Ultrasound-Assisted Extraction of Phenolic Compounds from Adenaria floribunda Stem: Economic Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Extraction Procedures
2.2.1. Ultrasound-Assisted Extraction
2.2.2. Soxhlet Extraction and Hot Water Extraction (HWE)
2.3. Determination of Total Phenolic Content (TPC)
2.4. High-Performance Liquid Chromatography (HPLC) Analysis
2.5. Process Simulation Model
2.6. Economic Evaluation
2.7. Experimental Design and Statistical Analyses
3. Results and Discussion
3.1. Effect of the Extraction Process on GEY
3.2. Effect of Extraction Process on Total Phenolic Content
3.3. HPLC Compound Identification
3.4. Economic Assessment
3.5. Sensitivity Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Roskov, O.; Vandepitte, Y.; DeWalt, L.; Remsen, R.E.; Schalk, D.; Orrell, P.; Keping, T.; Miller, M.; Aalbu, J.; Adlar, R.; et al. Adenaria floribunda Kunth in Bánki. Catalogue of Life Checklist (Version 2021-08-25). Catalogue of Life. 2021. Available online: https://www.catalogueoflife.org/data/metadata (accessed on 6 September 2021).
- EIA. Catálogo Virtual de Flora del Valle de Aburra. Lythraceae/Adenaria Floribunda. 2021. Available online: https://catalogofloravalleaburra.eia.edu.co/species/220 (accessed on 6 September 2021).
- Graham, S.A.; Kleiman, R. Seed lipids of the lythraceae. Biochem. Syst. Ecol. 1987, 15, 433–439. [Google Scholar] [CrossRef]
- Andersson Dunstan, C.; Noreen, Y.; Serrano, G.; Cox, P.A.; Perera, P.; Bohlin, L. Evaluation of some Samoan and Peruvian medicinal plants by prostaglandin biosynthesis and rat ear oedema assays. J. Ethnopharmacol. 1997, 57, 35–56. [Google Scholar] [CrossRef]
- Sanz-Biset, J.; Campos-de-la-Cruz, J.; Epiquién-Rivera, M.A.; Cañigueral, S. A first survey on the medicinal plants of the Chazuta valley (Peruvian Amazon). J. Ethnopharmacol. 2009, 122, 333–362. [Google Scholar] [CrossRef] [PubMed]
- Chand, J.; Panda, S.R.; Jain, S.; murty, U.S.N.; Das, A.M.; Kumar, G.J.; Naidu, V.G.M. Phytochemistry and polypharmacology of cleome species: A comprehensive Ethnopharmacological review of the medicinal plants. J. Ethnopharmacol. 2021, 282, 114600. [Google Scholar] [CrossRef] [PubMed]
- Ralte, L.; Bhardwaj, U.; Singh, Y.T. Traditionally used edible Solanaceae plants of Mizoram, India have high antioxidant and antimicrobial potential for effective phytopharmaceutical and nutraceutical formulations. Heliyon 2021, 7, e07907. [Google Scholar] [CrossRef] [PubMed]
- Kolodziejczyk-Czepas, J.; Kozachok, S.; Pecio, Ł.; Marchyshyn, S.; Oleszek, W. Determination of phenolic profiles of Herniaria polygama and Herniaria incana fractions and their in vitro antioxidant and anti-inflammatory effects. Phytochemistry 2021, 190, 112861. [Google Scholar] [CrossRef] [PubMed]
- Ávila-Román, J.; Soliz-Rueda, J.R.; Bravo, F.I.; Aragonès, G.; Suárez, M.; Arola-Arnal, A.; Mulero, M.; Salvadó, M.J.; Arola, L.; Torres-Fuentes, C.; et al. Phenolic compounds and biological rhythms: Who takes the lead? Trends Food Sci. Technol. 2021, 113, 77–85. [Google Scholar] [CrossRef]
- de Lima Paula, P.; de Oliveira Lemos, A.S.; Campos, L.M.; Ferreira, T.G.; Freitas de Souza, T.; Queiroz, L.S.; Guedes, M.C.M.R.; Martins, M.M.; Goulart Filho, L.R.; Macedo, G.C.; et al. Pharmacological investigation of antioxidant and anti-inflammatory activities of leaves and branches extracts from Plinia cauliflora (Jaboticaba). J. Ethnopharmacol. 2021, 280, 114463. [Google Scholar] [CrossRef] [PubMed]
- Vera-Marín, V.; Sánchez-Sáenz, M. Plantas medicinales y predictibilidad de uso en algunas veredas del corregimiento de San Cristóbal (Antioquia), Colombia. Actual. Biol. 2016, 38, 167–180. [Google Scholar]
- Castro-Puyana, M.; Marina, M.L.; Plaza, M. Water as green extraction solvent: Principles and reasons for its use. Curr. Opin. Green Sustain. Chem. 2017, 5, 31–36. [Google Scholar] [CrossRef]
- Banwo, K.; Olojede, A.O.; Adesulu-Dahunsi, A.T.; Verma, D.K.; Thakur, M.; Tripathy, S.; Singh, S.; Patel, A.R.; Gupta, A.K.; Aguilar, C.N.; et al. Functional importance of bioactive compounds of foods with Potential Health Benefits: A review on recent trends. Food Biosci. 2021, 43, 101320. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, C.; Tiwari, B.K. Ultrasound: A Clean, Green Extraction Technology for Bioactives and Contaminants. In Comprehensive Analytical Chemistry; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Volume 76. [Google Scholar] [CrossRef]
- Rutkowska, M.; Namieśnik, J.; Konieczka, P. Ultrasound-Assisted Extraction. In The Application of Green Solvents in Separation Processes; Elsevier: Amsterdam, The Netherlands, 2017; pp. 301–324. [Google Scholar] [CrossRef]
- Galviz-Quezada, A.; Ochoa-Aristizábal, A.M.; Arias, M.E.; Ochoa, S.; Osorio-Tobón, J.F. Valorization of iraca (Carludovica palmata, Ruiz & Pav.) infructescence by ultrasound-assisted extraction: An economic evaluation. Food Bioprod. Process. 2019, 118, 91–102. [Google Scholar] [CrossRef]
- Pacifico, S.; D’Abrosca, B.; Golino, A.; Mastellone, C.; Piccolella, S.; Fiorentino, A.; Monaco, P. Antioxidant evaluation of polyhydroxylated nerolidols from redroot pigweed (Amaranthus retroflexus) leaves. LWT Food Sci. Technol. 2008, 41, 1665–1671. [Google Scholar] [CrossRef]
- Vieira, G.S.; Cavalcanti, R.N.; Meireles, M.A.A.; Hubinger, M.D. Chemical and economic evaluation of natural antioxidant extracts obtained by ultrasound-assisted and agitated bed extraction from jussara pulp (Euterpe edulis). J. Food Eng. 2013, 119, 196–204. [Google Scholar] [CrossRef]
- Veggi, P.C.; Santos, D.T.; Meireles, M.A.A. Anthocyanin extraction from Jabuticaba (Myrciaria cauliflora) skins by different techniques: Economic evaluation. Procedia Food Sci. 2011, 1, 1725–1731. [Google Scholar] [CrossRef]
- Peters, M.; Timmerhaus, K.; Ronald, W. Plant Design and Economics for Chemical Engineers, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2003. [Google Scholar]
- Wage Indicator Foundation. Minimum Wage—Colombia. Minimum Wages. 2022. Available online: https://wageindicator.org/salary/minimum-wage/colombia (accessed on 19 February 2022).
- EPM. Tarifas Energía. 2022. Available online: https://cu.epm.com.co/clientesyusuarios/ (accessed on 19 February 2022).
- Xavier, L.; Freire, M.S.; González-Álvarez, J. Modeling and optimizing the solid–liquid extraction of phenolic compounds from lignocellulosic subproducts. Biomass Convers. Biorefin. 2019, 9, 737–747. [Google Scholar] [CrossRef]
- Fernández-Agulló, A.; Freire, M.S.; Ramírez-López, C.; Fernández-Moya, J.; González-Álvarez, J. Valorization of residual walnut biomass from forest management and wood processing for the production of bioactive compounds. Biomass Convers. Biorefin. 2021, 11, 609–618. [Google Scholar] [CrossRef]
- Cassiana Frohlich, P.; Andressa Santos, K.; Din Mahmud Hasan, S.; Antônio da Silva, E. Evaluation of the ethanolic ultrasound-assisted extraction from clove (Syzygium aromaticum) leaves and chemical characterization of the extracts. Food Chem. 2022, 373, 131351. [Google Scholar] [CrossRef]
- Pingret, D.; Fabiano-Tixier, A.; Chemat, F. CHAPTER 3 Ultrasound-assisted Extraction. In Natural Product Extraction: Principles and Applications; The Royal Society of Chemistry: Cambridge, UK, 2013; pp. 89–112. [Google Scholar] [CrossRef]
- Abbas, M.; Ahmed, D.; Qamar, M.T.; Ihsan, S.; Noor, Z.I. Optimization of ultrasound-assisted, microwave-assisted and Soxhlet extraction of bioactive compounds from Lagenaria siceraria: A comparative analysis. Bioresour. Technol. Rep. 2021, 15, 100746. [Google Scholar] [CrossRef]
- Klaric, M.; Oven, P.; Gorišek, Ž.; Španic, N.; Pervan, S. Yield of Stirred Cold Maceration and Extraction of Milled European Black Alder Wood and Bark using Different Solvents. BioResources 2016, 11, 9244–9254. [Google Scholar] [CrossRef]
- Xavier, L.; Freire, M.S.; Vidal-Tato, I.; González-Álvarez, J. Recovery of Phenolic Compounds from Eucalyptus globulus Wood Wastes using PEG/phosphate Aqueous Two-Phase Systems. Waste Biomass Valorization 2017, 8, 443–452. [Google Scholar] [CrossRef]
- Bursać Kovačević, D.; Barba, F.J.; Granato, D.; Galanakis, C.M.; Herceg, Z.; Dragović-Uzelac, V.; Putnik, P. Pressurized hot water extraction (PHWE) for the green recovery of bioactive compounds and steviol glycosides from Stevia rebaudiana Bertoni leaves. Food Chem. 2018, 254, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Guandalini, B.B.V.; Rodrigues, N.P.; Marczak, L.D.F. Sequential extraction of phenolics and pectin from mango peel assisted by ultrasound. Food Res. Int. 2019, 119, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Touati, R.; Santos, S.A.O.; Rocha, S.M.; Belhamel, K.; Silvestre, A.J.D. Phenolic composition and biological prospecting of grains and stems of Retama sphaerocarpa. Ind. Crops Prod. 2017, 95, 244–255. [Google Scholar] [CrossRef]
- Xavier, L.; Freire, M.S.; Vidal-Tato, I.; González-Álvarez, J. Application of aqueous two phase systems based on polyethylene glycol and sodium citrate for the recovery of phenolic compounds from eucalyptus wood. Maderas Cienc. Y Tecnol. 2015, 17, 345–354. [Google Scholar] [CrossRef]
- Jiang, Y.; Pei, J.; Zheng, Y.; Miao, Y.J.; Duan, B.Z.; Huang, L.F. Gallic Acid: A Potential Anti-Cancer Agent. Chin. J. Integr. Med. 2021, 28, 661–671. [Google Scholar] [CrossRef]
- Fernandes, F.H.A.; Salgado, H.R.N. Gallic Acid: Review of the Methods of Determination and Quantification. Crit. Rev. Anal. Chem. 2016, 46, 257–265. [Google Scholar] [CrossRef]
- Apea-Bah, F.B.; Head, D.; Scales, R.; Bazylo, R.; Beta, T. Hydrothermal extraction, a promising method for concentrating phenolic antioxidants from red osier dogwood (Cornus stolonifer) leaves and stems. Heliyon 2020, 6, e05158. [Google Scholar] [CrossRef]
- Li, P.; Liu, A.; Xiong, W.; Lin, H.; Xiao, W.; Huang, J.; Zhang, S.; Liu, Z. Catechins enhance skeletal muscle performance. Crit. Rev. Food Sci. Nutr. 2020, 60, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, G.; Santos, J.; Freire, M.S.; Antorrena, G.; González-Álvarez, J. Extraction of antioxidants from eucalyptus (Eucalyptus globulus) bark. Wood Sci. Technol. 2012, 46, 443–457. [Google Scholar] [CrossRef]
- de Paiva, L.B.; Goldbeck, R.; dos Santos, W.D.; Squina, F.M. Ferulic acid and derivatives: Molecules with potential application in the pharmaceutical field. Braz. J. Pharm. Sci. 2013, 49, 395–411. [Google Scholar] [CrossRef]
- Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant properties of ferulic acid and its possible application. Ski. Pharmacol. Physiol. 2018, 31, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Guetchueng, S.T.; Nahar, L.; Ritchie, K.J.; Daud Ismail, F.M.; Dempster, N.M.; Nnanga, E.N.; Sarker, S.D. Phenolic compounds from the leaves and stem bark of Pseudospondias microcarpa (A. Rich.) Engl. (Anacardiaceae). Biochem. Syst. Ecol. 2020, 91, 104078. [Google Scholar] [CrossRef]
- Naturallythinking. Fig Extract. PLant Extracts. 2022. Available online: https://naturallythinking.com/fig-extract (accessed on 17 February 2022).
- Starwest Botanicals. Ashwagandha Root Extract Organic. Liquid Herbal Extracts. 2022. Available online: https://www.starwest-botanicals.com/category/ashwagandha-root-extract/ (accessed on 17 February 2022).
- Mountain Rose Herbs. Cramp Bark Extract. 2022. Available online: https://mountainroseherbs.com/cramp-bark-extract (accessed on 17 February 2022).
- Ochoa, S.; Durango-Zuleta, M.M.; Felipe Osorio-Tobón, J. Techno-economic evaluation of the extraction of anthocyanins from purple yam (Dioscorea alata) using ultrasound-assisted extraction and conventional extraction processes. Food Bioprod. Process. 2020, 122, 111–123. [Google Scholar] [CrossRef]
- de Aguiar, A.C.; Osorio-Tobón, J.F.; Silva, L.P.S.; Barbero, G.F.; Martínez, J. Economic analysis of oleoresin production from malagueta peppers (Capsicum frutescens) by supercritical fluid extraction. J. Supercrit. Fluids 2018, 133, 86–93. [Google Scholar] [CrossRef]
- Dimian, M. Chapter 15 Economic evaluation of projects. Comput. Aided Chem. Eng. 2003, 13, 571–604. [Google Scholar] [CrossRef]
- El-Halwagi, M.M. Overview of Process Economics. In Sustainable Design through Process Integration, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 15–61. [Google Scholar] [CrossRef]
- Smith, R. Chemical Process Design and Integration; John Wiley & Sons, Ltd.: Barcelona, Spain, 2005. [Google Scholar]
Fixed Capital Investment (FCI) | |
---|---|
UAE extraction plant a | US$ 136,800 |
Filling machine b | US$ 15,000 |
Depreciation rate c | US$ 10%/year |
Annual maintenance rate c | 6%/year |
Cost of operational labor (COL) | |
Wage d | US$ 2.2 |
Number of workers per shift | 2 |
Cost of raw material (CRM) | |
Pre-processing A. floribunda stems | US$ 2/kg |
Water e | US$ 1.06/t |
Amber glass flask bottle (100 mL) b | US$ 0.5/flask |
Cost of utilities (CUT) | |
Electricity e | US$ 0.19/kWh |
Water steam (high pressure) f | US$ 20/t |
Water f | US$ 1.06/t |
CaCl2 solution (refrigerant fluid) f | US$ 0.75/t |
Project financing | |
Debt funding f | 50% |
Loan period f | 10 years |
Loan interest f | 9% |
Depreciation period f | 10 years |
Project financing | |
Income taxes f | 40% |
Product failure rate | 1% |
Time | Temperature | Amplitude | GEY | TPC |
---|---|---|---|---|
(min) | (°C) | (%) | (% DW) | (mg GAE g−1 DW) |
2 | 30 | 20 | 8.10 ± 1.01 bcd | 2.43 ± 0.19 cde |
2 | 30 | 40 | 5.24 ± 0.34 e | 2.34 ± 0.24 e |
2 | 30 | 60 | 6.90 ± 1.35 de | 2.78 ± 0.07 bcde |
2 | 45 | 20 | 7.62 ± 0.00 cde | 3.02 ± 0.42 bcde |
2 | 45 | 40 | 7.50 ± 1.52 cde | 3.49 ± 1.02 bcd |
2 | 45 | 60 | 7.26 ± 0.17 cde | 3.16 ± 0.07 bcde |
2 | 60 | 20 | 7.98 ± 0.17 bcd | 3.95 ± 0.21 bc |
2 | 60 | 40 | 8.21 ± 0.17 bcd | 3.79 ± 0.06 bcd |
2 | 60 | 60 | 7.02 ± 0.17 de | 3.39 ± 0.37 bcde |
10 | 30 | 20 | 7.62 ± 0.00 cde | 1.90 ± 0.54 e |
10 | 30 | 40 | 6.90 ± 0.00 de | 2.38 ± 0.08 de |
10 | 30 | 60 | 8.21 ± 0.84 bcd | 2.55 ± 0.24 cde |
10 | 45 | 20 | 6.90 ± 1.01 de | 2.95 ± 0.56 bcde |
10 | 45 | 40 | 8.45 ± 0.17 bcd | 3.52 ± 0.03 bcd |
10 | 45 | 60 | 8.33 ± 0.67 bcd | 3.14 ± 0.18 bcde |
10 | 60 | 20 | 10.36 ± 0.51 ab | 3.22 ± 0.79 bcde |
10 | 60 | 40 | 9.76 ± 0.34 abc | 4.12 ± 0.07 b |
10 | 60 | 60 | 10.48 ± 0.34 ab | 3.77 ± 0.03 bcd |
2 | 95 | - | 7.62 ± 0.34 cde | 3.58 ± 0.21 bcd |
10 | 95 | - | 8.57 ± 0.34 bcd | 4.18 ± 0.19 b |
360 | 95 | - | 11.90 ± 0.34 a | 6.38 ± 0.28 a |
A. floribunda Extract Selling Price (US$ flask−1) | Gross Margin (%) | Return on Investment (%) | Payback Time (years) | Internal Rate of Return after Taxes (%) | Net Present Value at 7.00% (US$ × 106) |
---|---|---|---|---|---|
UAE | |||||
4 | 3.43 | 9.85 | 10.15 | - | −0.49 |
5 | 22.74 | 17.73 | 5.64 | 20.08 | 0.80 |
6 | 35.62 | 25.61 | 3.90 | 35.08 | 1.83 |
7 | 44.82 | 33.49 | 2.99 | 47.58 | 2.81 |
8 | 51.71 | 41.37 | 2.42 | 59.30 | 3.80 |
9 | 57.08 | 49.26 | 2.03 | 70.23 | 4.49 |
10 | 61.37 | 57.14 | 1.75 | 80.55 | 5.77 |
HWE | |||||
4 | 1.95 | 3.38 | 10.66 | - | −0.58 |
5 | 21.56 | 17.23 | 5.8 | 19.14 | 0.74 |
6 | 34.64 | 25.08 | 3.99 | 34.14 | 1.76 |
7 | 43.97 | 32.93 | 3.04 | 46.8 | 2.75 |
8 | 50.98 | 40.78 | 2.45 | 58.36 | 3.73 |
9 | 56.42 | 48.63 | 2.06 | 69.3 | 4.71 |
10 | 60.78 | 56.48 | 1.77 | 79.77 | 5.69 |
SOXHLET | |||||
4 | −45.77 | −3.13 | - | - | −2.10 |
5 | −16.62 | 3.43 | 29.18 | - | −1.29 |
6 | 2.82 | 9.54 | 10.48 | - | −5.62 |
7 | 16.7 | 13.48 | 7.42 | 10.55 | 0.19 |
8 | 27.11 | 17.41 | 5.74 | 19.45 | 0.74 |
9 | 35.21 | 21.35 | 4.68 | 27.42 | 1.26 |
10 | 41.69 | 25.28 | 3.96 | 34.61 | 1.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopeda-Correa, M.; Valdés-Duque, B.E.; Osorio-Tobón, J.F. Ultrasound-Assisted Extraction of Phenolic Compounds from Adenaria floribunda Stem: Economic Assessment. Foods 2022, 11, 2904. https://doi.org/10.3390/foods11182904
Lopeda-Correa M, Valdés-Duque BE, Osorio-Tobón JF. Ultrasound-Assisted Extraction of Phenolic Compounds from Adenaria floribunda Stem: Economic Assessment. Foods. 2022; 11(18):2904. https://doi.org/10.3390/foods11182904
Chicago/Turabian StyleLopeda-Correa, Miguel, Beatriz E. Valdés-Duque, and J. Felipe Osorio-Tobón. 2022. "Ultrasound-Assisted Extraction of Phenolic Compounds from Adenaria floribunda Stem: Economic Assessment" Foods 11, no. 18: 2904. https://doi.org/10.3390/foods11182904
APA StyleLopeda-Correa, M., Valdés-Duque, B. E., & Osorio-Tobón, J. F. (2022). Ultrasound-Assisted Extraction of Phenolic Compounds from Adenaria floribunda Stem: Economic Assessment. Foods, 11(18), 2904. https://doi.org/10.3390/foods11182904