Comparative Profiling of Hot and Cold Brew Coffee Flavor Using Chromatographic and Sensory Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Coffee Preparation
2.3. Volatile Compound Analysis
2.3.1. Extraction of Volatile Compounds
2.3.2. Gas Chromatography–Mass Spectrometry
2.3.3. Identification of Aroma-Active Compounds
2.4. Non-Volatile Compound Measurement
2.4.1. Organic Acid and Sugar Profile Analysis
2.4.2. Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry (UPLC-MS/MS)
2.5. Color Analysis
2.6. Sensory Evaluation
2.6.1. Sensory Triangle Test
2.6.2. Sensory Quantitative Descriptive Analysis
2.7. Data Processing and Multivariate Statistical Analysis
3. Results and Discussion
3.1. Volatile Compound Profile
3.2. Differential Non-Volatiles Identified in Hot and Cold Brew Coffee
3.3. Color Analysis
3.4. Sensory Evaluation and Differential Flavor Markers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pham, Y.; Reardon-Smith, K.; Mushtaq, S.; Cockfield, G. The impact of climate change and variability on coffee production: A systematic review. Clim. Change 2019, 156, 609–630. [Google Scholar] [CrossRef]
- International Coffee Organization. Historical Data on the Global Coffee Trade. Available online: http://www.ico.org/new_historical.asp?section=Statistics (accessed on 14 February 2022).
- Sunarharum, W.B.; Williams, D.J.; Smyth, H.E. Complexity of coffee flavor: A compositional and sensory perspective. Food Res. Int. 2014, 62, 315–325. [Google Scholar] [CrossRef]
- Cordoba, N.; Fernandez-Alduenda, M.; Moreno, F.L.; Ruiz, Y. Coffee extraction: A review of parameters and their influence on the physicochemical characteristics and flavour of coffee brews. Trends Food Sci. Technol. 2020, 96, 45–60. [Google Scholar] [CrossRef]
- McCain-Keefer, H.R.; Meals, S.; Drake, M.A. The sensory properties and consumer acceptance of cold brew coffee. J. Sens. Stud. 2020, 35, e12604. [Google Scholar] [CrossRef]
- Batali, M.E.; Lim, L.X.; Liang, J.; Yeager, S.E.; Thompson, A.N.; Han, J.; Ristenpart, W.D.; Guinard, J. Sensory analysis of full immersion coffee: Cold brew is more floral, and less bitter, sour, and rubbery than hot brew. Foods 2022, 11, 2440. [Google Scholar] [CrossRef]
- Gloess, A.N.; Schönbächler, B.; Klopprogge, B.; D’Ambrosio, L.; Chatelain, K.; Bongartz, A.; Strittmatter, A.; Rast, M.; Yeretzian, C. Comparison of nine common coffee extraction methods: Instrumental and sensory analysis. Eur. Food Res. Technol. 2013, 236, 607–627. [Google Scholar] [CrossRef]
- Mestdagh, F.; Glabasnia, A.; Giuliano, P. The Brew-Extracting for Excellence. In The Craft and Science of Coffee; Folmer, B., Ed.; Academic Press: London, United Kingdom, 2017; pp. 355–380. [Google Scholar]
- Córdoba, N.; Moreno, F.L.; Osorio, C.; Velásquez, S.; Ruiz, Y. Chemical and sensory evaluation of cold brew coffees using different roasting profiles and brewing methods. Food Res. Int. 2021, 141, 110141. [Google Scholar] [CrossRef]
- Xu, L.; Lao, F.; Xu, Z.; Wang, X.; Chen, F.; Liao, X.; Chen, A.; Yang, S. Use of liquid chromatography quadrupole time-of-flight mass spectrometry and metabolomic approach to discriminate coffee brewed by different methods. Food Chem. 2019, 286, 106–112. [Google Scholar] [CrossRef]
- Córdoba, N.; Moreno, F.L.; Osorio, C.; Velásquez, S.; Fernandez-Alduenda, M.; Ruiz-Pardo, Y. Specialty and regular coffee bean quality for cold and hot brewing: Evaluation of sensory profile and physicochemical characteristics. LWT 2021, 145, 111363. [Google Scholar] [CrossRef]
- Rao, N.Z.; Fuller, M.; Grim, M.D. Physiochemical characteristics of hot and cold brew coffee chemistry: The effects of roast level and brewing temperature on compound extraction. Foods 2020, 9, 902. [Google Scholar] [CrossRef]
- Fuller, M.; Rao, N.Z. The Effect of Time, Roasting Temperature, and Grind Size on Caffeine and Chlorogenic Acid Concentrations in Cold Brew Coffee. Sci. Rep. 2017, 7, 17979. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.; Adhikari, K.; Choi, K.S.; Lee, J. Analysis of Caffeine, Chlorogenic Acid, Trigonelline, and Volatile Compounds in Cold Brew Coffee Using High-Performance Liquid Chromatography and Solid-Phase Microextraction—Gas Chromatography-Mass Spectrometry. Foods 2020, 9, 1746. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Wu, J.; Zhang, W.; Liu, J.; Yang, X.; Liao, X.; Hu, X.; Lao, F. Effects of sugar matrices on the release of key aroma compounds in fresh and high hydrostatic pressure processed Tainong mango juices. Food Chem. 2021, 338, 128117. [Google Scholar] [CrossRef] [PubMed]
- Czerny, M.; Grosch, W. Potent odorants of raw Arabica coffee. Their changes during roasting. J. Agric. Food Chem. 2000, 48, 868–872. [Google Scholar] [CrossRef]
- Wang, B.; Wang, X.; Bei, J.; Xu, L.; Zhang, X.; Xu, Z. Development and Validation of an Analytical Method for the Quantification of Arabinose, Galactose, Glucose, Sucrose, Fructose, and Maltose in Fruits, Vegetables, and Their Products. Food Anal. Methods 2021, 14, 1227–1238. [Google Scholar] [CrossRef]
- Hou, H.; Chen, Q.; Bi, J.; Bhandari, B.; Wu, X.; Jin, X.; Shi, Y.; Qiao, Y.; Gou, M.; Shi, J. Glass transition and crystallization of solid model system of jujube slice as influenced by sugars and organic acids. Food Chem. 2021, 359, 129935. [Google Scholar] [CrossRef]
- Li, J.; Zhao, W.; Pan, X.; Lao, F.; Liao, X.; Shi, Y.; Wu, J. Improvement of antioxidant properties of jujube puree by biotransformation of polyphenols via Streptococcus thermophilus fermentation. Food Chem. X 2022, 13, 100214. [Google Scholar] [CrossRef]
- ISO 4120:2004; Sensory Analysis-Methodology-Triangle Test. International Organization For Standardization: Geneva, Switzerland, 2004.
- Chambers, E.; Sanchez, K.; Phan, U.X.T.; Miller, R.; Civille, G.V.; Di Donfrancesco, B. Development of a “Living” Lexicon for Descriptive Sensory Analysis of Brewed Coffee. J. Sens. Stud. 2016, 31, 465–480. [Google Scholar] [CrossRef]
- Stone, H.; Sidel, J.; Oliver, S.; Woolsey, A.; Singleton, R.C. Sensory Evaluation by Quantitative Descriptive Analysis. Food Technol. 1974, 28, 24–34. [Google Scholar]
- Piccino, S.; Boulanger, R.; Descroix, F.; Sing, A.S.C. Aromatic composition and potent odorants of the “specialty coffee” brew “Bourbon Pointu” correlated to its three trade classifications. Food Res. Int. 2014, 61, 264–271. [Google Scholar] [CrossRef]
- Amanpour, A.; Selli, S. Differentiation of Volatile Profiles and Odor Activity Values of Turkish Coffee and French Press Coffee. J. Food Process. Preserv. 2016, 40, 1116–1124. [Google Scholar] [CrossRef]
- Caporaso, N.; Genovese, A.; Canela, M.D.; Civitella, A.; Sacchi, R. Neapolitan Coffee Brew Chemical Analysis in Comparison to Espresso, Moka and American Brews; Elsevier: Amsterdam, The Netherlands, 2014; Volume 61. [Google Scholar]
- López, J.A.S.; Wellinger, M.; Gloess, A.N.; Zimmermann, R.; Yeretzian, C. Extraction kinetics of coffee aroma compounds using a semi-automatic machine: On-line analysis by PTR-ToF-MS. Int. J. Mass Spectrom. 2016, 401, 22–30. [Google Scholar] [CrossRef]
- Lee, L.W.; Tay, G.Y.; Cheong, M.W.; Curran, P.; Yu, B.; Liu, S.Q. Modulation of the volatile and non-volatile profiles of coffee fermented with Yarrowia lipolytica: I. Green coffee. LWT Food Sci. Technol. 2017, 77, 225–232. [Google Scholar] [CrossRef]
- De Melo Pereira, G.V.; de Carvalho Neto, D.P.; Magalhães Júnior, A.I.; Vásquez, Z.S.; Medeiros, A.B.P.; Vandenberghe, L.P.S.; Soccol, C.R. Exploring the impacts of postharvest processing on the aroma formation of coffee beans—A review. Food Chem. 2019, 272, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, T.; Chen, F.; Wang, X.; Zhang, F. Determination of exogenous prohibited flavour compounds added in coffee using gas chromatography triple quadrupole tandem massspectrometry and gas chromatography/combustion/isotope ratio mass spectrometry. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2020, 37, 2011–2022. [Google Scholar] [CrossRef]
- The Good Scents Company Search Page. Available online: http://www.thegoodscentscompany.com/search2.html (accessed on 27 January 2022).
- Caporaso, N.; Whitworth, M.B.; Cui, C.; Fisk, I.D. Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPME-GC-MS. Food Res. Int. 2018, 108, 628–640. [Google Scholar] [CrossRef]
- Van Gemert, L.J. Thresholds Odour: Compilations of Odour Threshold Values in Air, Water and Other Media, 2nd ed.; Oliemans Punter & Partners BV: Zeist, The Netherlands, 2011. [Google Scholar]
- Matsui, T.; Guth, H.; Grosch, W. A comparative study of potent odorants in peanut, hazelnut, and pumpkin seed oils on the basis of aroma extract dilution analysis (AEDA) and gas chromatography-olfactometry of headspace samples (GCOH). Lipid-Fett. 1998, 100, 51–56. [Google Scholar] [CrossRef]
- Czerny, M.; Christlbauer, M.; Christlbauer, M.; Fischer, A.; Granvogl, M.; Hammer, M.; Hartl, C.; Hernandez, N.M.; Schieberle, P. Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions. Eur. Food Res. Technol. 2008, 228, 265–273. [Google Scholar] [CrossRef]
- Liu, J.; Wan, P.; Xie, C.; Chen, D.W. Key aroma-active compounds in brown sugar and their influence on sweetness. Food Chem. 2021, 345, 128826. [Google Scholar] [CrossRef]
- Liu, Y.; Song, H.L.; Luo, H. Correlation between the key aroma compounds and gDNA copies of Bacillus during fermentation and maturation of natto. Food Res. Int. 2018, 112, 175–183. [Google Scholar] [CrossRef]
- Al-Dalali, S.; Zheng, F.; Sun, B.; Chen, F.; Wang, P.; Wang, W. Determination of the aroma changes of Zhengrong vinegar during different processing steps by SPME–GC–MS and GC-O. J. Food Meas. Charact. 2020, 14, 535–547. [Google Scholar] [CrossRef]
- Kang, D.E.; Lee, H.U.; Davaatseren, M.; Chung, M.S. Comparison of acrylamide and furan concentrations, antioxidant activities, and volatile profiles in cold or hot brew coffees. Food Sci. Biotechnol. 2020, 29, 141–148. [Google Scholar] [CrossRef]
- Pu, D.; Zhang, Y.; Zhang, H.; Sun, B.; Ren, F.; Chen, H.; Tang, Y. Characterization of the key aroma compounds in traditional Hunan smoke-cured pork leg (Larou, THSL) by aroma extract dilution analysis (AEDA), odor activity value (OAV), and sensory evaluation experiments. Foods 2020, 9, 413. [Google Scholar] [CrossRef] [PubMed]
- Malfondet, N.; Gourrat, K.; Brunerie, P.; Le Quéré, J.L. Aroma characterization of freshly-distilled French brandies; their specificity and variability within a limited geographic area. Flavour Fragr. J. 2016, 31, 361–376. [Google Scholar] [CrossRef]
- Aquino, F.J.T.; Augusti, R.; de Alves, J.O.; Diniz, M.E.R.; Morais, S.A.L.; Alves, B.H.P.; Nascimento, E.A.; Sabino, A.A. Direct infusion electrospray ionization mass spectrometry applied to the detection of forgeries: Roasted coffees adulterated with their husks. Microchem. J. 2014, 117, 127–132. [Google Scholar] [CrossRef]
- Dos Santos, F.K.F.; de Almeida Cavalcante, S.F.; Rezende, C.M.; Veiga-Junior, V.F. Extraction and enrichment of furanoid glycosylated diterpenes present in green coffee beans: New methodology in the QuEChERS concept. J. Food Compos. Anal. 2021, 104, 104142. [Google Scholar] [CrossRef]
- Farrell, T.L.; Gomez-Juaristi, M.; Poquet, L.; Redeuil, K.; Nagy, K.; Renouf, M.; Williamson, G. Absorption of dimethoxycinnamic acid derivatives in vitro and pharmacokinetic profile in human plasma following coffee consumption. Mol. Nutr. Food Res. 2012, 56, 1413–1423. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, C.; Zhang, Y.; Zeng, W.; Igor, C. Coffee cell walls-composition, influence on cup quality and opportunities for coffee improvements. Food Qual. Saf. 2021, 5, fyab012. [Google Scholar] [CrossRef]
- Yeager, S.E.; Batali, M.E.; Lim, L.X.; Liang, J.; Han, J.; Thompson, A.N.; Guinard, J.; Ristenpart, W.D. Roast level and brew temperature significantly affect the color of brewed coffee. J. Food Sci. 2022, 87, 1837–1850. [Google Scholar] [CrossRef]
- Bartel, C.; Mesias, M.; Morales, F.J. Investigation on the extractability of melanoidins in portioned espresso coffee. Food Res. Int. 2015, 67, 356–365. [Google Scholar] [CrossRef]
- Scharbert, S.; Hofmann, T. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. J. Agric. Food Chem. 2005, 53, 5377–5384. [Google Scholar] [CrossRef] [PubMed]
- Sáenz-Navajas, M.P.; Avizcuri, J.M.; Ferreira, V.; Fernández-Zurbano, P. Insights on the chemical basis of the astringency of Spanish red wines. Food Chem. 2012, 134, 1484–1493. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Gallego, R.; Hernández-Hierro, J.M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Sensory evaluation of bitterness and astringency sub-qualities of wine phenolic compounds: Synergistic effect and modulation by aromas. Food Res. Int. 2014, 62, 1100–1107. [Google Scholar] [CrossRef]
- Cameleyre, M.; Lytra, G.; Schütte, L.; Vicard, J.C.; Barbe, J.C. Oak Wood Volatiles Impact on Red Wine Fruity Aroma Perception in Various Matrices. J. Agric. Food Chem. 2020, 68, 13319–13330. [Google Scholar] [CrossRef] [PubMed]
- Steinhaus, M.; Schieberle, P. Comparison of the most odor-active compounds in fresh and dried hop cones (Humulus lupulus L. variety spalter select) based on GC-olfactometry and odor dilution techniques. J. Agric. Food Chem. 2000, 48, 1776–1783. [Google Scholar] [CrossRef]
- Barba, C.; Beno, N.; Guichard, E.; Thomas-Danguin, T. Selecting odorant compounds to enhance sweet flavor perception by gas chromatography/olfactometry-associated taste (GC/O-AT). Food Chem. 2018, 257, 172–181. [Google Scholar] [CrossRef]
- Yu, H.Y.; Xie, T.; Xie, J.; Chen, C.; Ai, L.Z.; Tian, H.X. Aroma perceptual interactions of benzaldehyde, furfural, and vanillin and their effects on the descriptor intensities of Huangjiu. Food Res. Int. 2020, 129, 108808. [Google Scholar] [CrossRef]
Volatile Compounds | CAS | Odor 1 | Threshold (μg/L) 2 | Concentration (μg/L) 3 | OAV 4 | ||
---|---|---|---|---|---|---|---|
Hot Brew Coffee | Cold Brew Coffee | Hot Brew Coffee | Cold Brew Coffee | ||||
Pyrazine | |||||||
2-Methylpyrazine | 109-08-0 | nutty, cocoa, roasted [30] | 60 [31] | n.d. | 107.07 ± 4.88 | 1.78 | |
2,5-Dimethyl pyrazine | 123-32-0 | cocoa, roasted, nuts [30] | 2600 [31] | 32.06 ± 1.58 | 45.45 ± 3.15 * | ||
2,6-Dimethyl pyrazine | 108-50-9 | cocoa, roasted, nuts [30] | 3100 [31] | 33.95 ± 1.45 | 49.45 ± 3.35 * | ||
Ethylpyrazine | 13925-00-3 | peanut, butter, musty [30] | 6000 [31] | 31.96 ± 2.12 | 48.64 ± 3.38 * | ||
2-Ethyl-6-methylpyrazine | 13925-03-6 | roasted, potato, roasted [30] | 30 [31] | 47.17 ± 1.59 | 81.76 ± 4.24 * | 1.57 | 2.73 |
2-Ethyl-5-methylpyrazine | 13360-64-0 | coffee, bean, nutty [30] | 100 [31] | 41.07 ± 1.55 | 68.02 ± 3.73 * | ||
2,6-Diethylpyrazine | 13067-27-1 | nutty, hazelnut [30] | 6 [32] | 23.94 ± 0.99 | 44.47 ± 2.39 * | 3.99 | 7.41 |
3-Ethyl-2,5-dimethyl-pyrazine | 13360-65-1 | potato, cocoa, roasted [30] | 1 [31] | 92.91 ± 4.89 | 173.09 ± 9.21 * | 92.91 | 173.09 |
2-Ethenyl-6-methylpyrazine | 13925-09-2 | hazelnut [30] | - | 13.79 ± 1.05 | 22.22 ± 1.01 * | ||
3,5-Diethyl-2-methyl-pyrazine | 18138-05-1 | nutty, meaty, vegetable [30] | - | n.d. | 82.51 ± 7.18 | ||
2-Methyl-5-[(E)-1-propenyl]pyrazine | 18217-82-8 | sweet, earthy [33] | - | n.d. | 11.97 ± 0.61 | ||
2-Acetyl-3-methylpyrazine | 23787-80-6 | nutty, flesh, roasted [30] | 20 [31] | 30.15 ± 0.83 | 48.10 ± 4.45 * | 1.51 | 2.40 |
Phenol | |||||||
Guaiacol | 90-05-1 | phenolic, smoke, spice [24] | 1.6 [31] | 55.37 ± 1.52 | 66.34 ± 5.90 | 34.61 | 41.46 |
Phenol | 108-95-2 | phenolic, plastic rubber [30] | 2400 [23] | 49.29 ± 4.78 | 44.17 ± 2.59 | ||
4-Ethylguaiacol | 2785-89-9 | spicy, smoky, bacon [24] | 16 [34] | 81.78 ± 4.36 | 97.56 ± 3.95 * | 5.11 | 6.10 |
3,4-Dimethylphenol | 95-65-8 | ink, hay [30] | 1200 [32] | 8.57 ± 0.76 | n.d. | ||
m-cresol | 108-39-4 | medicinal, woody, leather [30] | 31 [32] | 14.97 ± 1.39 | 18.20 ± 1.03 | ||
1-Hydroxy-2,3-dimethylbenzene | 526-75-0 | phenolic, chemical, musty [30] | 500 [32] | 4.86 ± 0.20 | n.d. | ||
3-Ethylphenol | 620-17-7 | leather, ink [34] | 1.7 [32] | 16.97 ± 0.60 | n.d. | 9.98 | |
4-Vinylguaiacol | 7786-61-0 | dry woody, clove, amber [24] | 19 [34] | 59.02 ± 4.04* | 40.63 ± 2.14 | 3.11 | 2.14 |
2,4-di-tert-Butylphenol | 96-76-4 | phenol [34] | 500 [32] | 27.17 ± 5.23 | 14.31 ± 3.52 | ||
Furan | |||||||
Furfural | 98-01-1 | sweet, woody, almond [30] | 3000 [31] | 134.23 ± 1.55 | 200.20 ± 13.44 * | ||
2-Acetylfuran | 1192-62-7 | sweet, balsam, almond [30] | 10000 [31] | 43.33 ± 2.30 | 54.65 ± 5.03 * | ||
Furfuryl acetate | 623-17-6 | sweet, fruity, banana [30] | 100 [31] | 228.24 ± 5.61 | 422.76 ± 19.97 * | 2.28 | 4.23 |
5-Methyl furfural | 620-02-0 | spice, caramel, maple [30] | 6000 [3] | 204.70 ± 3.26 | 268.20 ± 18.65 * | ||
2-Furanmethanol | 98-00-0 | sweet, creamy, vanilla [35] | 2000 [32] | 242.91 ± 6.06 | 317.66 ± 17.00 * | ||
1-Furfurylpyrrole | 1438-94-4 | plastic, green, waxy [30] | 100 [32] | 70.77 ± 1.11 | 83.27 ± 10.07 | ||
2,3-Dihydrobenzofuran | 496-16-2 | floral [36] | - | 5.05 ± 0.46 | n.d. | ||
Aldehyde | |||||||
Benzaldehyde | 100-52-7 | sweet, bitter, almond [30] | 350 [32] | 29.01 ± 1.49 | 44.22 ± 3.53 * | ||
N-Methylpyrrole-2-carboxaldehyde | 1192-58-1 | roasted, nutty [30] | 37 [32] | 46.82 ± 0.32 | 58.00 ± 4.11 * | 1.27 | 1.57 |
2-Phenyl-2-butenal | 4411-89-6 | sweet, narcissus, cortex [30] | 883.8 [37] | 8.60 ± 0.34 | 11.07 ± 2.28 | ||
1H-Pyrrole-2-carboxaldehyde | 1003-29-8 | musty, beefy, coffee [30] | 65000 [32] | 19.72 ± 0.77 | 25.84 ± 2.07 * | ||
Ketone | |||||||
Maltol | 118-71-8 | sweet, caramel, cotton candy [38] | 5800 [23] | 29.79 ± 1.10 | 43.62 ± 0.84 * | ||
3-Ethyl-2-hydroxy-2-cyclopenten-1-one | 21835-01-8 | sweet, caramel, maple [30] | 53.35 [39] | 10.99 ± 1.07 | 15.92 ± 1.27 * | ||
4-Hydroxy-3-methylacetophenone | 876-02-8 | meidical, smoky [40] | - | 10.37 ± 1.15 | 15.48 ± 0.45 * | ||
Others | |||||||
Methyl salicylate | 119-36-8 | wintergreen, mint [30] | 40 [32] | n.d. | 41.64 ± 9.20 | 1.04 | |
3,4-Dimethoxystyrene | 6380-23-0 | green, floral, weedy [30] | - | 12.07 ± 0.59 | 14.35 ± 0.57 * | ||
1-(1H-pyrrol-2-yl)-Ethanone | 1072-83-9 | musty, nut skin, maraschino [30] | 170000 [32] | 44.15 ± 2.54 | 56.17 ± 8.66 | ||
1-Acetyl-1,4-dihydropyridine | 67402-83-9 | - | - | 10.85 ± 0.16 | n.d. | ||
Indole | 120-72-9 | animal, floral, moth ball [30] | 40 [32] | 5.20 ± 0.07 | n.d. |
Non-Volatile Compound | Hot Brew Coffee (μg/mL) | Cold Brew Coffee (μg/mL) |
---|---|---|
Sugar | ||
Sucrose | 15.37 ± 0.86 * | 14.26 ± 0.72 |
Maltose | 2.73 ± 0.43 * | 2.30 ± 0.14 |
Galactose | 2.44 ± 0.23 | 2.68 ± 0.10 * |
Arabinose | 1.87 ± 0.10 | 2.14 ± 0.10 * |
Glucose | 0.87 ± 0.17 | 1.22 ± 0.09 * |
Fructose | 0.60 ± 0.21 | 0.61 ± 0.08 |
Total | 23.29 ± 1.32 | 22.60 ± 0.93 |
Organic acid | ||
Quinic acid | 696.82 ± 7.84 | 696.19 ± 12.52 |
Shikimic acid | 33.19 ± 3.62 | 28.57 ± 0.43 |
Malic acid | 145.17 ± 7.33 | 160.37 ± 7.09 |
Tartaric acid | 1.14 ± 0.07 | 1.21 ± 0.02 |
Oxalic acid | 53.68 ± 0.40 | 54.36 ± 1.16 |
Citric acid | 347.05 ± 15.60 | 382.12 ± 5.17 * |
Total | 1277.06 ± 22.21 | 1322.81 ± 22.07 |
Differential Compounds | CAS 2 | Formula | Molecular Weight (Da) | Ionization Model | Precursor Ions (Da) | Product Ions (Da) | VIP | FoldChange | Identification in References 3 |
1,3-O-di-p-Coumaroyl glycerol | - | C21H20O7 | 384.12 | [M-H]- | 383.12 | 163.04 | 1.65 | 0.31 | - |
trans-4-Hydroxycinnamic acid methyl ester | 19367-38-5 | C10H10O3 | 178.06 | [M-H]- | 177.00 | 145.00 | 1.49 | 0.46 | - |
Dicaffeoylshikimic acid | - | C25H22O11 | 498.12 | [M + H]+ | 499.13 | 163.04 | 1.63 | 0.45 | [41] |
Pimaric acid | 127-27-5 | C20H30O2 | 302.22 | [M-H]− | 301.22 | 301.22 | 1.65 | 0.00023 | - |
Isopimaric acid | 5835-26-7 | C20H30O2 | 302.22 | [M-H]− | 301.22 | 301.22 | 1.65 | 0.00023 | - |
Abietic acid | 514-10-3 | C20H30O2 | 302.22 | [M-H]− | 301.22 | 301.22 | 1.65 | 0.00023 | - |
Quercetin-3-O-(6″-O-p-coumaroyl) galactoside | - | C30H26O14 | 610.13 | [M + H]+ | 611.14 | 147.04 | 1.65 | 0.00039 | - |
4-(Dimethylamino)cinnamaldehyde | 6203-18-5 | C11H13NO | 175.10 | [M + H]+ | 176.11 | 146.10 | 1.42 | 0.36 | - |
5,6,7-Trimethoxycoumarin | 55085-47-7 | C12H12O5 | 236.07 | [M + H]+ | 237.07 | 176.04 | 1.65 | 0.00082 | - |
5-Methoxyindole-3-carbaldehyde | 10601-19-1 | C10H9NO2 | 175.06 | [M + H]+ | 176.10 | 91.20 | 1.48 | 0.42 | - |
Mascaroside IV | 2214215-15-1 | C37H46O14 | 714.29 | [M + H]+ | 715.29 | 207.07 | 1.48 | 0.47 | [42] |
2-Methoxycinnamic acid | 6099-03-2 | C10H10O3 | 178.06 | [M-H]− | 177.06 | 133.07 | 1.65 | 0.00032 | [43] |
Coniferaldehyde | 20649-42-7 | C10H10O3 | 178.06 | [M + H]+ | 179.07 | 91.00 | 1.65 | 0.00022 | [44] |
2-Methylbenzoic acid | 118-90-1 | C8H8O2 | 136.05 | [M-H]− | 135.05 | 91.05 | 1.57 | 0.50 | - |
3-Indoleacrylic acid | 1204-06-4 | C11H9NO2 | 187.06 | [M + H]+ | 188.07 | 118.07 | 1.18 | 0.36 | - |
2α,3α,23-Trihydroxyolean-12-en-28-oic acid | - | C30H48O5 | 488.35 | [M-H]- | 487.34 | 487.34 | 1.65 | 7724.93 | - |
(1’R,3R,5R,8’S)-Dihydrophaseic acid-O-β-D-glucoside | - | C21H32O10 | 444.20 | [M-H]− | 443.19 | 161.04 | 1.65 | 0.00037 | - |
Trihydroxycinnamoylquinic acid | - | C16H20O10 | 372.11 | [M-H]− | 371.10 | 249.06 | 1.65 | 958.27 | - |
Sensory Attribute | Hot Brew Coffee | Cold Brew Coffee |
Color | 4.29 ± 0.76 * | 3.29 ± 0.49 |
Nutty | 2.86 ± 1.07 | 2.29 ± 0.49 |
Coffee | 3.14 ± 0.69 | 2.86 ± 0.90 |
Fruity | 2.00 ± 1.15 | 3.14 ± 0.69 * |
Sweet | 0.71 ± 0.49 | 1.71 ± 0.95 * |
Sour | 2.86 ± 0.90 | 3.29 ± 0.95 |
Bitter | 4.14 ± 0.69 * | 2.43 ± 0.53 |
Astringent | 2.86 ± 0.90 * | 2.00 ± 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Y.; Xu, Z.; Pan, X.; Gao, M.; Wu, M.; Wu, J.; Lao, F. Comparative Profiling of Hot and Cold Brew Coffee Flavor Using Chromatographic and Sensory Approaches. Foods 2022, 11, 2968. https://doi.org/10.3390/foods11192968
Cai Y, Xu Z, Pan X, Gao M, Wu M, Wu J, Lao F. Comparative Profiling of Hot and Cold Brew Coffee Flavor Using Chromatographic and Sensory Approaches. Foods. 2022; 11(19):2968. https://doi.org/10.3390/foods11192968
Chicago/Turabian StyleCai, Yanpei, Zhenzhen Xu, Xin Pan, Min Gao, Mengting Wu, Jihong Wu, and Fei Lao. 2022. "Comparative Profiling of Hot and Cold Brew Coffee Flavor Using Chromatographic and Sensory Approaches" Foods 11, no. 19: 2968. https://doi.org/10.3390/foods11192968
APA StyleCai, Y., Xu, Z., Pan, X., Gao, M., Wu, M., Wu, J., & Lao, F. (2022). Comparative Profiling of Hot and Cold Brew Coffee Flavor Using Chromatographic and Sensory Approaches. Foods, 11(19), 2968. https://doi.org/10.3390/foods11192968