Progress in the Application of Food-Grade Emulsions
Abstract
:1. Introduction
2. Applications on the Dispersed-Phase Scale
2.1. Delivery Carriers for Active Substances
2.2. Research Prospects for Delivery Carrier Applications
2.3. Assisted Extraction and Separation
3. Applications on the Interface Structure Scale
3.1. Biphasic Enzymatic Catalysis Systems
3.2. Digestive Effects of Various Substances in the Body
3.3. Effects of Washing and Disinfection
3.4. Research Prospects for Interface Applications
3.4.1. Studies Based on Interfacial Active Substances
3.4.2. The True Structural Composition of the Interface
3.4.3. Design of Oxidation-Resistant Interface Layers
4. Applications on the Macrostructure Scale
4.1. Design of Structured Soft Materials for Food Applications
4.1.1. Development of Low-Fat Foods
4.1.2. Development of Functional Foods with Stable Interfaces
4.1.3. Effective Additives in the Food Industry
4.2. Research Prospects for Structured Soft Food Materials
4.2.1. Interactions between Dispersion Systems and Food Components
4.2.2. Influence of the Food Process Engineering Technologies
4.2.3. Safety, Nutrition, and Metabolism Profiles
4.3. Material Applications
4.3.1. Materials for Active Sustained-Release Membranes
4.3.2. Particulate Materials
4.3.3. Microcapsule Materials
4.3.4. Porous Materials
D Printing Materials
4.3.5. Material Research Prospects
4.4. Other Emerging Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sebben, D.A.; MacWilliams, S.V.; Yu, L.; Spicer, P.T.; Bulone, V.; Krasowska, M.; Beattie, D.A. Influence of Aqueous Phase Composition on Double Emulsion Stability and Colour Retention of Encapsulated Anthocyanins. Foods 2021, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Ningtyas, D.W.; Bhandari, B.; Liu, C.; Prakash, S. Oral perception of the textural and flavor characteristics of soy-cow blended emulsions. J. Texture Stud. 2022, 53, 108–121. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Zhao, X.; Yang, S.; He, F.; Qin, W.; Gong, H.; Yu, G.; Feng, Y.; Li, J. Interfacial regulation and visualization of Pickering emulsion stabilized by Ca2+-triggered amphiphilic alginate-based fluorescent aggregates. Food Hydrocoll. 2021, 119, 106843. [Google Scholar] [CrossRef]
- Du, X.; Hu, M.; Liu, G.; Qi, B.; Zhou, S.; Lu, K.; Xie, F.; Zhu, X.; Li, Y. Development and evaluation of delivery systems for quercetin: A comparative study between coarse emulsion, nano-emulsion, high internal phase emulsion, and emulsion gel. J. Food Eng. 2022, 314, 110784. [Google Scholar] [CrossRef]
- Liu, C.; Wang, R.; He, S.; Cheng, C.; Ma, Y. The stability and gastro-intestinal digestion of curcumin emulsion stabilized with soybean oil bodies. LWT 2020, 131, 109663. [Google Scholar] [CrossRef]
- Wang, D.; Ma, Y.; Wang, Q.; Huang, J.; Sun, R.; Xia, Q. Solid Self-Emulsifying Delivery System (S-SEDS) of Dihydromyricetin: A New Way for Preparing Functional Food. J. Food Sci. 2019, 84, 936–945. [Google Scholar] [CrossRef]
- Alehosseini, E.; Jafari, S.M.; Tabarestani, H.S. Production of D-limonene-loaded Pickering emulsions stabilized by chitosan nanoparticles. Food Chem. 2021, 354, 129591. [Google Scholar] [CrossRef]
- Light, K.; Karboune, S. Emulsion, hydrogel and emulgel systems and novel applications in cannabinoid delivery: A review. Crit. Rev. Food Sci. Nutr. 2021, 1–31. [Google Scholar] [CrossRef]
- Chen, M.; Wang, W.; Xiao, J. Regulation Effects of Beeswax in the Intermediate Oil Phase on the Stability, Oral Sensation and Flavor Release Properties of Pickering Double Emulsions. Foods 2022, 11, 1039. [Google Scholar] [CrossRef]
- Chen, X.-H.; Tang, C.-H. Highly transparent antioxidant high internal phase emulsion gels stabilized solely by C-phycocyanin: Facilitated formation through subunit dissociation and refractive index matching. Colloids Surf. A Physicochem. Eng. Asp. 2021, 625, 126866. [Google Scholar] [CrossRef]
- Xu, Y.-T.; Tang, C.-H.; Liu, T.-X.; Liu, R. Ovalbumin as an outstanding Pickering nanostabilizer for high internal phase emulsions. J. Agric. Food Chem. 2018, 66, 8795–8804. [Google Scholar] [CrossRef]
- Shi, Y.; Ye, F.; Zhu, Y.; Miao, M. Development of dendrimer-like glucan-stabilized Pickering emulsions incorporated with β-carotene. Food Chem. 2022, 385, 132626. [Google Scholar] [CrossRef]
- Ju, M.; Zhu, G.; Huang, G.; Shen, X.; Zhang, Y.; Jiang, L.; Sui, X. A novel pickering emulsion produced using soy protein-anthocyanin complex nanoparticles. Food Hydrocoll. 2020, 99, 105329. [Google Scholar] [CrossRef]
- Dai, T.; Li, T.; Li, R.; Zhou, H.; Liu, C.; Chen, J.; McClements, D.J. Utilization of plant-based protein-polyphenol complexes to form and stabilize emulsions: Pea proteins and grape seed proanthocyanidins. Food Chem. 2020, 329, 127219. [Google Scholar] [CrossRef]
- Fathi, M.; Vinceković, M.; Jurić, S.; Viskić, M.; Režek Jambrak, A.; Donsì, F. Food-Grade Colloidal Systems for the Delivery of Essential Oils. Food Rev. Int. 2019, 37, 1–45. [Google Scholar] [CrossRef]
- Tan, C.; Dadmohammadi, Y.; Lee, M.C.; Abbaspourrad, A. Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3164–3191. [Google Scholar] [CrossRef]
- Pan, Y.; Li, X.-M.; Meng, R.; Zhang, B. Exploration of the stabilization mechanism and curcumin bioaccessibility of emulsions stabilized by whey protein hydrolysates after succinylation and glycation in different orders. J. Agric. Food Chem. 2019, 68, 623–632. [Google Scholar] [CrossRef]
- Zhao, R.; Fu, W.; Chen, Y.; Li, B.; Liu, S.; Li, Y. Structural modification of whey protein isolate by cinnamaldehyde and stabilization effect on β-carotene-loaded emulsions and emulsion gels. Food Chem. 2022, 366, 130602. [Google Scholar] [CrossRef]
- Liang, X.; Yan, J.; Guo, S.; McClements, D.J.; Ma, C.; Liu, X.; Liu, F. Enhancing lycopene stability and bioaccessibility in homogenized tomato pulp using emulsion design principles. Innov. Food Sci. Emerg. Technol. 2021, 67, 102525. [Google Scholar] [CrossRef]
- Guo, Q.; Bayram, I.; Shu, X.; Su, J.; Liao, W.; Wang, Y.; Gao, Y. Improvement of stability and bioaccessibility of β-carotene by curcumin in pea protein isolate-based complexes-stabilized emulsions: Effect of protein complexation by pectin and small molecular surfactants. Food Chem. 2022, 367, 130726. [Google Scholar] [CrossRef]
- Wang, D.; Lv, P.; Zhang, L.; Yang, S.; Wei, Y.; Mao, L.; Yuan, F.; Gao, Y. Enhanced physicochemical stability of β-carotene emulsions stabilized by β-lactoglobulin− ferulic acid− chitosan ternary conjugate. J. Agric. Food Chem. 2020, 68, 8404–8412. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhu, Q.; Diao, C.; Wang, J.; Wu, Z.; Wang, H. Enhanced physicochemical stability of lutein-enriched emulsions by polyphenol-protein-polysaccharide conjugates and fat-soluble antioxidant. Food Hydrocoll. 2020, 101, 105447. [Google Scholar] [CrossRef]
- Zhao, T.; Ma, D.; Mulati, A.; Zhao, B.; Liu, F.; Liu, X. Development of astaxanthin-loaded layer-by-layer emulsions: Physicochemical properties and improvement of LPS-induced neuroinflammation in mice. Food Funct. 2021, 12, 5333–5350. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.; Wang, D.; Liang, R.; Liu, J.; Li, J.; Gao, Y.; Zhang, J.; Yuan, F. Lycopene-loaded bilayer emulsions stabilized by whey protein isolate and chitosan. LWT 2021, 151, 112122. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, Y.; Fu, X.; Chen, W.; Yang, J.; Chen, Z.; Wang, Z.; Zhuansun, X.; Feng, J.; Chen, Y. Preparation of peppermint oil nanoemulsions: Investigation of stability, antibacterial mechanism and apoptosis effects. Colloids Surf. B Biointerfaces 2021, 201, 111626. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Chen, H.; Xie, L.; Liu, K.; Zhang, X.; Li, X. Tea saponins as natural emulsifiers and cryoprotectants to prepare silymarin nanoemulsion. LWT 2022, 156, 113042. [Google Scholar] [CrossRef]
- Chen, W.; Ju, X.; Aluko, R.E.; Zou, Y.; Wang, Z.; Liu, M.; He, R. Rice bran protein-based nanoemulsion carrier for improving stability and bioavailability of quercetin. Food Hydrocoll. 2020, 108, 106042. [Google Scholar] [CrossRef]
- Li, Q.; Shi, J.; Du, X.; McClements, D.J.; Chen, X.; Duan, M.; Liu, L.; Li, J.; Shao, Y.; Cheng, Y. Polysaccharide conjugates from Chin brick tea (Camellia sinensis) improve the physicochemical stability and bioaccessibility of β-carotene in oil-in-water nanoemulsions. Food Chem. 2021, 357, 129714. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Qi, Y.; Zheng, L.; Wu, C.; Wang, Z.; Teng, F. Preparation and digestibility of fish oil nanoemulsions stabilized by soybean protein isolate-phosphatidylcholine. Food Hydrocoll. 2020, 100, 105310. [Google Scholar] [CrossRef]
- Zhou, Y.; Teng, F.; Tian, T.; Sami, R.; Wu, C.; Zhu, Y.; Zheng, L.; Jiang, L.; Wang, Z.; Li, Y. The impact of soy protein isolate-dextran conjugation on capsicum oleoresin (Capsicum annuum L.) nanoemulsions. Food Hydrocoll. 2020, 108, 105818. [Google Scholar] [CrossRef]
- Xu, H.-Y.; Liu, C.-S.; Huang, C.-L.; Chen, L.; Zheng, Y.-R.; Huang, S.-H.; Long, X.-Y. Nanoemulsion improves hypoglycemic efficacy of berberine by overcoming its gastrointestinal challenge. Colloids Surf. B Biointerfaces 2019, 181, 927–934. [Google Scholar] [CrossRef]
- Zhu, P.; He, J.; Huang, S.; Han, L.; Chang, C.; Zhang, W. Encapsulation of resveratrol in zein-polyglycerol conjugate stabilized O/W nanoemulsions: Chemical stability, in vitro gastrointestinal digestion, and antioxidant activity. LWT 2021, 149, 112049. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, H.; Liu, S.; Li, S. Cinnamon Cassia Oil Emulsions Stabilized by Chitin Nanofibrils: Physicochemical Properties and Antibacterial Activities. J. Agric. Food Chem. 2020, 68, 14620–14631. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Huang, G.; Ma, Y.; Liu, Y.; Huang, X.; Zheng, Q.; Yue, P.; Yang, M. Cellulose nanocrystals based clove oil Pickering emulsion for enhanced antibacterial activity. Int. J. Biol. Macromol. 2021, 170, 24–32. [Google Scholar] [CrossRef]
- Ge, S.; Jia, R.; Liu, W.; Xie, J.; Liu, M.; Cai, D.; Zheng, M.; Liu, H.; Liu, J. Lipid oxidation and in vitro digestion of pickering emulsion based on zein-adzuki bean seed coat polyphenol covalent crosslinking nanoparticles. Food Chem. 2022, 386, 132513. [Google Scholar] [CrossRef]
- Jo, M.; Ban, C.; Goh, K.K.; Choi, Y.J. Enhancement of the gut-retention time of resveratrol using waxy maize starch nanocrystal-stabilized and chitosan-coated Pickering emulsions. Food Hydrocoll. 2021, 112, 106291. [Google Scholar] [CrossRef]
- Yu, J.; Wang, Q.; Zhang, H.; Qin, X.; Chen, H.; Corke, H.; Hu, Z.; Liu, G. Increased stability of curcumin-loaded pickering emulsions based on glycated proteins and chitooligosaccharides for functional food application. LWT 2021, 148, 111742. [Google Scholar] [CrossRef]
- Su, J.; Guo, Q.; Chen, Y.; Mao, L.; Gao, Y.; Yuan, F. Utilization of β-lactoglobulin- (−)-Epigallocatechin- 3-gallate(EGCG) composite colloidal nanoparticles as stabilizers for lutein pickering emulsion. Food Hydrocoll. 2020, 98, 105293. [Google Scholar] [CrossRef]
- Liu, G.; Wang, Q.; Hu, Z.; Cai, J.; Qin, X. Maillard-reacted whey protein isolates and epigallocatechin gallate complex enhance the thermal stability of the pickering emulsion delivery of curcumin. J. Agric. Food Chem. 2019, 67, 5212–5220. [Google Scholar] [CrossRef]
- Mao, Q.; Li, M.; Zhang, S.; Zhang, X.; He, G.; Zhang, W. Chitosan-hydrophobic alginate nanocomposites stabilized pH-triggered Pickering emulsion for drug controlled-release. Int. J. Biol. Macromol. 2020, 162, 1888–1896. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, D.; Li, F.; Li, D.; Huang, Q. Cinnamon essential oil Pickering emulsion stabilized by zein-pectin composite nanoparticles: Characterization, antimicrobial effect and advantages in storage application. Int. J. Biol. Macromol. 2020, 148, 1280–1289. [Google Scholar] [CrossRef] [PubMed]
- Ning, F.; Wang, X.; Zheng, H.; Zhang, K.; Bai, C.; Peng, H.; Huang, Q.; Xiong, H. Improving the bioaccessibility and in vitro absorption of 5-demethylnobiletin from chenpi by se-enriched peanut protein nanoparticles-stabilized pickering emulsion. J. Funct. Foods 2019, 55, 76–85. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Hu, Y.; Zhang, N.; Fu, Y.; Chen, X. Tuning complexation of carboxymethyl cellulose/cationic chitosan to stabilize Pickering emulsion for curcumin encapsulation. Food Hydrocoll. 2021, 110, 106135. [Google Scholar] [CrossRef]
- Liu, B.; Liu, B.; Wang, R.; Li, Y. α-Lactalbumin self-assembled nanoparticles with various morphologies, stiffnesses, and sizes as pickering stabilizers for oil-in-water emulsions and delivery of curcumin. J. Agric. Food Chem. 2021, 69, 2485–2492. [Google Scholar] [CrossRef]
- Li, X.-M.; Meng, R.; Xu, B.-C.; Zhang, B. Investigation of the fabrication, characterization, protective effect and digestive mechanism of a novel Pickering emulsion gels. Food Hydrocoll. 2021, 117, 106708. [Google Scholar] [CrossRef]
- Huang, M.; Wang, J.; Tan, C. Tunable high internal phase emulsions stabilized by cross-linking/electrostatic deposition of polysaccharides for delivery of hydrophobic bioactives. Food Hydrocoll. 2021, 118, 106742. [Google Scholar] [CrossRef]
- Chen, K.; Lei, L.; Qian, Y.; Yang, D.; Qiu, X. Development of anti-photo and anti-thermal high internal phase emulsions stabilized by biomass lignin as a nutraceutical delivery system. Food Funct. 2019, 10, 355–365. [Google Scholar] [CrossRef]
- Li, W.; Nian, Y.; Huang, Y.; Zeng, X.; Chen, Q.; Hu, B. High loading contents, distribution and stability of β-carotene encapsulated in high internal phase emulsions. Food Hydrocoll. 2019, 96, 300–309. [Google Scholar] [CrossRef]
- Su, J.; Wang, X.; Li, W.; Chen, L.; Zeng, X.; Huang, Q.; Hu, B. Enhancing the viability of Lactobacillus plantarum as probiotics through encapsulation with high internal phase emulsions stabilized with whey protein isolate microgels. J. Agric. Food Chem. 2018, 66, 12335–12343. [Google Scholar] [CrossRef]
- Su, J.; Cai, Y.; Tai, K.; Guo, Q.; Zhu, S.; Mao, L.; Gao, Y.; Yuan, F.; Van der Meeren, P. High-internal-phase emulsions (HIPEs) for co-encapsulation of probiotics and curcumin: Enhanced survivability and controlled release. Food Funct. 2021, 12, 70–82. [Google Scholar] [CrossRef]
- Ma, L.; Zou, L.; McClements, D.J.; Liu, W. One-step preparation of high internal phase emulsions using natural edible Pickering stabilizers: Gliadin nanoparticles/gum Arabic. Food Hydrocoll. 2020, 100, 105381. [Google Scholar] [CrossRef]
- Huang, M.; Wang, Y.; Ahmad, M.; Ying, R.; Wang, Y.; Tan, C. Fabrication of pickering high internal phase emulsions stabilized by pecan protein/xanthan gum for enhanced stability and bioaccessibility of quercetin. Food Chem. 2021, 357, 129732. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, H.; Li, H.; Zhang, H.; Chi, Y.; Xia, N.; Li, Z.; Jiang, L.; Zhang, X.; Rayan, A.M. Fabrication and digestive characteristics of high internal phase Pickering emulsions stabilized by ovalbumin-pectin complexes for improving the stability and bioaccessibility of curcumin. Food Chem. 2022, 389, 133055. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Wang, X.; Wang, X.; Zhang, X.; Gu, Y.; Xia, S.; Huang, Q. High internal phase pickering emulsions stabilized by pea protein isolate-high methoxyl pectin-EGCG complex: Interfacial properties and microstructure. Food Chem. 2021, 350, 129251. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.-S.; Gao, Q.-Y.; Luo, Z.-G. Enhancing the storage and gastrointestinal passage viability of probiotic powder (Lactobacillus plantarum) through encapsulation with pickering high internal phase emulsions stabilized with WPI-EGCG covalent conjugate nanoparticles. Food Hydrocoll. 2021, 116, 106658. [Google Scholar] [CrossRef]
- Miao, J.; Xu, N.; Cheng, C.; Zou, L.; Chen, J.; Wang, Y.; Liang, R.; McClements, D.J.; Liu, W. Fabrication of polysaccharide-based high internal phase emulsion gels: Enhancement of curcumin stability and bioaccessibility. Food Hydrocoll. 2021, 117, 106679. [Google Scholar] [CrossRef]
- Yi, J.; Gan, C.; Wen, Z.; Fan, Y.; Wu, X. Development of pea protein and high methoxyl pectin colloidal particles stabilized high internal phase pickering emulsions for β-carotene protection and delivery. Food Hydrocoll. 2021, 113, 106497. [Google Scholar] [CrossRef]
- Wu, X.; Xu, N.; Cheng, C.; McClements, D.J.; Chen, X.; Zou, L.; Liu, W. Encapsulation of hydrophobic capsaicin within the aqueous phase of water-in-oil high internal phase emulsions: Controlled release, reduced irritation, and enhanced bioaccessibility. Food Hydrocoll. 2022, 123, 107184. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, X.; McClements, D.J.; Cheng, C.; Xie, Y.; Liang, R.; Liu, J.; Zou, L.; Liu, W. Encapsulation of bitter peptides in water-in-oil high internal phase emulsions reduces their bitterness and improves gastrointestinal stability. Food Chem. 2022, 386, 132787. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; McClements, D.J.; Xie, Y.; Cheng, C.; Zou, L.; Liu, W.; Liu, W. Probiotic encapsulation in water-in-oil high internal phase emulsions: Enhancement of viability under food and gastrointestinal conditions. LWT 2022, 163, 113499. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, J.; Wang, Y.; Ye, X.; Chen, S.; Pan, H.; Chen, J. Fabrication of rhamnogalacturonan-I enriched pectin-based emulsion gels for protection and sustained release of curcumin. Food Hydrocoll. 2022, 128, 107592. [Google Scholar] [CrossRef]
- Moayedzadeh, S.; Gunasekaran, S.; Madadlou, A. Emulsion gels loaded with pancreatic lipase: Preparation from spontaneously made emulsions and assessment of the rheological, microscopic and cargo release properties. Food Res. Int. 2022, 156, 111306. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhong, Q. Solid-in-Oil-in-Water Emulsions for Delivery of Lactase to Control in Vitro Hydrolysis of Lactose in Milk. J. Agric. Food Chem. 2017, 65, 9522–9528. [Google Scholar] [CrossRef]
- Koohenjani, D.K.; Lashkari, H. Effects of double emulsion encapsulated iron on the properties of fortified cream. LWT 2022, 161, 113296. [Google Scholar] [CrossRef]
- Han, L.; Lu, K.; Zhou, S.; Qi, B.; Li, Y. Co-delivery of insulin and quercetin in W/O/W double emulsions stabilized by different hydrophilic emulsifiers. Food Chem. 2022, 369, 130918. [Google Scholar] [CrossRef]
- Marefati, A.; Pitsiladis, A.; Oscarsson, E.; Ilestam, N.; Bergenståhl, B. Encapsulation of Lactobacillus reuteri in W1/O/W2 double emulsions: Formulation, storage and in vitro gastro-intestinal digestion stability. LWT 2021, 146, 111423. [Google Scholar] [CrossRef]
- Shi, A.; Wang, J.; Guo, R.; Feng, X.; Ge, Y.; Liu, H.; Agyei, D.; Wang, Q. Improving resveratrol bioavailability using water-in-oil-in-water (W/O/W) emulsion: Physicochemical stability, in vitro digestion resistivity and transport properties. J. Funct. Foods 2021, 87, 104717. [Google Scholar] [CrossRef]
- Huang, H.; Wang, D.; Belwal, T.; Dong, L.; Lu, L.; Zou, Y.; Li, L.; Xu, Y.; Luo, Z. A novel W/O/W double emulsion co-delivering brassinolide and cinnamon essential oil delayed the senescence of broccoli via regulating chlorophyll degradation and energy metabolism. Food Chem. 2021, 356, 129704. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, H.; Mundo, J.L.M.; Tan, Y.; Pham, H.; McClements, D.J. Fabrication and characterization of W/O/W emulsions with crystalline lipid phase. J. Food Eng. 2020, 273, 109826. [Google Scholar] [CrossRef]
- Li, M.; Bi, D.; Yao, L.; Yi, J.; Fang, W.; Wu, Y.; Xu, H.; Hu, Z.; Xu, X. Optimization of preparation conditions and in vitro sustained-release evaluation of a novel nanoemulsion encapsulating unsaturated guluronate oligosaccharide. Carbohydr. Polym. 2021, 264, 118047. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, T.; Smits, J.; Huang, X.; Maas, M.; Yin, S.; Ngai, T. Edible high internal phase Pickering emulsion with double-emulsion morphology. Food Hydrocoll. 2021, 111, 106405. [Google Scholar] [CrossRef]
- Bai, L.; Huan, S.; Rojas, O.J.; McClements, D.J. Recent innovations in emulsion science and technology for food applications. J. Agric. Food Chem. 2021, 69, 8944–8963. [Google Scholar] [CrossRef]
- Wan, L.; Li, L.; Harro, J.M.; Hoag, S.W.; Li, B.; Zhang, X.; Shirtliff, M.E. In vitro gastrointestinal digestion of palm olein and palm stearin-in-water emulsions with different physical states and fat contents. J. Agric. Food Chem. 2020, 68, 7062–7071. [Google Scholar] [CrossRef]
- Jiang, T.; Charcosset, C. Encapsulation of curcumin within oil-in-water emulsions prepared by premix membrane emulsification: Impact of droplet size and carrier oil type on physicochemical stability and in vitro bioaccessibility. Food Chem. 2022, 375, 131825. [Google Scholar] [CrossRef]
- Guo, X.; Sun, X.-T.; Liang, L.; Shi, L.-K.; Liu, R.-J.; Chang, M.; Wang, X.-G. Physical Stability, Oxidative Stability, and Bioactivity of Nanoemulsion Delivery Systems Incorporating Lipophilic Ingredients: Impact of Oil Saturation Degree. J. Agric. Food Chem. 2021, 69, 5405–5415. [Google Scholar] [CrossRef]
- Tan, Y.; Zhou, H.; Zhang, Z.; McClements, D.J. Bioaccessibility of oil-soluble vitamins (A, D, E) in plant-based emulsions: Impact of oil droplet size. Food Funct. 2021, 12, 3883–3897. [Google Scholar] [CrossRef]
- Meng, R.; Wu, Z.; Xie, Q.-T.; Zhang, B.; Li, X.-L.; Liu, W.-J.; Tao, H.; Li, P.-J. Zein/carboxymethyl dextrin nanoparticles stabilized pickering emulsions as delivery vehicles: Effect of interfacial composition on lipid oxidation and in vitro digestion. Food Hydrocoll. 2020, 108, 106020. [Google Scholar] [CrossRef]
- Chen, M.; Li, W.; Wang, W.; Cao, Y.; Lan, Y.; Huang, Q.; Xiao, J. Effects of gelation on the stability, tribological properties and time-delayed release profile of double emulsions. Food Hydrocoll. 2022, 131, 107753. [Google Scholar] [CrossRef]
- Sun, R.; Xia, Q. In vitro digestion behavior of (W1/O/W2) double emulsions incorporated in alginate hydrogel beads: Microstructure, lipolysis, and release. Food Hydrocoll. 2020, 107, 105950. [Google Scholar] [CrossRef]
- Fardous, J.; Omoso, Y.; Joshi, A.; Yoshida, K.; Patwary, M.K.A.; Ono, F.; Ijima, H. Development and characterization of gel-in-water nanoemulsion as a novel drug delivery system. Mater. Sci. Eng. C 2021, 124, 112076. [Google Scholar] [CrossRef] [PubMed]
- Palla, C.A.; Aguilera-Garrido, A.; Carrín, M.E.; Galisteo-González, F.; Gálvez-Ruiz, M.J. Preparation of highly stable oleogel-based nanoemulsions for encapsulation and controlled release of curcumin. Food Chem. 2022, 378, 132132. [Google Scholar] [CrossRef]
- Qiu, C.; Wang, J.; Qin, Y.; Xu, X.; Jin, Z. Characterization and mechanisms of novel emulsions and nanoemulsion gels stabilized by edible cyclodextrin-based metal–organic frameworks and glycyrrhizic acid. J. Agric. Food Chem. 2018, 67, 391–398. [Google Scholar] [CrossRef]
- Cai, X.; Wang, Y.; Du, X.; Xing, X.; Zhu, G. Stability of pH-responsive Pickering emulsion stabilized by carboxymethyl starch/xanthan gum combinations. Food Hydrocoll. 2020, 109, 106093. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Q.; Wang, Z.; Xu, Y.; Tao, Q.; Wang, J.; Kong, X.; Sheng, K.; Wang, Y. Investigation of construction and characterization of carboxymethyl chitosan-sodium alginate nanoparticles to stabilize Pickering emulsion hydrogels for curcumin encapsulation and accelerating wound healing. Int. J. Biol. Macromol. 2022, 209, 1837–1847. [Google Scholar] [CrossRef]
- Du Le, H.; Loveday, S.M.; Nowak, E.; Niu, Z.; Singh, H. Pectin emulsions for colon-targeted release of propionic acid. Food Hydrocoll. 2020, 103, 105623. [Google Scholar] [CrossRef]
- Nunes, R.; Pereira, B.D.A.; Cerqueira, M.A.; Silva, P.; Pastrana, L.M.; Vicente, A.A.; Martins, J.T.; Bourbon, A.I. Lactoferrin-based nanoemulsions to improve the physical and chemical stability of omega-3 fatty acids. Food Funct. 2020, 11, 1966–1981. [Google Scholar] [CrossRef]
- Felix, M.; Guerrero, A.; Carrera-Sánchez, C. Optimization of Multiple W1/O/W2 Emulsions Processing for Suitable Stability and Encapsulation Efficiency. Foods 2022, 11, 1367. [Google Scholar] [CrossRef]
- Mohamad, W.F.W.; Buckow, R.; Augustin, M.; McNaughton, D. In situ quantification of β-carotene partitioning in oil-in-water emulsions by confocal Raman microscopy. Food Chem. 2017, 233, 197–203. [Google Scholar] [CrossRef]
- Tang, X.-M.; Liu, P.-D.; Chen, Z.-J.; Li, X.-Y.; Huang, R.; Liu, G.-D.; Dong, R.-S.; Chen, J. Encapsulation of a Desmodium intortum Protein Isolate Pickering Emulsion of β-Carotene: Stability, Bioaccesibility and Cytotoxicity. Foods 2022, 11, 936. [Google Scholar] [CrossRef]
- Tan, Y.; Li, R.; Zhou, H.; Liu, J.; Mundo, J.L.M.; Zhang, R.; Mcclements, D.J. Impact of calcium levels on lipid digestion and nutraceutical bioaccessibility in nanoemulsion delivery systems studied using standardized INFOGEST digestion protocol. Food Funct. 2020, 11, 174–186. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, Z.; Zhou, H.; Xiao, H.; McClements, D.J. Factors impacting lipid digestion and β-carotene bioaccessibility assessed by standardized gastrointestinal model (INFOGEST): Oil droplet concentration. Food Funct. 2020, 11, 7126–7137. [Google Scholar] [CrossRef] [PubMed]
- Kharat, M.; Aberg, J.; Dai, T.; McClements, D.J. Comparison of emulsion and nanoemulsion delivery systems: The chemical stability of curcumin decreases as oil droplet size decreases. J. Agric. Food Chem. 2020, 68, 9205–9212. [Google Scholar] [CrossRef] [PubMed]
- Silva, K.C.G.; Bourbon, A.I.; Pastrana, L.; Sato, A.C.K. Biopolymer interactions on emulsion-filled hydrogels: Chemical, mechanical properties and microstructure. Food Res. Int. 2021, 141, 110059. [Google Scholar] [CrossRef] [PubMed]
- Catalkaya, G.; Venema, K.; Lucini, L.; Rocchetti, G.; Delmas, D.; Daglia, M.; De Filippis, A.; Xiao, H.; Quiles, J.L.; Xiao, J. Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. Food Front. 2020, 1, 109–133. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Liu, H.; Zhang, G.; Ao, Q. Functional, nutritional and flavor characteristic of soybean proteins obtained through reverse micelles. Food Hydrocoll. 2018, 74, 358–366. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, H.; Zhang, X.; Zhu, H.; Ao, Q. Surface structure and volatile characteristic of peanut proteins obtained through AOT reverse micelles. Colloids Surf. B Biointerfaces 2019, 173, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Leite, A.C.; Ferreira, A.M.; Morais, E.S.; Khan, I.; Freire, M.G.; Coutinho, J.A. Cloud point extraction of chlorophylls from spinach leaves using aqueous solutions of nonionic surfactants. ACS Sustain. Chem. Eng. 2018, 6, 590–599. [Google Scholar] [CrossRef]
- Javed, S.; Ahsan, W. Microemulsion based chromatographic techniques: Past lessons and future directions. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 99–114. [Google Scholar] [CrossRef]
- Zhang, G.; Huang, B.; Zheng, C.; Chen, Q.; Fei, P. Investigation of a lipase-catalyzed reaction between pectin and salicylic acid and its isomers and evaluation of the emulsifying properties, antioxidant activities, and antibacterial activities of the corresponding products. J. Agric. Food Chem. 2020, 69, 1234–1241. [Google Scholar] [CrossRef]
- Qu, Y.; Sun, D.; Yu, Y. Interfacial engineering in Pickering emulsion photocatalytic microreactors: From mechanisms to prospects. Chem. Eng. J. 2022, 438, 135655. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, Z.; Shi, J.; Tang, H.; Xiang, X.; Huang, F.; Zheng, M. Carbon Nanoparticle-Stabilized Pickering Emulsion as a Sustainable and High-Performance Interfacial Catalysis Platform for Enzymatic Esterification/Transesterification. ACS Sustain. Chem. Eng. 2019, 7, 7619–7629. [Google Scholar] [CrossRef]
- Sun, T.; Dong, Z.; Wang, J.; Huang, F.-H.; Zheng, M.-M. Ultrasound-assisted interfacial immobilization of lipase on hollow mesoporous silica spheres in a pickering emulsion system: A hyperactive and sustainable biocatalyst. ACS Sustain. Chem. Eng. 2020, 8, 17280–17290. [Google Scholar] [CrossRef]
- Xu, L.-J.; Yang, T.; Wang, J.; Huang, F.-H.; Zheng, M.-M. Immobilized lipase based on hollow mesoporous silicon spheres for efficient enzymatic synthesis of resveratrol ester derivatives. J. Agric. Food Chem. 2021, 69, 9067–9075. [Google Scholar] [CrossRef]
- Li, Z.; Shi, Y.; Zhu, A.; Zhao, Y.; Wang, H.; Binks, B.P.; Wang, J. Light-Responsive, reversible emulsification and demulsification of oil-in-water pickering emulsions for catalysis. Angew. Chem. 2021, 133, 3974–3979. [Google Scholar] [CrossRef]
- Xi, Y.; Liu, B.; Wang, S.; Huang, X.; Jiang, H.; Yin, S.; Ngai, T.; Yang, X. Growth of Au nanoparticles on phosphorylated zein protein particles for use as biomimetic catalysts for cascade reactions at the oil–water interface. Chem. Sci. 2021, 12, 3885–3889. [Google Scholar] [CrossRef]
- Xi, Y.; Liu, B.; Jiang, H.; Yin, S.; Ngai, T.; Yang, X. Sodium caseinate as a particulate emulsifier for making indefinitely recycled pH-responsive emulsions. Chem. Sci. 2020, 11, 3797–3803. [Google Scholar] [CrossRef]
- Wang, M.; Wang, M.; Zhang, S.; Chen, J. Pickering gel emulsion stabilized by enzyme immobilized polymeric nanoparticles: A robust and recyclable biocatalyst system for biphasic catalysis. React. Chem. Eng. 2019, 4, 1459–1465. [Google Scholar] [CrossRef]
- Jiao, Y.-J.; Yuan, F.-F.; Fan, P.-R.; Wei, Z.-H.; Huang, Y.-P.; Liu, Z.-S. Macroporous monolithic enzyme microreactor based on high internal phase emulsion functionalized with gold nanorods for enzymatic hydrolysis of protein. Chem. Eng. J. 2021, 407, 127061. [Google Scholar] [CrossRef]
- Li, R.; Xue, H.; Gao, B.; Liu, H.; Han, T.; Hu, X.; Tu, Y.; Zhao, Y. Physicochemical properties and digestibility of thermally induced ovalbumin–oil emulsion gels: Effect of interfacial film type and oil droplets size. Food Hydrocoll. 2022, 131, 107747. [Google Scholar] [CrossRef]
- Infantes-Garcia, M.R.; Verkempinck, S.; Gonzalez-Fuentes, P.; Hendrickx, M.; Grauwet, T. Lipolysis products formation during in vitro gastric digestion is affected by the emulsion interfacial composition. Food Hydrocoll. 2021, 110, 106163. [Google Scholar] [CrossRef]
- Ni, Y.; Gu, Q.; Li, J.; Fan, L. Modulating in vitro gastrointestinal digestion of nanocellulose-stabilized pickering emulsions by altering cellulose lengths. Food Hydrocoll. 2021, 118, 106738. [Google Scholar] [CrossRef]
- Martínez, S.; Espert, M.; Salvador, A.; Sanz, T. The role of oil concentration on the rheological properties, microstructure, and in vitro digestion of cellulose ether emulsions. Food Hydrocoll. 2022, 131, 107793. [Google Scholar] [CrossRef]
- Chen, S.; Du, Y.; Zhang, H.; Wang, Q.; Gong, Y.; Chang, R.; Zhang, J.; Zhang, J.; Yuan, Y.; Liu, B. The lipid digestion behavior of oil-in-water Pickering emulsions stabilized by whey protein microgels of various rigidities. Food Hydrocoll. 2022, 130, 107735. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y.; Li, Y.; Li, B.; Pei, Y.; Liu, S. Effects of the interaction between bacterial cellulose and soy protein isolate on the oil-water interface on the digestion of the Pickering emulsions. Food Hydrocoll. 2022, 126, 107480. [Google Scholar] [CrossRef]
- Santos, T.P.; Okuro, P.K.; Cunha, R.L. Pickering emulsions as a platform for structures design: Cutting-edge strategies to engineer digestibility. Food Hydrocoll. 2021, 116, 106645. [Google Scholar] [CrossRef]
- Naso, J.N.; Bellesi, F.A.; Ruiz-Henestrosa, V.M.P.; Pilosof, A.M. Studies on the interactions between bile salts and food emulsifiers under in vitro duodenal digestion conditions to evaluate their bile salt binding potential. Colloids Surf. B Biointerfaces 2019, 174, 493–500. [Google Scholar] [CrossRef]
- Sarkar, A.; Zhang, S.; Holmes, M.; Ettelaie, R. Colloidal aspects of digestion of Pickering emulsions: Experiments and theoretical models of lipid digestion kinetics. Adv. Colloid Interface Sci. 2019, 263, 195–211. [Google Scholar] [CrossRef]
- Chen, L.; Yokoyama, W.; Liang, R.; Zhong, F. Enzymatic degradation and bioaccessibility of protein encapsulated β-carotene nano-emulsions during in vitro gastro-intestinal digestion. Food Hydrocoll. 2020, 100, 105177. [Google Scholar] [CrossRef]
- Zhou, F.; Yan, L.; Yin, S.; Tang, C.; Yang, X. Development of Pickering Emulsions Stabilized by Gliadin/Proanthocyanidins Hybrid Particles (GPHPs) and the Fate of Lipid Oxidation and Digestion. J. Agric. Food Chem. 2018, 66, 1461–1471. [Google Scholar] [CrossRef]
- Zhao, M.; Shen, P.; Zhang, Y.; Zhong, M.; Zhao, Q.; Zhou, F. Fabrication of soy protein nanoparticles via partial enzymatic hydrolysis and their role in controlling lipid digestion of oil-in-water emulsions. ACS Food Sci. Technol. 2021, 1, 193–204. [Google Scholar] [CrossRef]
- Wen, J.; Zhang, Y.; Jin, H.; Sui, X.; Jiang, L. Deciphering the Structural Network That Confers Stability to High Internal Phase Pickering Emulsions by Cross-Linked Soy Protein Microgels and Their In Vitro Digestion Profiles. J. Agric. Food Chem. 2020, 68, 9796–9803. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Q.; Leng, Y.; Chen, F.; Wu, F.; Mu, G.; Wu, X. Lecithin alleviates protein flocculation and enhances fat digestion in a model of infant formula emulsion. Food Chem. 2021, 346, 128918. [Google Scholar] [CrossRef]
- Liang, L.; Zhang, X.; Wang, X.; Jin, Q.; Mcclements, D.J. Influence of Dairy Emulsifier Type and Lipid Droplet Size on Gastrointestinal Fate of Model Emulsions: In Vitro Digestion Study. J. Agric. Food Chem. 2018, 66, 9761–9769. [Google Scholar] [CrossRef]
- Wan, L.; Li, L.; Xiao, J.; He, N.; Zhang, R.; Li, B.; Zhang, X. The interfacial digestion behavior of crystalline oil-in-water emulsions stabilized by sodium caseinate during in vitro gastrointestinal digestion. Food Hydrocoll. 2022, 130, 107734. [Google Scholar] [CrossRef]
- Jiao, W.; Li, L.; Yu, A.; Zan, S.; Chen, Z.; Liang, Y.; Liang, K.; Li, B.; Zhang, X. Modulating the in vitro gastrointestinal digestibility of crystalline oil-in-water emulsion: Different fat crystal sizes and polymorphic forms under the same SFC. Food Chem. 2022, 368, 130723. [Google Scholar] [CrossRef]
- Li, W.; Wang, W.; Yong, C.; Lan, Y.; Huang, Q.; Xiao, J. Effects of the Distribution Site of Crystallizable Emulsifiers on the Gastrointestinal Digestion Behavior of Double Emulsions. J. Agric. Food Chem. 2022, 70, 5115–5125. [Google Scholar] [CrossRef]
- Dong, L.; Lv, M.; Gao, X.; Zhang, L.; Rogers, M.; Cao, Y.; Lan, Y. In vitro gastrointestinal digestibility of phytosterol oleogels: Influence of self-assembled microstructures on emulsification efficiency and lipase activity. Food Funct. 2020, 11, 9503–9513. [Google Scholar] [CrossRef]
- Kang, J.; Park, S.; Park, J.B.; Song, K.B. Surfactant type affects the washing effect of cinnamon leaf essential oil emulsion on kale leaves. Food Chem. 2019, 271, 122–128. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, H.; Li, J.; Li, B. Fabrication of processable and edible high internal phase Pickering emulsions stabilized with gliadin/sodium carboxymethyl cellulose colloid particles. Food Hydrocoll. 2022, 128, 107571. [Google Scholar] [CrossRef]
- Cui, F.; McClements, D.J.; Liu, X.; Liu, F.; Ngai, T. Development of pH-responsive emulsions stabilized by whey protein fibrils. Food Hydrocoll. 2022, 122, 107067. [Google Scholar] [CrossRef]
- Courtenay, J.C.; Jin, Y.; Schmitt, J.; Hossain, K.M.Z.; Mahmoudi, N.; Edler, K.J.; Scott, J.L. Salt-Responsive Pickering Emulsions Stabilized by Functionalized Cellulose Nanofibrils. Langmuir 2021, 37, 6864–6873. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Pajoumshariati, S.; Arshadi, M.; Abbaspourrad, A. A simple route to renewable high internal phase emulsions (HIPEs) strengthened by successive cross-linking and electrostatics of polysaccharides. Chem. Commun. 2019, 55, 1225–1228. [Google Scholar] [CrossRef] [PubMed]
- Tie, S.; Su, W.; Zhang, X.; Chen, Y.; Zhao, X.; Tan, M. pH-Responsive core–shell microparticles prepared by a microfluidic chip for the encapsulation and controlled release of procyanidins. J. Agric. Food Chem. 2021, 69, 1466–1477. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Li, L.; Russell, T.P.; Shi, S. Photoresponsive structured liquids enabled by molecular recognition at liquid–liquid interfaces. J. Am. Chem. Soc. 2020, 142, 8591–8595. [Google Scholar] [CrossRef]
- Hashemnejad, S.M.; Badruddoza, A.Z.M.; Zarket, B.; Ricardo Castaneda, C.; Doyle, P.S. Thermoresponsive nanoemulsion-based gel synthesized through a low-energy process. Nat. Commun. 2019, 10, 2749. [Google Scholar] [CrossRef]
- Jiang, Y.; Chakroun, R.; Gu, P.; Gröschel, A.H.; Russell, T.P. Soft polymer Janus nanoparticles at liquid–liquid interfaces. Angew. Chem. 2020, 132, 12851–12855. [Google Scholar] [CrossRef]
- Ku, K.H.; Li, J.; Yoshinaga, K.; Swager, T.M. Dynamically Reconfigurable, Multifunctional Emulsions with Controllable Structure and Movement. Adv. Mater. 2019, 31, 1905569. [Google Scholar] [CrossRef]
- Zhong, M.; Xie, F.; Zhang, S.; Sun, Y.; Qi, B.; Li, Y. Preparation and digestive characteristics of a novel soybean lipophilic protein-hydroxypropyl methylcellulose-calcium chloride thermosensitive emulsion gel. Food Hydrocoll. 2020, 106, 105891. [Google Scholar] [CrossRef]
- Rodríguez-Arco, L.; Li, M.; Mann, S. Phagocytosis-inspired behaviour in synthetic protocell communities of compartmentalized colloidal objects. Nat. Mater. 2017, 16, 857–863. [Google Scholar] [CrossRef]
- Zhu, Q.; Liu, S.; Sun, J.; Liu, J.; Kirubaharan, C.J.; Chen, H.; Xu, W.; Wang, Q. Stimuli-responsive cellulose nanomaterials for smart applications. Carbohydr. Polym. 2020, 235, 115933. [Google Scholar] [CrossRef]
- Infantes-Garcia, M.R.; Verkempinck, S.H.; Hendrickx, M.E.; Grauwet, T. Kinetic modeling of in vitro small intestinal lipid digestion as affected by the emulsion interfacial composition and gastric prelipolysis. J. Agric. Food Chem. 2021, 69, 4708–4719. [Google Scholar] [CrossRef]
- Infantes-Garcia, M.R.; Verkempinck, S.H.; Del Castillo-Santaella, T.; Maldonado-Valderrama, J.; Hendrickx, M.E.; Grauwet, T. In vitro gastric lipid digestion of emulsions with mixed emulsifiers: Correlation between lipolysis kinetics and interfacial characteristics. Food Hydrocoll. 2022, 128, 107576. [Google Scholar] [CrossRef]
- Zhang, T.; Ding, M.; Zhang, H.; Tao, N.; Wang, X.; Zhong, J. Fish oil-loaded emulsions stabilized by synergetic or competitive adsorption of gelatin and surfactants on oil/water interfaces. Food Chem. 2020, 308, 125597. [Google Scholar] [CrossRef]
- Wei, Y.; Tong, Z.; Dai, L.; Wang, D.; Lv, P.; Liu, J.; Mao, L.; Yuan, F.; Gao, Y. Influence of interfacial compositions on the microstructure, physiochemical stability, lipid digestion and β-carotene bioaccessibility of Pickering emulsions. Food Hydrocoll. 2020, 104, 105738. [Google Scholar] [CrossRef]
- Wei, Y.; Zhou, D.; Mackie, A.; Yang, S.; Dai, L.; Zhang, L.; Mao, L.; Gao, Y. Stability, interfacial structure, and gastrointestinal digestion of β-carotene-loaded pickering emulsions co-stabilized by particles, a biopolymer, and a surfactant. J. Agric. Food Chem. 2021, 69, 1619–1636. [Google Scholar] [CrossRef]
- Zheng, L.; Cao, C.; Chen, Z.; Cao, L.; Huang, Q.; Song, B. Evaluation of emulsion stability by monitoring the interaction between droplets. LWT 2020, 132, 109804. [Google Scholar] [CrossRef]
- Yan, S.; Xu, J.; Zhang, S.; Zhu, H.; Qi, B.; Li, Y. Effect of interfacial composition on the physical stability and co-oxidation of proteins and lipids in a soy protein isolate-(−)-epigallocatechin gallate conjugate emulsion. Food Hydrocoll. 2022, 130, 107720. [Google Scholar] [CrossRef]
- Tian, L.; Zhang, S.; Yi, J.; Zhu, Z.; Li, M.; Decker, E.A.; McClements, D.J. Formation of Antioxidant Multilayered Coatings for the Prevention of Lipid and Protein Oxidation in Oil-in-Water Emulsions: Lycium barbarum Polysaccharides and Whey Proteins. J. Agric. Food Chem. 2021, 69, 15691–15698. [Google Scholar] [CrossRef]
- Song, H.Y.; Moon, T.W.; Choi, S.J. Impact of antioxidant on the stability of β-carotene in model beverage emulsions: Role of emulsion interfacial membrane. Food Chem. 2019, 279, 194–201. [Google Scholar] [CrossRef]
- Feng, T.; Wang, X.; Wang, X.; Xia, S.; Huang, Q. Plant protein-based antioxidant Pickering emulsions and high internal phase Pickering emulsions against broad pH range and high ionic strength: Effects of interfacial rheology and microstructure. LWT 2021, 150, 111953. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, Y.; Chen, H.; Deng, Y.; Wei, Z.; Zhang, Y.; Tang, X.; Li, P.; Zhao, Z.; Zhou, P. Rice bran-modified wheat gluten nanoparticles effectively stabilized pickering emulsion: An interfacial antioxidant inhibiting lipid oxidation. Food Chem. 2022, 387, 132874. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; Cao, C.; Kong, B.; Wang, H.; Zhang, H.; Liu, Q. Effects of different pH conditions on interfacial composition and protein-lipid co-oxidation of whey protein isolate-stabilised O/W emulsions. Food Hydrocoll. 2022, 131, 107752. [Google Scholar] [CrossRef]
- Yesiltas, B.; García-Moreno, P.J.; Gregersen, S.; Olsen, T.H.; Jones, N.C.; Hoffmann, S.V.; Marcatili, P.; Overgaard, M.T.; Hansen, E.B.; Jacobsen, C. Antioxidant peptides derived from potato, seaweed, microbial and spinach proteins: Oxidative stability of 5% fish oil-in-water emulsions. Food Chem. 2022, 385, 132699. [Google Scholar] [CrossRef]
- Xu, M.; Lian, Z.; Chen, X.; Yao, X.; Lu, C.; Niu, X.; Xu, M.; Zhu, Q. Effects of resveratrol on lipid and protein co-oxidation in fish oil-enriched whey protein isolate emulsions. Food Chem. 2021, 365, 130525. [Google Scholar] [CrossRef]
- Zou, Y.-C.; Wu, C.-L.; Ma, C.-F.; He, S.; Brennan, C.S.; Yuan, Y. Interactions of grape seed procyanidins with soy protein isolate: Contributing antioxidant and stability properties. LWT 2019, 115, 108465. [Google Scholar] [CrossRef]
- Feng, J.; Berton-Carabin, C.C.; Fogliano, V.; Schroën, K. Maillard reaction products as functional components in oil-in-water emulsions: A review highlighting interfacial and antioxidant properties. Trends Food Sci. Technol. 2022, 121, 129–141. [Google Scholar] [CrossRef]
- Bravo-Díaz, C. Advances in the control of lipid peroxidation in oil-in-water emulsions: Kinetic approaches. Crit. Rev. Food Sci. Nutr. 2022, 1–33. [Google Scholar] [CrossRef]
- Daoud, S.; Bou-Maroun, E.; Waschatko, G.; Cayot, P. Lipid oxidation in oil-in-water emulsions: Iron complexation by buffer ions and transfer on the interface as a possible mechanism. Food Chem. 2021, 342, 128273. [Google Scholar] [CrossRef] [PubMed]
- Da Silveira, T.F.F.; Laguerre, M.; Bourlieu-Lacanal, C.; Lecomte, J.; Durand, E.; Figueroa-Espinoza, M.C.; Baréa, B.; Barouh, N.; Castro, I.A.; Villeneuve, P. Impact of surfactant concentration and antioxidant mode of incorporation on the oxidative stability of oil-in-water nanoemulsions. LWT 2021, 141, 110892. [Google Scholar] [CrossRef]
- Yi, J.; Qiu, M.; Liu, N.; Tian, L.; Zhu, X.; Decker, E.A.; McClements, D.J. Inhibition of lipid and protein oxidation in whey-protein-stabilized emulsions using a natural antioxidant: Black rice anthocyanins. J. Agric. Food Chem. 2020, 68, 10149–10156. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Dong, H.; Cheng, H.; Ji, C.; Liang, L. Sodium caseinate particles with co-encapsulated resveratrol and epigallocatechin-3-gallate for inhibiting the oxidation of fish oil emulsions. Food Hydrocoll. 2022, 124, 107308. [Google Scholar] [CrossRef]
- Wang, P.; Liu, S. Development of a Gemini Interfacial Antioxidant for Oil in Water Emulsion with Gallic Acid and Dodecyl Gemini Chains. J. Agric. Food Chem. 2020, 68, 9953–9960. [Google Scholar] [CrossRef]
- Cao, X.; Xiong, C.; Zhao, X.; Yang, S.; Wen, Q.; Tang, H.; Zeng, Q.; Feng, Y.; Li, J. Tuning self-assembly of amphiphilic sodium alginate-decorated selenium nanoparticle surfactants for antioxidant Pickering emulsion. Int. J. Biol. Macromol. 2022, 210, 600–613. [Google Scholar] [CrossRef]
- Mouafo, H.T.; Mbawala, A.; Tanaji, K.; Somashekar, D.; Ndjouenkeu, R. Improvement of the shelf life of raw ground goat meat by using biosurfactants produced by lactobacilli strains as biopreservatives. LWT 2020, 133, 110071. [Google Scholar] [CrossRef]
- Schröder, A.; Laguerre, M.; Tenon, M.; Schroën, K.; Berton-Carabin, C.C. Natural particles can armor emulsions against lipid oxidation and coalescence. Food Chem. 2021, 347, 129003. [Google Scholar] [CrossRef]
- Eisinaite, V.; Juraite, D.; Schroën, K.; Leskauskaite, D. Food-grade double emulsions as effective fat replacers in meat systems. J. Food Eng. 2017, 213, 54–59. [Google Scholar] [CrossRef]
- Lee, M.C.; Tan, C.; Ravanfar, R.; Abbaspourrad, A. Ultra-Stable Water-in-Oil High Internal Phase Emulsions Featuring Interfacial and Biphasic Network Stabilization. ACS Appl. Mater. Interfaces 2019, 11, 26433–26441. [Google Scholar] [CrossRef]
- Heymans, R.; Tavernier, I.; Dewettinck, K.; Van der Meeren, P. Crystal stabilization of edible oil foams. Trends Food Sci. Technol. 2017, 69, 13–24. [Google Scholar] [CrossRef]
- Li, G.; Lee, W.J.; Liu, N.; Lu, X.; Tan, C.P.; Lai, O.M.; Qiu, C.; Wang, Y. Stabilization mechanism of water-in-oil emulsions by medium-and long-chain diacylglycerol: Post-crystallization vs. pre-crystallization. LWT 2021, 146, 111649. [Google Scholar] [CrossRef]
- Lei, M.; Zhang, N.; Lee, W.J.; Tan, C.P.; Lai, O.M.; Wang, Y.; Qiu, C. Non-aqueous foams formed by whipping diacylglycerol stabilized oleogel. Food Chem. 2020, 312, 126047. [Google Scholar] [CrossRef]
- Qiu, C.; Lei, M.; Lee, W.J.; Zhang, N.; Wang, Y. Fabrication and characterization of stable oleofoam based on medium-long chain diacylglycerol and β-sitosterol. Food Chem. 2021, 350, 129275. [Google Scholar] [CrossRef]
- Yang, J.; Qiu, C.; Li, G.; Lee, W.J.; Tan, C.P.; Lai, O.M.; Wang, Y. Effect of diacylglycerol interfacial crystallization on the physical stability of water-in-oil emulsions. Food Chem. 2020, 327, 127014. [Google Scholar] [CrossRef]
- Peng, L.-P.; Tang, C.-H. Outstanding antioxidant pickering high internal phase emulsions by co-assembled polyphenol-soy β-conglycinin nanoparticles. Food Res. Int. 2020, 136, 109509. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, J.; Xiong, Y.L. Genipin-Aided Protein Cross-linking to Modify Structural and Rheological Properties of Emulsion-Filled Hempseed Protein Hydrogels. J. Agric. Food Chem. 2019, 67, 12895–12903. [Google Scholar] [CrossRef]
- Huang, Z.-X.; Lin, W.-F.; Zhang, Y.; Tang, C.-H. Freeze-thaw-stable High Internal Phase Emulsions Stabilized by Soy Protein Isolate and Chitosan Complexes at pH 3.0 as Promising Mayonnaise Replacers. Food Res. Int. 2022, 156, 111309. [Google Scholar] [CrossRef]
- Liu, X.; Guo, J.; Wan, Z.-L.; Liu, Y.-Y.; Ruan, Q.-J.; Yang, X.-Q. Wheat gluten-stabilized high internal phase emulsions as mayonnaise replacers. Food Hydrocoll. 2018, 77, 168–175. [Google Scholar] [CrossRef]
- Ruan, Q.; Yang, X.; Zeng, L.; Qi, J. Physical and tribological properties of high internal phase emulsions based on citrus fibers and corn peptides. Food Hydrocoll. 2019, 95, 53–61. [Google Scholar] [CrossRef]
- Lu, Z.; Zhou, S.; Ye, F.; Zhou, G.; Gao, R.; Qin, D.; Zhao, G. A novel cholesterol-free mayonnaise made from Pickering emulsion stabilized by apple pomace particles. Food Chem. 2021, 353, 129418. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, R.S.; Rajaei, A. Potential Pickering emulsion stabilized with chitosan-stearic acid nanogels incorporating clove essential oil to produce fish-oil-enriched mayonnaise. Carbohydr. Polym. 2020, 241, 116340. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Jiao, B.; Meng, S.; Fu, W.; Faisal, S.; Li, X.; Liu, H.; Wang, Q. Edible mayonnaise-like Pickering emulsion stabilized by pea protein isolate microgels: Effect of food ingredients in commercial mayonnaise recipe. Food Chem. 2022, 376, 131866. [Google Scholar] [CrossRef] [PubMed]
- Jiao, B.; Shi, A.; Wang, Q.; Binks, B.P. High-internal-phase pickering emulsions stabilized solely by peanut-protein-isolate microgel particles with multiple potential applications. Angew. Chem. 2018, 130, 9418–9422. [Google Scholar] [CrossRef]
- Li, X.-L.; Meng, R.; Xu, B.-C.; Zhang, B.; Cui, B.; Wu, Z.-Z. Function emulsion gels prepared with carrageenan and zein/carboxymethyl dextrin stabilized emulsion as a new fat replacer in sausages. Food Chem. 2022, 389, 133005. [Google Scholar] [CrossRef]
- Paglarini, C.d.S.; Vidal, V.A.S.; Martini, S.; Cunha, R.L.; Pollonio, M.A.R. Protein-based hydrogelled emulsions and their application as fat replacers in meat products: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 640–655. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Liu, C.; Liu, C. Application of LF-NMR to the characterization of camellia oil-loaded pickering emulsion fabricated by soy protein isolate. Food Hydrocoll. 2021, 112, 106329. [Google Scholar] [CrossRef]
- Pan, H.; Xu, X.; Qian, Z.; Cheng, H.; Shen, X.; Chen, S.; Ye, X. Xanthan gum-assisted fabrication of stable emulsion-based oleogel structured with gelatin and proanthocyanidins. Food Hydrocoll. 2021, 115, 106596. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, M.; Li, J.; Su, Y.; Gu, L.; Yang, Y.; Chang, C. Construction of egg white protein particle and rhamnolipid based emulsion gels with β-sitosterol as gelation factor: The application in cookie. Food Hydrocoll. 2022, 127, 107479. [Google Scholar] [CrossRef]
- Kwon, H.C.; Shin, D.-M.; Yune, J.H.; Jeong, C.H.; Han, S.G. Evaluation of gels formulated with whey proteins and sodium dodecyl sulfate as a fat replacer in low-fat sausage. Food Chem. 2021, 337, 127682. [Google Scholar] [CrossRef]
- Pintado, T.; Muñoz-González, I.; Salvador, M.; Ruiz-Capillas, C.; Herrero, A.M. Phenolic compounds in emulsion gel-based delivery systems applied as animal fat replacers in frankfurters: Physico-chemical, structural and microbiological approach. Food Chem. 2021, 340, 128095. [Google Scholar] [CrossRef]
- Hu, X.; McClements, D.J. Construction of plant-based adipose tissue using high internal phase emulsions and emulsion gels. Innov. Food Sci. Emerg. Technol. 2022, 78, 103016. [Google Scholar] [CrossRef]
- Cao, M.; Zhang, X.; Zhu, Y.; Liu, Y.; Ma, L.; Chen, X.; Zou, L.; Liu, W. Enhancing the physicochemical performance of myofibrillar gels using Pickering emulsion fillers: Rheology, microstructure and stability. Food Hydrocoll. 2022, 128, 107606. [Google Scholar] [CrossRef]
- Hu, S.; Wu, J.; Zhu, B.; Du, M.; Wu, C.; Yu, C.; Song, L.; Xu, X. Low oil emulsion gel stabilized by defatted Antarctic krill (Euphausia superba) protein using high-intensity ultrasound. Ultrason. Sonochem. 2021, 70, 105294. [Google Scholar] [CrossRef]
- Du, C.-X.; Xu, J.-J.; Luo, S.-Z.; Li, X.-J.; Mu, D.-D.; Jiang, S.-T.; Zheng, Z. Low-oil-phase emulsion gel with antioxidant properties prepared by soybean protein isolate and curcumin composite nanoparticles. LWT 2022, 161, 113346. [Google Scholar] [CrossRef]
- Gutiérrez-Luna, K.; Astiasarán, I.; Ansorena, D. Gels as fat replacers in bakery products: A review. Crit. Rev. Food Sci. Nutr. 2020, 62, 3768–3781. [Google Scholar] [CrossRef]
- Grossmann, L.; Kinchla, A.J.; Nolden, A.; McClements, D.J. Standardized methods for testing the quality attributes of plant-based foods: Milk and cream alternatives. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2206–2233. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Zhang, S.; Zhao, X.; Liu, Y.; Jiang, J.; Xiong, Y.L. Structural and rheological properties of mung bean protein emulsion as a liquid egg substitute: The effect of pH shifting and calcium. Food Hydrocoll. 2022, 126, 107485. [Google Scholar] [CrossRef]
- Lan, M.; Zheng, J.; Huang, C.; Wang, Y.; Hu, W.; Lu, S.; Liu, F.; Ou, S. Water-In-Oil Pickering Emulsions Stabilized by Microcrystalline Phytosterols in Oil: Fabrication Mechanism and Application as a Salt Release System. J. Agric. Food Chem. 2022, 70, 5408–5416. [Google Scholar] [CrossRef]
- Wang, X.; Ullah, N.; Shen, Y.; Sun, Z.; Wang, X.; Feng, T.; Zhang, X.; Huang, Q.; Xia, S. Emulsion delivery of sodium chloride: A promising approach for modulating saltiness perception and sodium reduction. Trends Food Sci. Technol. 2021, 110, 525–538. [Google Scholar] [CrossRef]
- Sun, C.; Zhou, X.; Hu, Z.; Lu, W.; Zhao, Y.; Fang, Y. Food and salt structure design for salt reducing. Innov. Food Sci. Emerg. Technol. 2021, 67, 102570. [Google Scholar] [CrossRef]
- Ahsan, H.M.; Pei, Y.; Luo, X.; Wang, Y.; Li, Y.; Li, B.; Liu, S. Novel stable pickering emulsion based solid foams efficiently stabilized by microcrystalline cellulose/chitosan complex particles. Food Hydrocoll. 2020, 108, 106044. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Chen, J.; Li, B.; Li, Y.; Liu, S. Edible foam based on pickering effect of bacterial cellulose nanofibrils and soy protein isolates featuring interfacial network stabilization. Food Hydrocoll. 2020, 100, 105440. [Google Scholar] [CrossRef]
- Wang, Y.; Hartel, R.W.; Zhang, L. The stability of aerated emulsions: Effects of emulsifier synergy on partial coalescence and crystallization of milk fat. J. Food Eng. 2021, 291, 110257. [Google Scholar] [CrossRef]
- Hu, Y.; Shi, L.; Ren, Z.; Hao, G.; Chen, J.; Weng, W. Characterization of emulsion films prepared from soy protein isolate at different preheating temperatures. J. Food Eng. 2021, 309, 110697. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, Y.; Cai, Z.; Hou, B.; Zhang, H. Stability of acidified milk drinks induced by various polysaccharide stabilizers: A review. Food Hydrocoll. 2021, 118, 106814. [Google Scholar] [CrossRef]
- Du, Q.; Tang, J.; Xu, M.; Lyu, F.; Zhang, J.; Qiu, Y.; Liu, J.; Ding, Y. Whey protein and maltodextrin-stabilized oil-in-water emulsions: Effects of dextrose equivalent. Food Chem. 2021, 339, 128094. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Shi, Z.; Liu, C.; Su, C.; Zhang, S.; Yi, F. Preparation of Pickering emulsions based on soy protein isolate-tannic acid for protecting aroma compounds and their application in beverages. Food Chem. 2022, 390, 133182. [Google Scholar] [CrossRef]
- Li, K.-Y.; Zhou, Y.; Huang, G.-Q.; Li, X.-D.; Xiao, J.-X. Preparation of powdered oil by spray drying the Pickering emulsion stabilized by ovalbumin–gum Arabic polyelectrolyte complex. Food Chem. 2022, 391, 133223. [Google Scholar] [CrossRef]
- Xu, W.; Sun, H.; Li, H.; Li, Z.; Zheng, S.; Luo, D.; Ning, Y.; Wang, Y.; Shah, B.R. Preparation and characterization of tea oil powder with high water solubility using Pickering emulsion template and vacuum freeze-drying. LWT 2022, 160, 113330. [Google Scholar] [CrossRef]
- Dun, H.; Liang, H.; Zhan, F.; Wei, X.; Chen, Y.; Wan, J.; Ren, Y.; Hu, L.; Li, B. Influence of O/W emulsion on gelatinization and retrogradation properties of rice starch. Food Hydrocoll. 2020, 103, 105652. [Google Scholar] [CrossRef]
- Lee, E.-s.; Song, H.-g.; Choi, I.; Lee, J.-S.; Han, J. Effects of mung bean starch/guar gum-based edible emulsion coatings on the staling and safety of rice cakes. Carbohydr. Polym. 2020, 247, 116696. [Google Scholar] [CrossRef]
- Chen, L.; Din, Z.-u.; Yang, D.; Hu, C.; Cai, J.; Xiong, H. Functional nanoparticle reinforced starch-based adhesive emulsion: Toward robust stability and high bonding performance. Carbohydr. Polym. 2021, 269, 118270. [Google Scholar] [CrossRef]
- Zhu, X.; Li, L.; Li, S.; Ning, C.; Zhou, C. l–Arginine/l–lysine improves emulsion stability of chicken sausage by increasing electrostatic repulsion of emulsion droplet and decreasing the interfacial tension of soybean oil-water. Food Hydrocoll. 2019, 89, 492–502. [Google Scholar] [CrossRef]
- Fang, Q.; Shi, L.; Ren, Z.; Hao, G.; Chen, J.; Weng, W. Effects of emulsified lard and TGase on gel properties of threadfin bream (Nemipterus virgatus) surimi. LWT 2021, 146, 111513. [Google Scholar] [CrossRef]
- Xu, L.; Lv, Y.; Su, Y.; Chang, C.; Gu, L.; Yang, Y.; Li, J. Enhancing gelling properties of high internal phase emulsion-filled chicken gels: Effect of droplet fractions and salts. Food Chem. 2022, 367, 130663. [Google Scholar] [CrossRef]
- Tao, J.; Zhu, Q.; Qin, F.; Wang, M.; Chen, J.; Zheng, Z.-P. Preparation of steppogenin and ascorbic acid, vitamin E, butylated hydroxytoluene oil-in-water microemulsions: Characterization, stability, and antibrowning effects for fresh apple juice. Food Chem. 2017, 224, 11–18. [Google Scholar] [CrossRef]
- Ai, Y.; Fang, F.; Zhang, L.; Liao, H. Antimicrobial activity of oregano essential oil and resveratrol emulsions co-encapsulated by sodium caseinate with polysaccharides. Food Control 2022, 137, 108925. [Google Scholar] [CrossRef]
- Feng, X.; Tjia, J.Y.Y.; Zhou, Y.; Liu, Q.; Fu, C.; Yang, H. Effects of tocopherol nanoemulsion addition on fish sausage properties and fatty acid oxidation. LWT 2020, 118, 108737. [Google Scholar] [CrossRef]
- Ceylan, Z.; Meral, R.; Kose, S.; Sengor, G.; Akinay, Y.; Durmus, M.; Ucar, Y. Characterized nano-size curcumin and rosemary oil for the limitation microbial spoilage of rainbow trout fillets. LWT 2020, 134, 109965. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, D.; Xiang, Q.; Li, K.; Wang, B.; Bai, Y. Effect of cinnamon essential oil nanoemulsions on microbiological safety and quality properties of chicken breast fillets during refrigerated storage. LWT 2021, 152, 112376. [Google Scholar] [CrossRef]
- González-González, C.R.; Labo-Popoola, O.; Delgado-Pando, G.; Theodoridou, K.; Doran, O.; Stratakos, A.C. The effect of cold atmospheric plasma and linalool nanoemulsions against Escherichia coli O157: H7 and Salmonella on ready-to-eat chicken meat. Lwt 2021, 149, 111898. [Google Scholar] [CrossRef]
- Da Rosa, C.G.; de Melo, A.P.Z.; Sganzerla, W.G.; Machado, M.H.; Nunes, M.R.; Maciel, M.V.d.O.B.; Bertoldi, F.C.; Barreto, P.L.M. Application in situ of zein nanocapsules loaded with Origanum vulgare Linneus and Thymus vulgaris as a preservative in bread. Food Hydrocoll. 2020, 99, 105339. [Google Scholar] [CrossRef]
- Christaki, S.; Moschakis, T.; Kyriakoudi, A.; Biliaderis, C.G.; Mourtzinos, I. Recent advances in plant essential oils and extracts: Delivery systems and potential uses as preservatives and antioxidants in cheese. Trends Food Sci. Technol. 2021, 116, 264–278. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Salehabadi, A.; Nafchi, A.M.; Oladzadabbasabadi, N.; Jafari, S.M. Cheese packaging by edible coatings and biodegradable nanocomposites; improvement in shelf life, physicochemical and sensory properties. Trends Food Sci. Technol. 2021, 116, 218–231. [Google Scholar] [CrossRef]
- Crowley, S.V.; Kelly, A.L.; Omahony, J.A.; Lucey, J.A. Colloidal properties of protein complexes formed in β-casein concentrate solutions as influenced by heating and cooling in the presence of different solutes. Colloids Surf. B Biointerfaces 2019, 174, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Sagis, L.M.C. The influence of protein/phospholipid ratio on the physicochemical and interfacial properties of biomimetic milk fat globules. Food Hydrocoll. 2019, 97, 105179. [Google Scholar] [CrossRef]
- Renhe, I.R.T.; Corredig, M. Effect of partial whey protein depletion during membrane filtration on thermal stability of milk concentrates. J. Dairy Sci. 2018, 101, 8757–8766. [Google Scholar] [CrossRef]
- Zhou, H.; Zheng, B.; Zhang, Z.; Zhang, R.; He, L.; McClements, D.J. Fortification of plant-based milk with calcium may reduce vitamin D bioaccessibility: An in vitro digestion study. J. Agric. Food Chem. 2021, 69, 4223–4233. [Google Scholar] [CrossRef]
- Lin, X.; Wright, A.J. Pectin and gastric pH interactively affect DHA-rich emulsion in vitro digestion microstructure, digestibility and bioaccessibility. Food Hydrocoll. 2018, 76, 49–59. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, F.; Pang, J.; McClements, D.J.; Zhou, Z.; Li, B.; Li, Y. Biopolymer additives enhance tangeretin bioavailability in emulsion-based delivery systems: An in vitro and in vivo study. J. Agric. Food Chem. 2020, 69, 730–740. [Google Scholar] [CrossRef]
- Hu, M.; Liu, G.; Du, X.; Zhang, X.; Qi, B.; Li, Y. Molecular crowding prevents the aggregation of protein-dextran conjugate by inducing structural changes, improves its functional properties, and stabilizes it in nanoemulsions. Int. J. Biol. Macromol. 2020, 164, 4183–4192. [Google Scholar] [CrossRef]
- Fernandezavila, C.; Trujillo, A.J. Enhanced stability of emulsions treated by Ultra-High Pressure Homogenization for delivering conjugated linoleic acid in Caco-2 cells. Food Hydrocoll. 2017, 71, 271–281. [Google Scholar] [CrossRef]
- Singh, C.K.S.; Lim, H.-P.; Khoo, J.Y.-P.; Tey, B.-T.; Chan, E.-S. Effects of high-energy emulsification methods and environmental stresses on emulsion stability and retention of tocotrienols encapsulated in Pickering emulsions. J. Food Eng. 2022, 327, 111061. [Google Scholar] [CrossRef]
- Aguilar, C.; Serna-Jiménez, J.; Benitez, E.; Valencia, V.; Ochoa, O.; Sotelo, L. Influence of high power ultrasound on natural microflora, pathogen and lactic acid bacteria in a raw meat emulsion. Ultrason. Sonochem. 2021, 72, 105415. [Google Scholar] [CrossRef]
- Kashaninejad, M.; Razavi, S.M.A. Influence of thermosonication treatment on the average size of fat globules, emulsion stability, rheological properties and color of camel milk cream. LWT 2020, 132, 109852. [Google Scholar] [CrossRef]
- Tian, L.; Hu, S.; Jia, J.; Tan, W.; Yang, L.; Zhang, Q.; Liu, X.; Duan, X. Effects of short-term fermentation with lactic acid bacteria on the characterization, rheological and emulsifying properties of egg yolk. Food Chem. 2021, 341, 128163. [Google Scholar] [CrossRef]
- Xie, L.; Shi, C.; Cui, X.; Zeng, H. Surface forces and interaction mechanisms of emulsion drops and gas bubbles in complex fluids. Langmuir 2017, 33, 3911–3925. [Google Scholar] [CrossRef]
- Zhao, L.; Du, M.; Mao, X. Change in interfacial properties of milk fat globules by homogenization and thermal processing plays a key role in their in vitro gastrointestinal digestion. Food Hydrocoll. 2019, 96, 331–342. [Google Scholar] [CrossRef]
- Syed, U.T.; Leonardo, I.s.; Lahoz, R.; Gaspar, F.d.r.B.; Huertas, R.; Crespo, M.T.; Arruebo, M.; Crespo, J.; Sebastian, V.; Brazinha, C. Microengineered Membranes for Sustainable Production of Hydrophobic Deep Eutectic Solvent-Based Nanoemulsions by Membrane Emulsification for Enhanced Antimicrobial Activity. ACS Sustain. Chem. Eng. 2020, 8, 16526–16536. [Google Scholar] [CrossRef]
- Rodrigues, S.; Pradal, C.; Yu, L.; Steadman, K.; Stokes, J.; Yakubov, G. Creating polysaccharide-protein complexes to control aqueous lubrication. Food Hydrocoll. 2021, 119, 106826. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhang, R.; Yu, J.; Gao, Y.; Mao, L. Tuning the rheological and tribological properties to simulate oral processing of novel high internal phase oleogel-in-water emulsions. Food Hydrocoll. 2022, 131, 107757. [Google Scholar] [CrossRef]
- Upadhyay, R.; Chen, J. Smoothness as a tactile percept: Correlating ‘oral’tribology with sensory measurements. Food Hydrocoll. 2019, 87, 38–47. [Google Scholar] [CrossRef]
- Yang, N.; Feng, Y.; Su, C.; Wang, Q.; Zhang, Y.; Wei, Y.; Zhao, M.; Nishinari, K.; Fang, Y. Structure and tribology of κ-carrageenan gels filled with natural oil bodies. Food Hydrocoll. 2020, 107, 105945. [Google Scholar] [CrossRef]
- Semenova, M.; Antipova, A.; Martirosova, E.; Zelikina, D.; Palmina, N.; Chebotarev, S. Essential contributions of food hydrocolloids and phospholipid liposomes to the formation of carriers for controlled delivery of biologically active substances via the gastrointestinal tract. Food Hydrocoll. 2021, 120, 106890. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Upadhyay, R.; Chen, J. Topographic study of human tongue in relation to oral tribology. Food Hydrocoll. 2019, 95, 116–121. [Google Scholar] [CrossRef]
- Soares, S.n.; Brandão, E.; Guerreiro, C.; Mateus, N.; de Freitas, V.; Soares, S. Development of a new cell-based oral model to study the interaction of oral constituents with food polyphenols. J. Agric. Food Chem. 2019, 67, 12833–12843. [Google Scholar] [CrossRef] [PubMed]
- Benoit, D.S.; Sims Jr, K.R.; Fraser, D. Nanoparticles for oral biofilm treatments. ACS Nano 2019, 13, 4869–4875. [Google Scholar] [CrossRef] [PubMed]
- Ke, L.; Xu, Y.; Gao, G.; Wang, H.; Yu, Z.; Zhou, J.; Rao, P.; Wang, Q.; Yu, J. Catalase to demulsify oil-in-water fish oil-polysorbate emulsion and affect lipid oxidation. Food Res. Int. 2020, 133, 109169. [Google Scholar] [CrossRef] [PubMed]
- Siemer, S.; Hahlbrock, A.; Vallet, C.; McClements, D.J.; Balszuweit, J.; Voskuhl, J.; Docter, D.; Wessler, S.; Knauer, S.K.; Westmeier, D. Nanosized food additives impact beneficial and pathogenic bacteria in the human gut: A simulated gastrointestinal study. NPJ Sci. Food 2018, 2, 22. [Google Scholar] [CrossRef]
- Ye, A.; Wang, X.; Lin, Q.; Han, J.; Singh, H. Dynamic gastric stability and in vitro lipid digestion of whey-protein-stabilised emulsions: Effect of heat treatment. Food Chem. 2020, 318, 126463. [Google Scholar] [CrossRef]
- Mat, D.J.; Souchon, I.; Michon, C.; Le Feunteun, S. Gastro-intestinal in vitro digestions of protein emulsions monitored by pH-stat: Influence of structural properties and interplay between proteolysis and lipolysis. Food Chem. 2020, 311, 125946. [Google Scholar] [CrossRef]
- Ye, A. Gastric colloidal behaviour of milk protein as a tool for manipulating nutrient digestion in dairy products and protein emulsions. Food Hydrocoll. 2021, 115, 106599. [Google Scholar] [CrossRef]
- Reker, D.; Shi, Y.; Kirtane, A.R.; Hess, K.; Zhong, G.J.; Crane, E.; Lin, C.-H.; Langer, R.; Traverso, G. Machine learning uncovers food-and excipient-drug interactions. Cell Rep. 2020, 30, 3710–3716. e3714. [Google Scholar] [CrossRef]
- Mackie, A.; Gourcy, S.; Rigby, N.; Moffat, J.; Capron, I.; Bajka, B. The fate of cellulose nanocrystal stabilised emulsions after simulated gastrointestinal digestion and exposure to intestinal mucosa. Nanoscale 2019, 11, 2991–2998. [Google Scholar] [CrossRef]
- El Kadri, H.; Devanthi, P.V.P.; Overton, T.W.; Gkatzionis, K. Do oil-in-water (O/W) nano-emulsions have an effect on survival and growth of bacteria? Food Res. Int. 2017, 101, 114–128. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, Q.; Fan, D.; Xiao, J.; Zhao, Y.; Cheng, K.-W.; Wang, M. Novel roles of hydrocolloids in foods: Inhibition of toxic Maillard reaction products formation and attenuation of their harmful effects. Trends Food Sci. Technol. 2021, 111, 706–715. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, W.; Zhang, Z.; Lv, S.; Xing, B.; Mcclements, D.J. Impact of Food Emulsions on the Bioaccessibility of Hydrophobic Pesticide Residues in Co-Ingested Natural Products: Influence of Emulsifier and Dietary Fiber Type. J. Agric. Food Chem. 2019, 67, 6032–6040. [Google Scholar] [CrossRef]
- Ke, L.; Zhang, P.; Xiang, L.; Wang, H.; Rao, P.; Wang, S. Interaction of acrylamide with micelles in French fry aqueous extracts. Food Control 2020, 110, 106974. [Google Scholar] [CrossRef]
- Li, S.; Zhou, C.; He, Y.; Liu, H.; Zhou, L.; Yu, C.; Wei, C.; Wang, C. Novel Nanocellulose/Polymer Composite Aerogel as Solid-State Fluorescence Probe by Pickering Emulsion Route. Macromol. Mater. Eng. 2020, 305, 2000467. [Google Scholar] [CrossRef]
- Gómez-Mascaraque, L.G.; Perez-Masiá, R.; González-Barrio, R.; Periago, M.J.; López-Rubio, A. Potential of microencapsulation through emulsion-electrospraying to improve the bioaccesibility of β-carotene. Food Hydrocoll. 2017, 73, 1–12. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Z.; Chang, T.; Wang, J.; Wang, X.; Zhou, G. Phase change material microcapsules with melamine resin shell via cellulose nanocrystal stabilized Pickering emulsion in-situ polymerization. Chem. Eng. J. 2022, 428, 131164. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Z.; Kapar, S.; Ataeian, P.; da Silva Bernardes, J.; Berry, R.; Zhao, W.; Zhou, G.; Tam, K.C. Microencapsulation of phase change materials with polystyrene/cellulose nanocrystal hybrid shell via Pickering emulsion polymerization. ACS Sustain. Chem. Eng. 2019, 7, 17756–17767. [Google Scholar] [CrossRef]
- Xia, Q.; Akanbi, T.O.; Wang, B.; Li, R.; Liu, S.; Barrow, C.J. Investigation of enhanced oxidation stability of microencapsulated enzymatically produced tuna oil concentrates using complex coacervation. Food Funct. 2020, 11, 10748–10757. [Google Scholar] [CrossRef]
- Rehman, A.; Tong, Q.; Jafari, S.M.; Korma, S.A.; Khan, I.M.; Mohsin, A.; Manzoor, M.F.; Ashraf, W.; Mushtaq, B.S.; Zainab, S. Spray dried nanoemulsions loaded with curcumin, resveratrol, and borage seed oil: The role of two different modified starches as encapsulating materials. Int. J. Biol. Macromol. 2021, 186, 820–828. [Google Scholar] [CrossRef]
- Lai, H.; Liu, Y.; Huang, G.; Chen, Y.; Song, Y.; Ma, Y.; Yue, P. Fabrication and antibacterial evaluation of peppermint oil-loaded composite microcapsules by chitosan-decorated silica nanoparticles stabilized Pickering emulsion templating. Int. J. Biol. Macromol. 2021, 183, 2314–2325. [Google Scholar] [CrossRef]
- Dupont, H.; Héroguez, V.; Schmitt, V. Elaboration of capsules from Pickering double emulsion polymerization stabilized solely by cellulose nanocrystals. Carbohydr. Polym. 2022, 279, 118997. [Google Scholar] [CrossRef]
- Qian, B.; Zheng, Z.; Liu, C.; Li, M.; D’Sa, R.A.; Li, H.; Graham, M.; Michailidis, M.; Kantserev, P.; Vinokurov, V. Microcapsules prepared via pickering emulsion polymerization for multifunctional coatings. Prog. Org. Coat. 2020, 147, 105785. [Google Scholar] [CrossRef]
- Yan, B.; Wang, X.; Zhang, X.; Liu, S.; Lu, H.; Ran, R. One-step preparation of hydroxyapatite-loaded magnetic Polycaprolactone hollow microspheres for malachite green adsorption by Pickering emulsion template method. Colloids Surf. A Physicochem. Eng. Asp. 2022, 639, 128347. [Google Scholar] [CrossRef]
- Dupont, H.; Laurichesse, E.; Héroguez, V.; Schmitt, V. Green Hydrophilic Capsules from Cellulose Nanocrystal-Stabilized Pickering Emulsion Polymerization: Morphology Control and Spongelike Behavior. Biomacromolecules 2021, 22, 3497–3509. [Google Scholar] [CrossRef]
- Loyeau, P.A.; Spotti, M.J.; Vinderola, G.; Carrara, C.R. Encapsulation of potential probiotic and canola oil through emulsification and ionotropic gelation, using protein/polysaccharides Maillard conjugates as emulsifiers. LWT 2021, 150, 111980. [Google Scholar] [CrossRef]
- Yao, X.; Yao, X.; Xu, K.; Wu, K.; Jiang, F.; Nishinari, K.; Phillips, G.O. Iron encapsulated microstructured gel beads using an emulsification–gelation technique for an alginate-caseinate matrix. Food Funct. 2020, 11, 3811–3822. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Xu, Y.; Lu, L.; Shi, C.; Huang, Y.; Mao, Z.; Duan, C.; Guo, Y.; Huang, C. Hydrodynamic cavitation: A feasible approach to intensify the emulsion cross-linking process for chitosan nanoparticle synthesis. Ultrason. Sonochem. 2021, 74, 105551. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, F.; Lin, Y. ZnO@ PNIPAM nanospheres synthesis from inverse Pickering miniemulsion polymerization. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125264. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Hao, J.; Li, X.; Xu, D.; Cao, Y. In vitro digestion of solid-in-oil-in-water emulsions for delivery of CaCO3. Food Hydrocoll. 2022, 129, 107605. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Y.; Han, L.; Wang, B.; Xu, H.; Zhong, Y.; Zhang, L.; Mao, Z.; Sui, X. Biodegradable regenerated cellulose-dispersed composites with improved properties via a pickering emulsion process. Carbohydr. Polym. 2018, 179, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, P.; Hosseini, S.M.H.; Golmakani, M.-T.; Majdinasab, M.; Esteghlal, S. Shelf-life extension of refrigerated rainbow trout fillets using total Farsi gum-based coatings containing clove and thyme essential oils emulsions. Food Hydrocoll. 2018, 77, 677–688. [Google Scholar] [CrossRef]
- Xu, J.; Li, X.; Xu, Y.; Wang, A.; Xu, Z.; Wu, X.; Li, D.; Mu, C.; Ge, L. Dihydromyricetin-Loaded Pickering Emulsions Stabilized by Dialdehyde Cellulose Nanocrystals for Preparation of Antioxidant Gelatin–Based Edible Films. Food Bioprocess Technol. 2021, 14, 1648–1661. [Google Scholar] [CrossRef]
- Liu, J.; Song, F.; Chen, R.; Deng, G.; Chao, Y.; Yang, Z.; Wu, H.; Bai, M.; Zhang, P.; Hu, Y. Effect of cellulose nanocrystal-stabilized cinnamon essential oil Pickering emulsions on structure and properties of chitosan composite films. Carbohydr. Polym. 2022, 275, 118704. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, X.; Luo, X.; Wang, Y.; Li, Y.; Li, B.; Liu, S. Edible coating based on beeswax-in-water Pickering emulsion stabilized by cellulose nanofibrils and carboxymethyl chitosan. Food Chem. 2020, 331, 127108. [Google Scholar] [CrossRef]
- Wardana, A.A.; Koga, A.; Tanaka, F.; Tanaka, F. Antifungal features and properties of chitosan/sandalwood oil Pickering emulsion coating stabilized by appropriate cellulose nanofiber dosage for fresh fruit application. Sci. Rep. 2021, 11, 18412. [Google Scholar] [CrossRef]
- Trinh, B.M.; Smith, M.; Mekonnen, T.H. A nanomaterial-stabilized starch-beeswax Pickering emulsion coating to extend produce shelf-life. Chem. Eng. J. 2022, 431, 133905. [Google Scholar] [CrossRef]
- Córdoba, L.J.P.; Sobral, P.J. Physical and antioxidant properties of films based on gelatin, gelatin-chitosan or gelatin-sodium caseinate blends loaded with nanoemulsified active compounds. J. Food Eng. 2017, 213, 47–53. [Google Scholar] [CrossRef]
- Chu, Y.; Gao, C.; Liu, X.; Zhang, N.; Xu, T.; Feng, X.; Yang, Y.; Shen, X.; Tang, X. Improvement of storage quality of strawberries by pullulan coatings incorporated with cinnamon essential oil nanoemulsion. LWT 2020, 122, 109054. [Google Scholar] [CrossRef]
- Zhu, J.; Tang, C.; Yin, S.; Yang, X. Development and characterization of novel antimicrobial bilayer films based on Polylactic acid (PLA)/Pickering emulsions. Carbohydr. Polym. 2018, 181, 727–735. [Google Scholar] [CrossRef]
- Ji, N.; Qin, Y.; Li, M.; Xiong, L.; Qiu, L.; Bian, X.; Sun, Q. Fabrication and Characterization of Starch Nanohydrogels via Reverse Emulsification and Internal Gelation. J. Agric. Food Chem. 2018, 66, 9326–9334. [Google Scholar] [CrossRef]
- Zhang, L.; Zaky, A.A.; Zhou, C.; Chen, Y.; Su, W.; Wang, H.; Abd El-Aty, A.; Tan, M. High internal phase Pickering emulsion stabilized by sea bass protein microgel particles: Food 3D printing application. Food Hydrocoll. 2022, 131, 107744. [Google Scholar] [CrossRef]
- Zhu, Y.; Huan, S.; Bai, L.; Ketola, A.; Shi, X.; Zhang, X.; Ketoja, J.A.; Rojas, O.J. High internal phase oil-in-water pickering emulsions stabilized by chitin nanofibrils: 3D structuring and solid foam. ACS Appl. Mater. Interfaces 2020, 12, 11240–11251. [Google Scholar] [CrossRef]
- El-Hammadi, M.M.; Small-Howard, A.L.; Fernández-Arévalo, M.; Martín-Banderas, L. Development of enhanced drug delivery vehicles for three cannabis-based terpenes using poly (lactic-co-glycolic acid) based nanoparticles. Ind. Crops Prod. 2021, 164, 113345. [Google Scholar] [CrossRef]
- Wei, Y.; Sun, C.; Dai, L.; Zhan, X.; Gao, Y. Structure, physicochemical stability and in vitro simulated gastrointestinal digestion properties of β-carotene loaded zein-propylene glycol alginate composite nanoparticles fabricated by emulsification-evaporation method. Food Hydrocoll. 2018, 81, 149–158. [Google Scholar] [CrossRef]
- Takezaki, H.; Otsubo, T.; Echigo, Y.; Kamiya, H.; Okada, Y. Porous and spherical ethyl cellulose fine particles produced by ternary system-based emulsion castings. Powder Technol. 2022, 395, 663–668. [Google Scholar] [CrossRef]
- Nabata, R.; Tsudome, M.; Deguchi, S. Preparation of cellulose microparticles having hierarchical internal structures from multiple emulsion templates. Colloids Surf. A Physicochem. Eng. Asp. 2021, 622, 126718. [Google Scholar] [CrossRef]
- Sun, G.; Yang, L.; Liu, R. Thermal insulation coatings based on microporous particles from Pickering emulsion polymerization. Prog. Org. Coat. 2021, 151, 106023. [Google Scholar] [CrossRef]
- Pascaud, K.; Mercé, M.; Roucher, A.; Destribats, M.; Backov, R.n.; Schmitt, V.; Sescousse, R.; Brouillet, F.; Sarda, S.; Ré, M.-I. Pickering emulsion as template for porous bioceramics in the perspective of bone regeneration. Colloids Surf. A Physicochem. Eng. Asp. 2022, 643, 128748. [Google Scholar] [CrossRef]
- Li, Q.; Hatakeyama, M.; Kitaoka, T. Bioadaptive Porous 3D Scaffolds Comprising Cellulose and Chitosan Nanofibers Constructed by Pickering Emulsion Templating. Adv. Funct. Mater. 2022, 32, 2200249. [Google Scholar] [CrossRef]
- Gong, X.; Yang, P.; Rohm, K.; Zhong, Y.; Zhao, B.; Manas-Zloczower, I.; Baskaran, H.; Feke, D.L. Porous hollow fibers with controllable structures templated from high internal phase emulsions. J. Appl. Polym. Sci. 2021, 138, 50739. [Google Scholar] [CrossRef]
- Gong, X.; Rohm, K.; Su, Z.; Zhao, B.; Renner, J.; Manas-Zloczower, I.; Feke, D.L. Porous hydrogels templated from soy-protein-stabilized high internal phase emulsions. J. Mater. Sci. 2020, 55, 17284–17301. [Google Scholar] [CrossRef]
- Wang, J.; Qin, J.; Zhu, H.; Li, B.G.; Zhu, S. Hierarchically Porous Monolith with High MOF Accessibility and Strengthened Mechanical Properties using Water-in-Oil High Internal Phase Emulsion Template. Adv. Mater. Interfaces 2021, 8, 2100620. [Google Scholar] [CrossRef]
- Zhou, F.-Z.; Yu, X.-H.; Zeng, T.; Yin, S.-W.; Tang, C.-H.; Yang, X.-Q. Fabrication and characterization of novel water-insoluble protein porous materials derived from Pickering high internal-phase emulsions stabilized by gliadin–chitosan-complex particles. J. Agric. Food Chem. 2019, 67, 3423–3431. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, W.; Gao, C.; Yin, D. Shape stabilization of phase change material by polymerized high internal phase emulsion for thermal energy storage. Int. J. Energy Res. 2021, 45, 5263–5271. [Google Scholar] [CrossRef]
- Zhou, X.; Zong, X.; Wang, S.; Yin, C.; Gao, X.; Xiong, G.; Xu, X.; Qi, J.; Mei, L. Emulsified blend film based on konjac glucomannan/carrageenan/camellia oil: Physical, structural, and water barrier properties. Carbohydr. Polym. 2021, 251, 117100. [Google Scholar] [CrossRef]
- Oun, A.A.; Shin, G.H.; Kim, J.T. Multifunctional poly (vinyl alcohol) films using cellulose nanocrystals/oregano and cellulose nanocrystals/cinnamon Pickering emulsions: Effect of oil type and concentration. Int. J. Biol. Macromol. 2022, 194, 736–745. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.-W. Carrageenan/agar-based functional film integrated with zinc sulfide nanoparticles and Pickering emulsion of tea tree essential oil for active packaging applications. Int. J. Biol. Macromol. 2021, 193, 2038–2046. [Google Scholar] [CrossRef]
- Wu, M.; Zhou, Z.; Yang, J.; Zhang, M.; Cai, F.; Lu, P. ZnO nanoparticles stabilized oregano essential oil Pickering emulsion for functional cellulose nanofibrils packaging films with antimicrobial and antioxidant activity. Int. J. Biol. Macromol. 2021, 190, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ge, X.; Nie, H.; Yao, Z.; Zhang, J. Demulsification-induced fast solidification: A novel strategy for the preparation of polymer films. Chem. Commun. 2019, 55, 9192–9195. [Google Scholar] [CrossRef] [PubMed]
- Jahromi, M.; Niakousari, M.; Golmakani, M.T. Fabrication and characterization of pectin films incorporated with clove essential oil emulsions stabilized by modified sodium caseinate. Food Packag. Shelf Life 2022, 32, 100835. [Google Scholar] [CrossRef]
- Huang, M.; Wang, H.; Xu, X.; Lu, X.; Song, X.; Zhou, G. Effects of nanoemulsion-based edible coatings with composite mixture of rosemary extract and ε-poly-l-lysine on the shelf life of ready-to-eat carbonado chicken. Food Hydrocoll. 2020, 102, 105576. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, M.; Bhandari, B.; Xu, J.; Yang, C. Effects of nanoemulsion-based active coatings with composite mixture of star anise essential oil, polylysine, and nisin on the quality and shelf life of ready-to-eat Yao meat products. Food Control 2020, 107, 106771. [Google Scholar] [CrossRef]
- Gull, A.; Bhat, N.; Wani, S.M.; Masoodi, F.A.; Amin, T.; Ganai, S.A. Shelf life extension of apricot fruit by application of nanochitosan emulsion coatings containing pomegranate peel extract. Food Chem. 2021, 349, 129149. [Google Scholar] [CrossRef]
- Yuan, D.; Hao, X.; Liu, G.; Yue, Y.; Duan, J. A novel composite edible film fabricated by incorporating W/O/W emulsion into a chitosan film to improve the protection of fresh fish meat. Food Chem. 2022, 385, 132647. [Google Scholar] [CrossRef]
- Liu, D.; Dang, S.; Zhang, L.; Munsop, K.; Li, X. Corn starch/polyvinyl alcohol based films incorporated with curcumin-loaded Pickering emulsion for application in intelligent packaging. Int. J. Biol. Macromol. 2021, 188, 974–982. [Google Scholar] [CrossRef]
- Mohammadian, E.; Alizadeh-Sani, M.; Jafari, S.M. Smart monitoring of gas/temperature changes within food packaging based on natural colorants. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2885–2931. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, X.; Xie, F.; Fan, Y.; Xu, X.; Qi, J.; Xiong, G.; Gao, X.; Zhang, F. pH-responsive double-layer indicator films based on konjac glucomannan/camellia oil and carrageenan/anthocyanin/curcumin for monitoring meat freshness. Food Hydrocoll. 2021, 118, 106695. [Google Scholar] [CrossRef]
- Shin, D.-M.; Kim, Y.-J.; Yune, J.-H.; Kim, D.-H.; Kwon, H.-C.; Sohn, H.; Han, S.-G.; Han, J.-H.; Lim, S.-J.; Han, S.-G. Effects of Chitosan and Duck Fat-Based Emulsion Coatings on the Quality Characteristics of Chicken Meat during Storage. Foods 2022, 11, 245. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, Y.; Chen, H.; Song, R.; Li, Y. Performance of eugenol emulsion/chitosan edible coating and application in fresh meat preservation. J. Food Process. Preserv. 2022, 46, e16407. [Google Scholar] [CrossRef]
- Mauricio, R.A.; Campos, J.A.D.B.; Nassu, R.T. Meat with edible coating: Acceptance, purchase intention and neophobia. Food Res. Int. 2022, 154, 111002. [Google Scholar] [CrossRef]
- Lin, D.; Kelly, A.L.; Miao, S. Alginate-based emulsion micro-gel particles produced by an external/internal O/W/O emulsion-gelation method: Formation, suspension rheology, digestion, and application to gel-in-gel beads. Food Hydrocoll. 2021, 120, 106926. [Google Scholar] [CrossRef]
- Hu, B.; Han, L.; Ma, R.; Phillips, G.O.; Nishinari, K.; Fang, Y. All-natural food-grade hydrophilic–hydrophobic core–shell microparticles: Facile fabrication based on gel-network-restricted antisolvent method. ACS Appl. Mater. Interfaces 2019, 11, 11936–11946. [Google Scholar] [CrossRef]
- Guan, T.; Liu, B.; Wang, R.; Huang, Y.; Luo, J.; Li, Y. The enhanced fatty acids flavor release for low-fat cheeses by carrier immobilized lipases on O/W Pickering emulsions. Food Hydrocoll. 2021, 116, 106651. [Google Scholar] [CrossRef]
- Zhuang, F.; Li, X.; Hu, J.; Liu, X.; Zhang, S.; Tang, C.; Zhou, P. Effects of casein micellar structure on the stability of milk protein-based conjugated linoleic acid microcapsules. Food Chem. 2018, 269, 327–334. [Google Scholar] [CrossRef]
- Chen, Y.; Ge, H.; Zheng, Y.; Zhang, H.; Li, Y.; Su, X.; Panpipat, W.; Lai, O.-M.; Tan, C.-P.; Cheong, L.-Z. Phospholipid–protein structured membrane for microencapsulation of DHA oil and evaluation of its in vitro digestibility: Inspired by milk fat globule membrane. J. Agric. Food Chem. 2020, 68, 6190–6201. [Google Scholar] [CrossRef]
- Pereira, A.R.L.; Cattelan, M.G.; Nicoletti, V.R. Microencapsulation of pink pepper essential oil: Properties of spray-dried pectin/SPI double-layer versus SPI single-layer stabilized emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2019, 581, 123806. [Google Scholar] [CrossRef]
- Chen, J.-F.; Chen, X.-W.; Guo, J.; Yang, X.-Q. Zein-based core–shell microcapsules for the potential delivery of algae oil and lipophilic compounds. Food Funct. 2019, 10, 1504–1512. [Google Scholar] [CrossRef]
- Leng, X.; Cheng, S.; Wu, H.; Nian, Y.; Zeng, X.; Hu, B. High Internal Phase Emulsions Stabilized with Polyphenol-Amyloid Fibril Supramolecules for Encapsulation and Protection of Lutein. J. Agric. Food Chem. 2022, 70, 2328–2338. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Wu, B.; Hu, B.; Cui, S.; Xu, L.; Zhang, K.; Nishinari, K.; Phillips, G.O.; Fang, Y. Novel strategy for enhancing the color intensity of β-Carotene: Enriching onto the oil-water interface. J. Colloid Interface Sci. 2020, 573, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Dou, H.; Li, M.; Qiao, Y.; Harniman, R.; Li, X.; Boott, C.E.; Mann, S.; Manners, I. Higher-order assembly of crystalline cylindrical micelles into membrane-extendable colloidosomes. Nat. Commun. 2017, 8, 426. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, A.; Miyagi, K.; Maiti, M.; Teramoto, Y. Topological transition in spontaneously formed cellulosic liquid-crystalline microspheres in aw/o emulsion. Biomacromolecules 2018, 19, 4650–4657. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, F.; Xu, K.; Wang, X.; Wang, C.; Zhang, H.; Tan, Y.; Wang, P. Pickering emulsion strategy to control surface wettability of polymer microspheres for oil–water separation. Appl. Surf. Sci. 2021, 566, 150742. [Google Scholar] [CrossRef]
- Kramer, S.; Cameron, N.R.; Krajnc, P. Porous polymers from high internal phase emulsions as scaffolds for biological applications. Polymers 2021, 13, 1786. [Google Scholar] [CrossRef]
- Mudassir, M.A.; Aslam, H.Z.; Ansari, T.M.; Zhang, H.; Hussain, I. Fundamentals and Design-Led Synthesis of Emulsion-Templated Porous Materials for Environmental Applications. Adv. Sci. 2021, 8, 2102540. [Google Scholar] [CrossRef]
- Zhou, F.-Z.; Yu, X.-H.; Zhu, J.-J.; Yin, S.-W.; Yu, Y.-G.; Tang, C.-H.; Yang, X.-Q. Hofmeister effect-assistant fabrication of all-natural protein-based porous materials templated from Pickering emulsions. J. Agric. Food Chem. 2020, 68, 11261–11272. [Google Scholar] [CrossRef]
- Du, J.; Dai, H.; Wang, H.; Yu, Y.; Zhu, H.; Fu, Y.; Ma, L.; Peng, L.; Li, L.; Wang, Q. Preparation of high thermal stability gelatin emulsion and its application in 3D printing. Food Hydrocoll. 2021, 113, 106536. [Google Scholar] [CrossRef]
- Wang, H.; Hu, L.; Du, J.; Peng, L.; Ma, L.; Zhang, Y. Development of rheologically stable high internal phase emulsions by gelatin/chitooligosaccharide mixtures and food application. Food Hydrocoll. 2021, 121, 107050. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, R.; Feng, W.; Chen, Z.; Wang, T. High internal phase Pickering emulsions stabilized by co-assembled rice proteins and carboxymethyl cellulose for food-grade 3D printing. Carbohydr. Polym. 2021, 273, 118586. [Google Scholar] [CrossRef]
- Wu, C.; Na, X.; Ma, W.; Ren, C.; Zhong, Q.; Wang, T.; Du, M. Strong, elastic, and tough high internal phase emulsions stabilized solely by cod myofibers for multidisciplinary applications. Chem. Eng. J. 2021, 412, 128724. [Google Scholar] [CrossRef]
- Wen, Y.; Che, Q.T.; Kim, H.W.; Park, H.J. Potato starch altered the rheological, printing, and melting properties of 3D-printable fat analogs based on inulin emulsion-filled gels. Carbohydr. Polym. 2021, 269, 118285. [Google Scholar] [CrossRef]
- Shahbazi, M.; Jäger, H.; Chen, J.; Ettelaie, R. Construction of 3D printed reduced-fat meat analogue by emulsion gels. Part II: Printing performance, thermal, tribological, and dynamic sensory characterization of printed objects. Food Hydrocoll. 2021, 121, 107054. [Google Scholar] [CrossRef]
- Zong, Y.; Kuang, Q.; Liu, G.; Wang, R.; Feng, W.; Zhang, H.; Chen, Z.; Wang, T. All-natural protein-polysaccharide conjugates with bead-on-a-string nanostructures as stabilizers of high internal phase emulsions for 3D printing. Food Chem. 2022, 388, 133012. [Google Scholar] [CrossRef]
- Feng, T.; Fan, C.; Wang, X.; Wang, X.; Xia, S.; Huang, Q. Food-grade Pickering emulsions and high internal phase Pickering emulsions encapsulating cinnamaldehyde based on pea protein-pectin-EGCG complexes for extrusion 3D printing. Food Hydrocoll. 2022, 124, 107265. [Google Scholar] [CrossRef]
- Pant, A.; Lee, A.Y.; Karyappa, R.; Lee, C.P.; An, J.; Hashimoto, M.; Tan, U.-X.; Wong, G.; Chua, C.K.; Zhang, Y. 3D food printing of fresh vegetables using food hydrocolloids for dysphagic patients. Food Hydrocoll. 2021, 114, 106546. [Google Scholar] [CrossRef]
- Xia, Y.; Wu, J.; Wei, W.; Du, Y.; Wan, T.; Ma, X.; An, W.; Guo, A.; Miao, C.; Yue, H. Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination. Nat. Mater. 2018, 17, 187–194. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiao, L.; Wu, Z.; Gu, P.; Feng, Z.; Xu, S.; Liu, Z.; Yang, Y.; Wang, D. Fabrication and characterization of Chinese yam polysaccharides PLGA nanoparticles stabilized Pickering emulsion as an efficient adjuvant. Int. J. Biol. Macromol. 2022, 209, 513–524. [Google Scholar] [CrossRef]
- Wusiman, A.; He, J.; Cai, G.; Zhu, T.; Bo, R.; Liu, Z.; Hu, Y.; Wang, D. Alhagi honey polysaccharides encapsulated into PLGA nanoparticle-based pickering emulsion as a novel adjuvant to induce strong and long-lasting immune responses. Int. J. Biol. Macromol. 2022, 202, 130–140. [Google Scholar] [CrossRef]
- Mosquera, M.J.; Kim, S.; Zhou, H.; Jing, T.T.; Luna, M.; Guss, J.D.; Reddy, P.; Lai, K.; Leifer, C.A.; Brito, I.L. Immunomodulatory nanogels overcome restricted immunity in a murine model of gut microbiome–mediated metabolic syndrome. Sci. Adv. 2019, 5, eaav9788. [Google Scholar] [CrossRef]
- Cai, L.; Cao, M.; Regenstein, J. Slow-release and nontoxic Pickering emulsion platform for antimicrobial peptide. J. Agric. Food Chem. 2020, 68, 7453–7466. [Google Scholar] [CrossRef]
- Larsson, J.; Williams, A.P.; Wahlgren, M.; Porcar, L.; Ulvenlund, S.; Nylander, T.; Tabor, R.F.; Sanchez-Fernandez, A. Shear-induced nanostructural changes in micelles formed by sugar-based surfactants with varied anomeric configuration. J. Colloid Interface Sci. 2022, 606, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, E.C.; Belluati, A.; Necula, D.; Scherrer, D.; Meyer, C.E.; Wehr, R.P.; Lörtscher, E.; Palivan, C.G.; Meier, W. Combinatorial Strategy for Studying Biochemical Pathways in Double Emulsion Templated Cell-Sized Compartments. Adv. Mater. 2020, 32, 2004804. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Gao, Y.; Zhao, X.; Zhu, Y.; Du, F.; Hu, J. A Natural Triterpene Saponin-Based Pickering Emulsion. Chem.–A Eur. J. 2018, 24, 11703–11710. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Seo, S.-M.; Park, I.-K.; Hyun, J. Larvicidal composite alginate hydrogel combined with a Pickering emulsion of essential oil. Carbohydr. Polym. 2021, 254, 117381. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Ma, Z.; Yang, Y.; Hemar, Y.; Zhao, T. Extraction of tetracycline in food samples using biochar microspheres prepared by a pickering emulsion method. Food Chem. 2020, 329, 127162. [Google Scholar] [CrossRef]
- Zaharia, C.; Diaconu, M.; Muresan, E.I.; Danila, A.; Popescu, A.; Rosu, G. Bioactive emulsions with beneficial antimicrobial application in textile material production. Cellulose 2020, 27, 9711–9723. [Google Scholar] [CrossRef]
- Zheng, Y.; Oguzlu, H.; Baldelli, A.; Zhu, Y.; Song, M.; Pratap-Singh, A.; Jiang, F. Sprayable cellulose nanofibrils stabilized phase change material Pickering emulsion for spray coating application. Carbohydr. Polym. 2022, 291, 119583. [Google Scholar] [CrossRef]
- He, Y.; Li, S.; Zhou, L.; Wei, C.; Yu, C.; Chen, Y.; Liu, H. Cellulose nanofibrils-based hybrid foam generated from Pickering emulsion toward high-performance microwave absorption. Carbohydr. Polym. 2021, 255, 117333. [Google Scholar] [CrossRef]
- Li, Y.; Yu, D.; Wang, X.; Wang, Q.; Zhang, Z.; Liu, W. Lauric arginate/cellulose nanocrystal nanorods-stabilized alkenyl succinic anhydride pickering emulsion: Enhancement of stabilization and paper sizing performance. Cellulose 2022, 29, 3253–3269. [Google Scholar] [CrossRef]
- Xu, G.; Nigmatullin, R.; Koev, T.T.; Khimyak, Y.Z.; Bond, I.P.; Eichhorn, S.J. Octylamine-modified cellulose nanocrystal-enhanced stabilization of Pickering emulsions for self-healing composite coatings. ACS Appl. Mater. Interfaces 2022, 14, 12722–12733. [Google Scholar] [CrossRef]
- Seo, H.M.; Seo, M.; Shin, K.; Choi, S.; Kim, J.W. Bacterial cellulose nanofibrils-armored Pickering emulsions with limited influx of metal ions. Carbohydr. Polym. 2021, 258, 117730. [Google Scholar] [CrossRef]
- Perrin, L.; Gillet, G.; Gressin, L.; Desobry, S. Interest of pickering emulsions for sustainable micro/nanocellulose in food and cosmetic applications. Polymers 2020, 12, 2385. [Google Scholar] [CrossRef]
- Bouhoute, M.; Nakajima, M.; Isoda, H. Design of nanoemulgel using Argania spinosa microfibrillated cellulose and natural emulsifiers foreseeing melanogenesis enhancement. Carbohydr. Polym. 2021, 274, 118632. [Google Scholar] [CrossRef]
- Musazzi, U.M.; Franzè, S.; Minghetti, P.; Casiraghi, A. Emulsion versus nanoemulsion: How much is the formulative shift critical for a cosmetic product? Drug Deliv. Transl. Res. 2018, 8, 414–421. [Google Scholar] [CrossRef] [Green Version]
Emulsion Type | Emulsifying Stabilizer | Delivery Material | Advantages | Reference |
---|---|---|---|---|
O/W | whey protein hydrolysates after succinylation and glycation in different orders | curcumin | enhanced stability and bioavailability | [17] |
O/W | whey protein isolate (WPI) | β-carotene | enhanced retention rate and bioavailability | [18] |
O/W | WPI, sodium alginate | lycopene | enhanced stability and bioaccessibility | [19] |
O/W | high methoxyl pectin-rhamnolipid-pea protein isolate-curcumin complex | β-carotene | enhanced stability and bioaccessibility | [20] |
O/W | β-lactoglobulin-ferulic acid-chitosan ternary conjugate | β-carotene | enhanced physicochemical stability | [21] |
O/W | a ternary co-orbital compound covalently assembled from bovine serum albumin, chlorogenic acid and dextran | lutein | enhanced stability, solubility and bioavailability | [22] |
O/W bilayer- | lactoferrin beet pectin, or carboxymethyl chitosan, | astaxanthin | enhanced physicochemical properties and bioactivity | [23] |
O/W bilayer- | WPI and chitosan | lycopene | provide a better protection on physical characteristics, storage and light stability | [24] |
O/W nano- | peppermint oil | enhanced stability, antibacterial | [25] | |
O/W nano- | tea saponins | silymarin | tea saponins as emulsifiers and cryoprotectants to prevent the irreversible aggregation of droplets during freeze-drying | [26] |
O/W nano- | rice bran protein | quercetin | enhanced stability and bioavailability | [27] |
O/W nano- | tea polysaccharide conjugate | β-carotene | enhanced physicochemical stability and bioaccessibility | [28] |
O/W nano- | soybean protein isolate (SPI)-phosphatidylcholine | fish oil | enhanced stability and digestibility under simulated gastrointestinal conditions | [29] |
O/W nano- | SPI-dextran conjugation | capsicum annuum L. | enhanced physical stability with good encapsulation efficiency | [30] |
O/W nano- | phospholipid | berberine | enhanced hypoglycemic efficacy | [31] |
O/W nano- | zein-polyglycerol conjugate | resveratrol | enhanced chemical stability, in vitro gastrointestinal digestion, and antioxidant activity | [32] |
O/W Pickering | chitin nanofibrils | cinnamon cassia oil | enhanced diffusion efficiency, controlled release of EOs, prolonged antibacterial activities | [33] |
O/W Pickering | cellulose nanocrystals | clove oil | enhanced antibacterial activity | [34] |
O/W Pickering | zein-adzuki bean seed coat polyphenol covalent crosslinking nanoparticles | polyphenol | inhibite lipid oxidation and promote in vitro digestion | [35] |
O/W Pickering | waxy maize starch nanocrystal and chitosan | resveratrol | enhanced gut-retention time of resveratrol | [36] |
O/W Pickering | glycated proteins and chitooligosaccharides | curcumin | enhanced stability | [37] |
O/W Pickering | β-lactoglobulin-(−)-Epigallocatechin-3-gallate (EGCG) composite colloidal nanoparticles | lutein | encapsulate and control release of lipophilic components with high antioxidant performance | [38] |
O/W Pickering | maillard-reacted WPI and epigallocatechin gallate complex | curcumin | enhanced thermal stability | [39] |
O/W Pickering | chitosan-hydrophobic alginate nanocomposites | Ibuprofen | pH-triggered for drug controlled-release | [40] |
O/W Pickering | zein-pectin composite nanoparticles | cinnamon essential oil | good dispersibility and continuous release ability, slow-release antimicrobial in storage application | [41] |
O/W Pickering | se-enriched peanut protein nanoparticles | 5-demethylnobiletin from chenpi | enhanced bioaccessibility and in vitro absorption | [42] |
O/W Pickering | complexation of carboxymethyl cellulose/cationic chitosan | curcumin | enhanced encapsulation and stability | [43] |
O/W Pickering | α-Lactalbumin self-assembled nanoparticles | curcumin | enhanced bioavailability | [44] |
O/W Pickering emulsion gels | chitosan hydrochloride-carboxymethyl starch and curdlan | β-carotene | protect bioactive components and designing low-fat food alternatives | [45] |
O/W HIPEs | chitosan and xanthan gum | β-carotene | efficient transportation | [46] |
O/W HIPEs | biomass lignin | β-carotene | anti-photo and anti-thermal | [47] |
O/W HIPEs | chitosan | β-carotene | high loading contents and stability | [48] |
O/W HIPEs | WPI microgels | lactobacillus plantarum | enhanced the viability | [49] |
O/W HIPEs | β-Lactoglobulin-propylene glycol alginate composite hydrogel particles | probiotics and curcumin | co-encapsulation enhanced survivability and controlled release | [50] |
O/W HIPEs | gliadin nanoparticles/gum arabic | β-carotene | enhanced stability and bioavailability | [51] |
O/W HIPEs | pecan protein/xanthan gum | quercetin | enhanced stability and bioaccessibility | [52] |
O/W HIPEs | ovalbumin-pectin complexes | curcumin | enhanced stability and bioaccessibility | [53] |
O/W HIPEs | pea protein isolate-high methoxyl pectin-EGCG complex | EGCG | high antioxidant performance | [54] |
O/W HIPEs | WPI-EGCG covalent conjugate nanoparticles | lactobacillus plantarum | enhanced storage and gastrointestinal passage viability | [55] |
O/W HIPEs | complexes of sugar beet pectin, tannic acid, and chitosan | curcumin | enhanced stability and bioaccessibility | [56] |
O/W HIPEs | pea protein and high methoxyl pectin colloidal particles | β-carotene | enhanced chemical stability and controlled release property | [57] |
W/O HIPEs | sodium alginate | hydrophobic capsaicin | controlled release, reduced irritation, and enhanced bioaccessibility | [58] |
W/O HIPEs | bitter peptides | reduced bitterness, enhanced gastrointestinal stability | [59] | |
W/O HIPEs | polyglycerin ricinoleate | probiotic | enhanced viability under food and gastrointestinal conditions | [60] |
emulsion gels | pectin, rhamnogalacturonan-I | curcumin | protection and sustained release of curcumin | [61] |
emulsion gels | gellan gum | pancreatic lipase | trigger (cargo) release | [62] |
S/O/W | caseinate, lecithin | lactase | protect activity during storage and digestion, and control in vitro hydrolysis of lactose in milk | [63] |
W/O/W | polyglycerol polyricinoleate (PGPR) | iron | the addition of encapsulated iron had no negative effects on the sensory general acceptability | [64] |
W/O/W | PGPR | anthocyanin | prevent anthocyanin degradation and maximise double emulsion stability and protect anthocyanin colour retention and prevent leakage | [1] |
W/O/W | black soya bean protein, PGPR | Insulin, quercetin | bioaccessibility, chemical stability and solubility under simulated gastrointestinal conditions increase | [65] |
W/O/W | PGPR | lactobacillus reuteri | protect the probiotics during storage and in vitro gastro-intestinal digestion | [66] |
W/O/W | PGPR | resveratrol | enhanced bioavailability, physicochemical stability, in vitro digestion resistivity and transport properties | [67] |
W/O/W | whey protein concentrate-high methoxyl pectin, PGPR | brassinolide and cinnamon essential oil | delayed the senescence of broccoli via regulating chlorophyll degradation and energy metabolism | [68] |
W/O/W | PGPR, quillaja saponin, gum arabic | anthocyanin | anthocyanin was successfully embedded | [69] |
W/O/W nano- | PGPR | unsaturated guluronate oligosaccharide | address the storage difficulties and provides in vitro sustained-release | [70] |
W/O/W HIPEs | zein nanoparticles and soy lecithin | the water droplets inside are protected by strong gastric juices | [71] |
Prepared Material | Emulsion Type | Emulsifying Stabilizer | Preparation Method | Advantages | Reference |
---|---|---|---|---|---|
microcapsule | O/W | zein and whey protein concentrate | emulsion-electrospraying technology | enhanced the bioaccessibility of β-carotene | [258] |
microcapsules | O/W Pickering | cellulose nanocrystal | emulsion in-situ polymerization | promising for temperature regulation and thermal energy storage | [259] |
microencapsulation | O/W Pickering | polystyrene/cellulose nanocrystal hybrid shell | emulsion polymerization | highly efficient, economical, green and has designable characteristics (adjusting phase change temperature and shell conditions) | [260] |
microencapsulation | O/W | gelatin, sodium | complex coacervation | enhanced ω-3 carrying capacity, oxidation stability of fish oil and the formation of the microcapsules with smoother, denser structure, superior mechanical strength | [261] |
microencapsulation | O/W nano- | modified starches | spray dried nanoemulsions | the microcapsules containing curcumin, resveratrol and borage seed oil had good physical and chemical properties and retention rate | [262] |
microcapsules | O/W Pickering | chitosan-decorated silica nanoparticles | spray dried emulsion templating | peppermint oil-loaded and antibacterial improvement | [263] |
capsules | O/W/O | cellulose nanocrystals | emulsion polymerization | as a promising packaging container effectively | [264] |
microcapsules | O/W Pickering | emulsion polymerization | as multifunctional coatings | [265] | |
microspheres | O/W Pickering | emulsion template | hydroxyapatite-loaded magnetic polycaprolactone hollow microspheres for malachite green adsorption | [266] | |
green hydrophilic capsules | O/W Pickering | cellulose nanocrystal | emulsion polymerization | morphology control and spongelike behavior | [267] |
gel beads | O/W | WPI/dextran Maillard conjugate | emulsification and ionotropic gelation | the activity of probiotics is high, but rapeseed canola oil is not suitable for long-term storage co-embedding probiotics | [268] |
microstructured gel beads | O/W | alginate-caseinate matrix | emulsification-gelation technique | the iron encapsulated gel beads can develop as a promising safe iron fortifier by relieving lipid oxidation and iron odor | [269] |
chitosan nanoparticles | W/O | span80 | hydrodynamic cavitation to intensify the emulsion cross-linking process | the preparation of a finer and a narrower distribution of NPs in a more energy-efficient manner | [270] |
nanospheres | inverse Pickering mini- | ZnO@PNIPAM | inverse Pickering miniemulsion polymerization | good dispersion | [271] |
calcium-lipid microspheres | S/O/W | sodium caseate-gelatin | enhanced dispersion stability and digestive properties of CaCO3 in liquid foods | [272] | |
biodegradable composite material | O/W Pickering | regenerated cellulose | the combination method based on Pickering emulsion | the method to prepare cellulose reinforced biodegradable composites is simple, environmentally friendly and low cost | [273] |
edible coating | O/W | persian gum | combination of full silicone rubber coated with clove and thyme essential oil emulsion | the texture, smell, color, the microbial quality and overall acceptability of coated fish fillets were significantly improvment | [274] |
edible Films | O/W Pickering | dialdehyde cellulose nanocrystals | dihydromyricetin-loaded provide antioxidant | [275] | |
composite films | O/W Pickering | cellulose nanocrystal | emulsion casting technology | enhanced film water-resistance and antibacterial activity | [276] |
edible coating | beeswax-in-water Pickering | cellulose nanofibrils/carboxymethyl chitosan | emulsion casting technology | promising applications in antiseptic and fresh keeping for berry fruits | [277] |
coating | O/W Pickering | chitosan, cellulose nanofiber | emulsion casting technology | sandalwood oil can improve antifungal features and properties for fresh fruit application | [278] |
coating | O/W Pickering | starch-beeswax | nanomaterial- emulsion coating | extend produce shelf-life | [279] |
active film | O/W nano- | gelatin, chitosan, sodium caseinate | emulsion casting technology | have appropriate physical properties and strong antioxidant activity, and can as an active and biodegradable packaging material for food preservation | [280] |
active film | O/W nano- | pullulan coating incorporated with cinnamon essential oil nanoemulsion | emulsion casting technology | Improvement of storage quality of strawberries | [281] |
antimicrobial bilayer films | O/W Pickering | zein, chitosan | polylactic acid/Pickering emulsion | enhanced the mechanical properties (with tight, uniform, binds firmly), ductility and moisture resistance, and enhanced the oxygen barrier, continuously releases thymol and has directional release effect | [282] |
nanohydrogels | W/O | starch | reverse emulsification and internal gelation | with great potential in many application fields, such as food, nutrition and health products and pharmaceuticals | [283] |
food 3D printing | O/W HIPEs | sea bass protein microgel particles | with the extrudability, printing performance, and self-supporting properties | [284] | |
solid foams | O/W Pickering | microcrystalline cellulose/chitosan complex particles | emulsion templating | with porous structure, high strength, energy absorption, safe, clean and green | [199] |
solid foams | O/W HIPEs | chitin nanofibrils | HIPEs templating | with 3D structuring | [285] |
nanoparticles | O/W | Poly (lactic-co-glycolic acid) | emulsion-solvent evaporation | Improve embedding rate and physical stability, solubility, prolong circulation in blood and maintain release, which is beneficial to the maintenance of drug effectiveness and long-term treatment | [286] |
composite nanoparticles | O/W | β-carotene-zein-propylene glycol alginate | emulsification-evaporation method | Improve physicochemical stability and in vitro simulated gastrointestinal digestion | [287] |
fine particles | O/W | ethyl cellulose | ternary system-based emulsion castings | porous and spherical ethyl cellulose fine particles | [288] |
microparticles | O/W/O, W/O/W/O | cellulose | multiple emulsion templating | microparticles have hierarchical internal structures | [289] |
microporous particles | O/W Pickering | emulsion polymerization | as thermal insulation coatings, can save energy consumption in many areas | [290] | |
porous bioceramics | O/W Pickering | emulsion templating | application for bone regeneration | [291] | |
porous 3D scaffolds | O/W Pickering | cellulose and chitosan nanofibers | emulsion templating | bioadaptive porous 3D scaffolds | [292] |
porous hollow fibers | O/W HIPEs | HIPEs templating | controllable structures | [293] | |
porous hydrogels | O/W HIPEs | soy-protein | HIPEs templating | highly interconnected structures with large voids show enhanced absorption behavior | [294] |
hierarchically porous monolith | W/O HIPEs | HIPEs templating | high MOF accessibility and strengthened mechanical properties | [295] | |
porous materials | O/W HIPEs | gliadin–chitosan complex particles | HIPEs templating | water-insoluble, nontoxic and high porosity | [296] |
phase change material | O/W HIPEs | HIPEs polymerized | shape stabilization and as thermal energy storage | [297] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jie, Y.; Chen, F. Progress in the Application of Food-Grade Emulsions. Foods 2022, 11, 2883. https://doi.org/10.3390/foods11182883
Jie Y, Chen F. Progress in the Application of Food-Grade Emulsions. Foods. 2022; 11(18):2883. https://doi.org/10.3390/foods11182883
Chicago/Turabian StyleJie, Yilin, and Fusheng Chen. 2022. "Progress in the Application of Food-Grade Emulsions" Foods 11, no. 18: 2883. https://doi.org/10.3390/foods11182883
APA StyleJie, Y., & Chen, F. (2022). Progress in the Application of Food-Grade Emulsions. Foods, 11(18), 2883. https://doi.org/10.3390/foods11182883