrics for the geographical discrimination and commercial categorization of saffron. Food Chem. 2018, 253, 284–292. [Google Scholar] [CrossRef]
- Opatić, A.M.; Nečemer, M.; Lojen, S.; Masten, J.; Zlatić, E.; Šircelj, H.; Stopar, D.; Vidrih, R. Determination of geographical origin of commercial tomato through analysis of stable isotopes, elemental composition and chemical markers. Food Control 2018, 89, 133–141. [Google Scholar] [CrossRef]
- Yudthavorasit, S.; Wongravee, K.; Leepipatpiboon, N. Characteristic fingerprint based on gingerol derivative analysis for discrimination of ginger (Zingiber officnale) according to geographical origin using HPLC-DAD combined with chemometrics. Food Chem. 2014, 158, 101–111. [Google Scholar] [CrossRef]
- Wisniewska, P.; Sliwinska, M.; Namiesnik, J.; Wardencki, W.; Dymerski, T. The Verification of the Usefulness of Electronic Nose Based on Ultra-Fast Gas Chromatography and Four Different Chemometric Methods for Rapid Analysis of Spirit Beverages. J. Anal. Methods Chem. 2016, 5, 1–12. [Google Scholar] [CrossRef]
- Heinz, H.A.; Elkins, J.T. Comparison of unaged and barrel aged whiskies from the same Mash Bill using gas chromatography/mass spectrometry. J. Brew. Distill. 2019, 8, 1–6. [Google Scholar]
- Daute, M.; Jack, F.; Baxter, I.; Harrison, B.; Grigor, J.; Walker, G. Comparison of Three Approaches to Assess the Flavour Characteristics of Scotch Whisky Spirit. Appl. Sci. 2021, 11, 1410. [Google Scholar] [CrossRef]
- Wisniewska, P.; Boqué, R.; Borràs, E.; Busto, O.; Wardencki, W.; Namieśnik, J.; Dymerski, T. Authentication of whisky due to its botanical origin and way of production by instrumental analysis and multivariate classification methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 849–853. [Google Scholar] [CrossRef]
- Stupak, M.; Goodall, I.; Tomaniova, M.; Pulkrabova, J.; Hajslova, J. A novel approach to assess the quality and authenticity of Scotch Whisky based on gas chromatography coupled to high resolution mass spectrometry. Anal. Chim. Acta 2018, 1042, 60–70. [Google Scholar] [CrossRef]
- Cvetkovic, D.; Stojilkovic, P.; Zvezdanovic, J.; Stanojevic, J.; Stanojevic, L.; Karabegovic, I. The identification of volatile aroma compounds from local fruit based spirits using a headspace solid-phase microextraction technique coupled with the gas chromatography-mass spectrometry. Adv. Technol. 2020, 9, 19–28. [Google Scholar] [CrossRef]
- Fortunato, G.; Mumic, K.; Wunderli, S.; Pillonel, L.; Bosset, J.O.; Gremaud, G. Application of strontium isotope abundance ratios measured by MC-ICP-MS for food authentication. J. Anal. At. Spectrom. 2004, 19, 227–234. [Google Scholar] [CrossRef]
- Kelly, S.; Heaton, K.; Hoogewerff, J. Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Trends Food Sci. Tech. 2005, 16, 555–567. [Google Scholar] [CrossRef]
- Manca, G.; Franco, M.A.; Versini, G.; Camin, F.; Rossmann, A.; Tola, A. Correlation between multielement stable isotope ratio and geographical origin in Peretta cows’ milk cheese. J. Dairy Sci. 2006, 89, 831. [Google Scholar] [CrossRef]
- Longobardi, F.; Casiello, G.; Ventrella, A.; Mazzilli, V.; Nardelli, A.; Sacco, D.; Catucci, L.; Agostiano, A. Electronic nose and isotope ratio mass spectrometry in combination with chemometrics for the characterization of the geographical origin of Italian sweet cherries. Food Chem. 2015, 170, 90–96. [Google Scholar] [CrossRef]
- Longobardi, F.; Casiello, G.; Cortese, M.; Perini, M.; Camin, F.; Catucci, L.; Agostiano, A. Discrimination of geographical origin of lentils (Lens culinaris Medik.) using isotope ratio mass spectrometry combined with chemometrics. Food Chem. 2015, 188, 343–349. [Google Scholar] [CrossRef]
- De Rijke, E.; Schoorl, J.C.; Cerli, C.; Vonhof, H.B.; Verdegaal, S.J.A.; Vivó-Truyols, G.; Lopatka, M.; Dekter, R.; Bakker, D.; Sjerps, M.J.; et al. The use of δ2H and δ18O isotopic analyses combined with chemometrics as a traceability tool for the geographical origin of bell peppers. Food Chem. 2016, 204, 122–128. [Google Scholar] [CrossRef]
- Luo, D.; Dong, H.; Luo, H.; Xian, Y.; Wan, J.; Guo, X.; Wu, Y. The application of stable isotope ratio analysis to determine the geographical origin of wheat. Food Chem. 2015, 174, 197–201. [Google Scholar] [CrossRef]
- Fan, S.; Zhong, Q.; Gao, H.; Wang, D.; Li, G.; Huang, Z. Elemental profile and oxygen isotope ratio (δ18 O) for verifying the geographical origin of Chinese wines. J. Food Drug Anal. 2018, 26, 1033–1044. [Google Scholar] [CrossRef]
- Dinca, O.R.; Ionete, R.E.; Costinel, D.; Geana, I.E.; Popescu, R.; Stefanescu, I.; Radu, G.L. Regional and vintage discrimination of romanian wines based on elemental and isotopic fingerprinting. Food Anal. Methods. 2016, 9, 2406–2417. [Google Scholar] [CrossRef]
- Ciepielowski, G.; Pacholczyk-Sienicka, B.; Fraczek, T.; Klajman, K.; Paneth, P.; Albrecht, L. Comparison of quantitative NMR and IRMS spectrometry for the authentication of “Polish Vodka”. J. Sci. Food Agric. 2019, 99, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Aylott, R. Chapter 16—Analytical strategies supporting protected designations of origin for alcoholic beverages. In Comprehensive Analytical Chemistry, 2nd ed.; de la Guardia, M., Gonzálvez, A., Eds.; Elsevier: London, UK, 2013; Volume 60, pp. 409–438. [Google Scholar] [CrossRef]
- Reid, K.J.G.; Swan, J.S.; Gutteridge, C.S. Assessment of Scotch whisky quality by pyrolysis-mass spectrometry and the subsequent correlation of quality with the oak wood cask. J. Anal. Appl. Pyrolysis 1993, 25, 49–62. [Google Scholar] [CrossRef]
- Wisniewska, P.; Dymerski, T.; Wardencki, W.; Namiesnik, J. Chemical composition analysis and authentication of whisky. J. Sci. Food Agric. 2015, 95, 2159–2166. [Google Scholar] [CrossRef]
- Campo, E.; Cacho, J.; Ferreira, V. Solid phase extraction, multidimensional gas chromatography mass spectrometry determination of four novel aroma powerful ethyl esters: Assessment of their occurrence and importance in wine and other alcoholic beverages. J. Chromatogr. A 2007, 1140, 180–188. [Google Scholar] [CrossRef]
- Campillo, N.; Peñalver, R.; Hernández-Córdoba, M. Solid-phase microextraction for the determination of haloanisoles in wines and other alcoholic beverages using gas chromatography and atomic emission detection. J. Chromatogr. A 2008, 1210, 222–228. [Google Scholar] [CrossRef]
- Barbeira, P.J.S.; Stradiotto, N.R. Anodic stripping voltammetric determination of Zn, Pb and Cu traces in whisky samples. Fresen. J. Anal. Chem. 1998, 361, 507–509. [Google Scholar] [CrossRef]
- Adam, T.; Duthie, E.; Feldmann, J. Investigations into the use of copper and other metals as indicators for the authenticity of Scotch whiskies. J. Inst. Brew. 2002, 108, 459–464. [Google Scholar] [CrossRef]
- Gajek, M.; Pawlaczyk, A.; Jozwik, K.; Szynkowska-Jozwik, M.I. The Elemental Fingerprints of Different Types of Whisky as Determined by ICP-OES and ICP-MS Techniques in Relation to Their Type, Age, and Origin. Foods 2022, 11, 1616. [Google Scholar] [CrossRef]
- Shand, C.A.; Wendler, R.; Dawson, D.; Yates, K.; Stephenson, H. Multivariate analysis of Scotch whisky by total reflection x-ray fluorescence and chemometric methods: A potential tool in the identification of counterfeits. Anal. Chim. Acta 2017, 976, 14–24. [Google Scholar] [CrossRef]
- Pawlaczyk, A.; Gajek, M.; Jozwik, K.; Szynkowska, M.I. Multielemental Analysis of Various Kinds of Whisky. Molecules 2019, 24, 1193. [Google Scholar] [CrossRef]
- Regulation of the Minister of Health on the Maximum Levels of Biological and Chemical Contaminants that May Be Present in Food, Food Ingredients, Permitted Additives, Processing Aids or on the Surface of Food of 13 January 2003 (Journal of Laws of 2003). Available online: Sejm.gov.pl (accessed on 10 December 2021).
- Phosphorus, Soil Phosphorus. Forest Encyclopedia. Available online: https://www.encyklopedialesna.pl/haslo/fosfor-fosfor-glebowy/ (accessed on 12 May 2022).
- Jama, A.; Nowak, W. Uptaking of Macronutrients from the Soil Covered with Sewage Sludge by Willow (Salix viminalis L.) and Its Hybrids. Nauka Przyr. Technol. 2011, 5, 6. [Google Scholar]
- Surgiewicz, J. Mangan i jego związki. Podstawy I Metod. Oceny Sr. Pr. 2012, 1, 111–116. [Google Scholar]
- Wanikawa, A.; Sugimoto, T. A Narrative Review of Sulfur Compounds in Whisk(e)y. Molecules 2022, 27, 1672. [Google Scholar] [CrossRef]
- Leppänen, O.; Ronkainen, P.; Denslow, J.; Laakso, R.; Lindeman, A.; Nykanen, I. Polysulphides and thiophenes in whisky. In Flavour of Distilled Beverages: Origin and Development; Piggott, J.R., Ed.; E. Horwood Ltd.: Chichester, UK, 1983; pp. 206–214. [Google Scholar]
- Leppänen, O.; Denslow, J.; Ronkainen, P. A gas chromatographic method for the accurate determination of low concentrations of volatile sulphur compounds in alcoholic beverages. J. Inst. Brew. 1979, 85, 350–353. [Google Scholar] [CrossRef]
- Ashok, P.C.; Praveen, B.B.; Dholakia, K. Near infrared spectroscopic analysis of single malt Scotch whisky on an optofluidic chip. Opt. Express 2011, 19, 22982–22992. [Google Scholar] [CrossRef]
- Backhaus, A.; Ashok, P.C.; Praveen, B.B.; Dholakia, K.; Seiffert, U. Classifying Scotch whisky from near-infrared Raman spectra with a radial basis function network with relevance learning. In Proceedings of the 20th European Symposium on Artificial Neural Networks, Bruges, Belgium, 25–27 April 2012. [Google Scholar]
- McIntyre, A.C.; Bilyk, M.L.; Nordon, A.; Colquhoun, G.; Littlejohn, D. Detection of counterfeit Scotch whisky samples using mid-infrared spectrometry with an attenuated total reflectance probe incorporating polycrystalline silver halide fibres. Anal. Chim. Acta 2011, 690, 228–233. [Google Scholar] [CrossRef]
- Meier-Augenstein, W.; Kemp, H.F.; Hardie, S.M.L. Detection of counterfeit Scotch whisky by 2H and 18O stable isotope analysis. Food Chem. 2012, 133, 1070–1074. [Google Scholar] [CrossRef]
- Garcia, J.S.; Vaz, B.G.; Corilo, Y.E.; Ramires, C.F.; Saraiva, S.A.; Sanvido, G.B.; Schmidt, E.M.; Maia, D.R.J.; Cosso, R.G.; Zacca, J.J.; et al. Whisky analysis by electrospray ionization-Fourier transform mass spectrometry. Food Res. Int. 2013, 51, 98–106. [Google Scholar] [CrossRef]
n | Authentic | Fake | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
170 | 35 | |||||||||
Number of Samples from a Given Source | ||||||||||
S1–7 | S2–9 | S3–6 | S4–2 | S5–3 | S6–4 | S7–2 | S8–1 | S9–1 | ||
Total | 205 |
Element | n | Mean | Median | Min | Max | Element | n | Mean | Median | Min | Max |
---|---|---|---|---|---|---|---|---|---|---|---|
Ag | 35 | 1.280 | <LOQ | <LOQ | 8.600 | Sb | 35 | 0.540 | 0.300 | <LOQ | 3.000 |
Al | 168.4 | 163.3 | <LOQ | 470.7 | Sn | 13.89 | 9.810 | <LOQ | 34.70 | ||
B | 3794 | 2397 | <LOQ | 19,019 | Sr | 133.0 | 53.72 | 14.146 | 765.1 | ||
Ba | 199.6 | 189.0 | 117.3 | 378.0 | Te | 0.060 | <LOQ | <LOQ | 1.100 | ||
Be | 0.130 | 0.110 | <LOQ | 0.500 | Tl | 0.210 | 0.030 | <LOQ | 2.100 | ||
Bi | 3.220 | 0.600 | <LOQ | 25.80 | U | 0.360 | 0.190 | <LOQ | 3.100 | ||
Cd | 6.110 | 0.760 | <LOQ | 65.90 | V | 1.680 | 0.910 | <LOQ | 10.40 | ||
Co | 9.920 | 5.260 | 1.409 | 42.20 | Ca | 35,729 | 22,914 | 1994 | 271,134 | ||
Cr | 182.5 | 112.3 | 54.57 | 770.3 | Fe | 174.7 | 29.98 | <LOQ | 2735 | ||
Cu | 2383 | 56.86 | 1.922 | 33,212 | K | 97,091 | 10,882 | <LOQ | 670,611 | ||
Li | 67.12 | 19.25 | <LOQ | 825.4 | Mg | 5370 | 1577 | 465.4 | 33,074 | ||
Mn | 76.75 | 51.39 | 2.377 | 438.7 | P | 7352 | 74.29 | <LOQ | 56,793 | ||
Mo | 11.07 | 1.590 | <LOQ | 108.4 | S | 20,885 | 14,679 | 197.6 | 231,701 | ||
Ni | 62.71 | 39.86 | 2.418 | 411.0 | Ti | 43.49 | 25.35 | <LOQ | 316.8 | ||
Pb | 12.84 | 11.21 | <LOQ | 35.60 | Zn | 2987 | 274.8 | <LOQ | 39,815 |
Element | Code | N | Mean | Median | Min | Max | Std. Dev. |
---|---|---|---|---|---|---|---|
9Be | A | 170 | 0.100 | 0.092 | <LOQ | 0.300 | 0.050 |
F | 35 | 0.130 | 0.120 | <LOQ | 0.500 | 0.100 | |
59Co | A | 170 | 4.530 | 2.468 | 0.406 | 74.90 | 7.870 |
F | 35 | 9.920 | 5.260 | 1.409 | 42.20 | 10.10 | |
63Cu | A | 170 | 473.7 | 216.0 | 16.25 | 5252 | 736.4 |
F | 35 | 4021 | 56.86 | 1.922 | 33,212 | 7367 | |
7Li | A | 170 | 21.36 | 12.27 | 0.474 | 399.5 | 35.40 |
F | 35 | 67.12 | 19.25 | <LOQ | 825.4 | 140.8 | |
95Mo | A | 170 | 1.790 | 1.066 | <LOQ | 32.30 | 3.320 |
F | 35 | 11.07 | 1.590 | <LOQ | 108.4 | 30.30 | |
60Ni | A | 170 | 24.01 | 12.96 | 3.201 | 301.3 | 33.68 |
F | 35 | 62.71 | 39.86 | 2.418 | 411.0 | 73.70 | |
118Sn | A | 170 | 9.800 | 4.672 | <LOQ | 44.50 | 11.31 |
F | 35 | 13.89 | 9.810 | <LOQ | 34.70 | 11.00 | |
88Sr | A | 170 | 47.18 | 45.81 | 15.84 | 119.2 | 19.80 |
F | 35 | 133.0 | 53.72 | 14.15 | 765.1 | 168.8 | |
Ca 393.366 | A | 170 | 14,655 | 9185 | 723.8 | 175,353 | 17,983 |
F | 35 | 35,729 | 22,914 | 1994 | 271,134 | 50,189 | |
Mg 279.553 | A | 170 | 1487 | 1046 | 208.5 | 11,548 | 13,926 |
F | 35 | 5370 | 1577 | 465.4 | 33,074 | 764 | |
S 180.731 | A | 170 | 7126 | 4648 | 296.7 | 69,907 | 8654 |
F | 35 | 20,885 | 14,679 | 197.6 | 231,701 | 39,556 | |
pH value | A | 170 | 3.63 | 3.63 | 1.95 | 6.20 | 0.68 |
F | 35 | 4.71 | 4.39 | 2.79 | 8.70 | 1.50 |
Statistically Significant Differences | Elements |
---|---|
Source 6–Source 2 | B |
Source 3–Source 2 | Fe; Mn; Mo; Sn |
Source 1–Source 2 | Bi; Cd; Co; Ni; Pb; Zn |
Element | No. of Source | N | Mean | Median | Min | Max | Std. Dev. |
---|---|---|---|---|---|---|---|
11B | 1 | 7 | 2064 | 2238 | <LOQ | 3289 | 1055 |
2 | 9 | 1803 | 1704 | 190.7 | 3758 | 1158 | |
3 | 6 | 2503 | 2728 | 1704 | 3059 | 657.0 | |
6 | 4 | 9078 | 8413 | 5970 | 13.52 | 3318 | |
209Bi | 1 | 7 | 12.75 | 10.35 | 9.387 | 25.77 | 5.870 |
2 | 9 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | |
3 | 6 | 0.847 | 0.419 | <LOQ | 3.543 | 1.347 | |
6 | 4 | 2.300 | 2.705 | <LOQ | 3.790 | 1.618 | |
111Cd | 1 | 7 | 26.05 | 11.06 | 3.204 | 65.90 | 28.11 |
2 | 9 | 0.019 | <LOQ | <LOQ | 0.128 | 0.042 | |
3 | 6 | 2.690 | 2.166 | <LOQ | 7.325 | 2.857 | |
6 | 4 | 0.724 | 0.659 | 0.171 | 1.410 | 0.510 | |
59Co | 1 | 7 | 26.09 | 23.90 | 13.77 | 42.21 | 9.000 |
2 | 9 | 3.840 | 3.436 | 1.409 | 7.613 | 1.895 | |
3 | 6 | 7.218 | 5.584 | 3.698 | 12.53 | 4.056 | |
6 | 4 | 5.985 | 4.690 | 3.504 | 11.06 | 3.430 | |
55Mn | 1 | 7 | 39.55 | 37.18 | 16.85 | 73.94 | 18.72 |
2 | 9 | 14.12 | 5.192 | 2.377 | 64.16 | 20.26 | |
3 | 6 | 143.4 | 81.27 | 64.16 | 438.7 | 147.1 | |
6 | 4 | 49.89 | 31.59 | 6.299 | 130.0 | 58.44 | |
95Mo | 1 | 7 | 1.280 | 1.560 | <LOQ | 2.130 | 0.840 |
2 | 9 | 0.289 | 0.242 | <LOQ | 0.988 | 0.339 | |
3 | 6 | 56.68 | 59.58 | 1.982 | 108.4 | 56.76 | |
6 | 4 | 2.953 | 2.424 | 1.218 | 5.750 | 1.947 | |
60Ni | 1 | 7 | 79.75 | 57.46 | 34.79 | 136.2 | 43.85 |
2 | 9 | 13.77 | 10.21 | 2.419 | 30.11 | 10.04 | |
3 | 6 | 110.4 | 47.66 | 19.14 | 411.0 | 150.9 | |
6 | 4 | 75.36 | 74.30 | 69.34 | 83.49 | 6.114 | |
208Pb | 1 | 7 | 29.65 | 30.75 | 22.99 | 35.60 | 4.430 |
2 | 9 | 3.677 | 1.186 | <LOQ | 21.89 | 7.008 | |
3 | 6 | 10.72 | 13.38 | 3.569 | 13.42 | 4.308 | |
6 | 4 | 12.09 | 12.43 | 6.553 | 16.95 | 5.358 | |
118Sn | 1 | 7 | 4.330 | 4.737 | <LOQ | 8.600 | 2.860 |
2 | 9 | 17.09 | 19.97 | 9.310 | 20.41 | 4.627 | |
3 | 6 | 29.63 | 29.59 | 23.42 | 34.65 | 3.617 | |
6 | 4 | 8.257 | 4.651 | <LOQ | 23.73 | 10.55 | |
Fe 238.204 | 1 | 7 | 49.00 | 47.75 | <LOQ | 90.67 | 33.67 |
2 | 9 | 0.036 | <LOQ | <LOQ | 0.316 | 0.105 | |
3 | 6 | 669.7 | 233.2 | <LOQ | 2735 | 1035 | |
6 | 4 | 7.496 | <LOQ | <LOQ | 29.98 | 14.99 | |
Zn 213.856 | 1 | 7 | 11,005 | 5668 | 4353 | 39,815 | 12,795 |
2 | 9 | 90.47 | 0.144 | <LOQ | 429.3 | 152.5 | |
3 | 6 | 859.7 | 725.1 | 111.2 | 1891 | 704.8 | |
6 | 4 | 4189 | 77.29 | <LOQ | 16,603 | 8276 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajek, M.; Pawlaczyk, A.; Maćkiewicz, E.; Albińska, J.; Wysocki, P.; Jóźwik, K.; Szynkowska-Jóźwik, M.I. Assessment of the Authenticity of Whisky Samples Based on the Multi-Elemental and Multivariate Analysis. Foods 2022, 11, 2810. https://doi.org/10.3390/foods11182810
Gajek M, Pawlaczyk A, Maćkiewicz E, Albińska J, Wysocki P, Jóźwik K, Szynkowska-Jóźwik MI. Assessment of the Authenticity of Whisky Samples Based on the Multi-Elemental and Multivariate Analysis. Foods. 2022; 11(18):2810. https://doi.org/10.3390/foods11182810
Chicago/Turabian StyleGajek, Magdalena, Aleksandra Pawlaczyk, Elżbieta Maćkiewicz, Jadwiga Albińska, Piotr Wysocki, Krzysztof Jóźwik, and Małgorzata Iwona Szynkowska-Jóźwik. 2022. "Assessment of the Authenticity of Whisky Samples Based on the Multi-Elemental and Multivariate Analysis" Foods 11, no. 18: 2810. https://doi.org/10.3390/foods11182810
APA StyleGajek, M., Pawlaczyk, A., Maćkiewicz, E., Albińska, J., Wysocki, P., Jóźwik, K., & Szynkowska-Jóźwik, M. I. (2022). Assessment of the Authenticity of Whisky Samples Based on the Multi-Elemental and Multivariate Analysis. Foods, 11(18), 2810. https://doi.org/10.3390/foods11182810