Development of a Reliable ic-ELISA with a Robust Antimatrix Interference Capability Based on QuEChERS Technology for the Rapid Detection of Zearalenone in Edible and Medical Coix Seeds and Subsequent Risk Assessments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Sample Preparation
2.3. ic-ELISA Determination
2.4. LC–MS/MS Confirmation
2.5. Risk Assessment
3. Results and Discussion
3.1. Sample Preparation
3.1.1. Extraction Based on QuEChERS Technology
3.1.2. Dilution
3.2. Validation of ic-ELISA
3.2.1. Linearity
3.2.2. Sensitivity and Specificity
3.2.3. Limit of Detection and Limit of Quantification
3.2.4. Accuracy and Precision
3.3. The Contaminated Distribution and Comparison of ic-ELISA and LC–MS/MS for the Analysis of ZEN in Real Samples
3.4. Risk Assessment of ZEN in Coix Seeds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, L.; Zhang, L.; Xu, Z.J.; Liu, X.D.; Chen, L.Y.; Dai, J.F.; Karrow, N.A.; Sun, L.H. Occurrence of Aflatoxin B1, deoxynivalenol and zearalenone in feeds in China during 2018–2020. J. Anim. Sci. Biotechnol. 2021, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhang, G.; Ni, C.; Yu, G.; Cheng, J.; Zheng, H. Understanding the mechanism of change in morphological structures, visualization features, and physicochemical characteristics of adlay seeds (Coix lacryma-jobi L.): The role of heat soaking. J. Cereal Sci. 2020, 91, 102892. [Google Scholar] [CrossRef]
- An, T.J.; Shin, K.S.; Paul, N.C.; Kim, Y.K.; Cha, S.W.; Moon, Y.; Yu, S.H.; Oh, S.-K. Prevalence, Characterization, and Mycotoxin Production Ability of Fusarium Species on Korean Adlay (Coix lacrymal-jobi L.) Seeds. Toxins 2016, 8, 310. [Google Scholar] [CrossRef]
- Zeng, H.; Qin, L.; Liu, X.; Miao, S. Increases of Lipophilic Antioxidants and Anticancer Activity of Coix Seed Fermented by Monascus purpureus. Foods 2021, 10, 566. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Gao, J.; Zeng, Y.; Liu, C. Inhibition of Coix seed extract on fatty acid synthase, a novel target for anticancer activity. J. Ethnopharmacol. 2008, 119, 252–258. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, W.; Logrieco, A.F.; Yang, M.; Zhen, O.; Wang, X.; Guo, Q. Determination of zearalenone in traditional Chinese medicinal plants and related products by HPLC-FLD. Food Addit. Contam. Part A 2011, 28, 885–893. [Google Scholar] [CrossRef]
- Kong, W.; Li, J.; Qiu, F.; Wei, J.; Xiao, X.; Zheng, Y.; Yang, M. Development of a sensitive and reliable high performance liquid chromatography method with fluorescence detection for high-throughput analysis of multi-class mycotoxins in Coix seed. Anal. Chim. Acta 2013, 799, 68–76. [Google Scholar] [CrossRef]
- Wu, Y.; Ye, J.; Xuan, Z.; Li, L.; Wang, H.; Wang, S.; Liu, H.; Wang, S. Development and validation of a rapid and efficient method for simultaneous determination of mycotoxins in coix seed using one-step extraction and UHPLC-HRMS. Food Addit. Contam. Part A 2020, 38, 148–159. [Google Scholar] [CrossRef]
- The Commission Of The European Communities. Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs; Official Journal of the European Union: Brussel, Belgium, 2006; Volume L364, p. 5.
- China, M. Maximum Levels of Mycotoxins in Foods GB2761-2017; Ministry of Health of the People’s Republic of China: Beijing, China, 2017. [Google Scholar]
- Massart, F.; Micillo, F.; Rivezzi, G.; Perrone, L.; Baggiani, A.; Miccoli, M.; Meucci, V. Zearalenone screening of human breast milk from the Naples area. Toxicol. Environ. Chem. 2016, 98, 128–136. [Google Scholar] [CrossRef]
- Fu, X.; Wang, X.; Cui, Y.; Wang, A.; Lai, D.; Liu, Y.; Li, Q.X.; Wang, B.; Zhou, L. A monoclonal antibody-based enzyme-linked immunosorbent assay for detection of ustiloxin A in rice false smut balls and rice samples. Food Chem. 2015, 181, 140–145. [Google Scholar] [CrossRef]
- Omori, A.M.; Ono, E.Y.S.; Hirozawa, M.T.; de Souza Suguiura, I.M.; Hirooka, E.Y.; Fungaro, M.H.P.; Ono, M.A. Development of Indirect Competitive Enzyme-Linked Immunosorbent Assay to Detect Fusarium verticillioides in Poultry Feed Samples. Toxins 2019, 11, 48. [Google Scholar] [CrossRef] [PubMed]
- Bao, K.; Liu, X.; Xu, Q.; Su, B.; Liu, Z.; Cao, H.; Chen, Q. Nanobody multimerization strategy to enhance the sensitivity of competitive ELISA for detection of ochratoxin A in coffee samples. Food Control 2021, 127, 108167. [Google Scholar] [CrossRef]
- Watanabe, E.; Miyake, S. Direct determination of neonicotinoid insecticides in an analytically challenging crop such as Chinese chives using selective ELISAs. J. Environ. Sci. Health Part B 2018, 53, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Gross, M.S.; Woodward, E.E.; Hladik, M.L. Evaluation of ELISA for the analysis of imidacloprid in biological matrices: Cross-reactivities, matrix interferences, and comparison to LC-MS/MS. Chemosphere 2022, 286, 131746. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liao, X.; Jia, B.; Sun, C.; Zhou, L.; Kong, W. Development of a multi-channel magnetic bead micro-probe assay for high-throughput detection of zearalenone in edible and medicinal Coix seed. Food Chem. 2021, 347, 128977. [Google Scholar] [CrossRef]
- Yang, F.; Bian, Z.; Chen, X.; Liu, S.; Liu, Y.; Tang, G. Analysis of 118 Pesticides in Tobacco after Extraction with the Modified QuEChRS Method by LC–MS-MS. J. Chromatogr. Sci. 2014, 52, 788–792. [Google Scholar] [CrossRef]
- Michelangelo, A.; Lehotay, S.J.; Darinka, Š.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar]
- Wu, Q.; Lohrey, L.; Cramer, B.; Yuan, Z.; Humpf, H. Impact of Physicochemical Parameters on the Decomposition of Deoxynivalenol during Extrusion Cooking of Wheat Grits. J. Agric. Food Chem. 2011, 59, 12480–12485. [Google Scholar] [CrossRef]
- González-Jartín, J.M.; Alfonso, A.; Rodríguez, I.; Sainz, M.J.; Vieytes, M.R.; Botana, L.M. A QuEChERS based extraction procedure coupled to UPLC-MS/MS detection for mycotoxins analysis in beer. Food Chem. 2019, 275, 703–710. [Google Scholar] [CrossRef]
- Hrynko, I.; Kaczy, P.; Lozowicka, B. A global study of pesticides in bees: QuEChERS as a sample preparation methodology for their analysis-Critical review and perspective. Sci. Total Environ. 2021, 792, 148385. [Google Scholar] [CrossRef]
- Association of Official Agricultural Chemists. AOAC Official Method 2007.01. In Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate; AOAC Official Method; Oxford University Press: Bethesda, MD, USA, 2007. [Google Scholar]
- Carballo, D.; Molto, J.C.; Berrada, H.; Ferrer, E. Presence of mycotoxins in ready-to-eat food and subsequent risk assessment. Food Chem. Toxicol. 2018, 121, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Mao, W.; Ji, S.; Long, T.; Wang, S.; Ying, X.; Miao, H. Contamination of zearalenone and its dietary exposure assessment in coix seed in Shanghai. J. Hyg. Res. 2020, 49, 840–872. [Google Scholar]
- Tian, Z.T.; Lina, L.; Lei, S.; Lei, Z.; Jing, L.; Yu, J.H.; Cheng, M.S. Quantitative risk assessment of aflatoxin B1 in traditional animal medicines. Chin. J. Pharm. Anal. 2019, 39, 1267–1271. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain. Scientific Opinion on the Risks for Public Health Related to the Presence of Zearalenone in Food. EFSA J. 2011, 9, 2197. [Google Scholar] [CrossRef]
- Lu, Q.; Ruan, H.N.; Sun, X.Q.; Luo, J.Y.; Yang, M.H. Contamination status and health risk assessment of 31 mycotoxins in six edible and medicinal plants using a novel green defatting and depigmenting pretreatment coupled with LC-MS/MS. LWT 2022, 161, 113401. [Google Scholar] [CrossRef]
- Hajok, I.; Kowalska, A.; Piekut, A.; Cwielag-Drabek, M. A risk assessment of dietary exposure to ochratoxin A for the Polish population. Food Chem. 2019, 284, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Lin, T.; Cheng, X.; Li, N.; Wang, L.; Li, Q. Simultaneous determination of anabolic steroids and β-agonists in milk by QuEChERS and ultra high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. B 2017, 1043, 176–186. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Luo, J.; Qin, J.; Jiang, J.; Qin, L.; Zhao, Z.; Yang, S.; Yang, M. Development of a sensitive indirect competitive enzyme-linked immunosorbent assay for high-throughput detection and risk assessment of aflatoxin B1 in animal-derived medicines. Toxicon 2021, 197, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Nan, T.G.; Hong, X.X.; Xu, X.Y.; Huang, L.Q.; Yuan, Y. Development of enzyme linked immunosorbent assay of aflatoxin of Chinese herbal medicines. China J. Chin. Mater. Med. 2020, 45, 4158–4162. [Google Scholar] [CrossRef]
- Tan, Z.X.; Jiang, J.S.; Chen, R.H.; Zhang, Q.L.; Huang, J.Y. Detection of Aflatoxin B1 in Pu’er tea using affinity column purification-enzyme linked immunosorbent assay. Prev. Med. Teibune 2014, 20, 413–415. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; Tang, Z.; Chen, Q.; Liu, X. Development of a biotin-streptavidin-amplified nanobody-based ELISA for ochratoxin A in cereal. Ecotoxicol. Environ. Saf. 2019, 171, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yang, S.; Wang, P.G. Matrix effects and application of matrix effect factor. Bioanalysis 2017, 9, 1839–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Jin, M.; Du, P.; Zhang, C.; Cui, X.; Zhang, Y.; She, Y.; Shao, H.; Jin, F.; Wang, S.; et al. A sensitive chemiluminescence enzyme immunoassay based on molecularly imprinted polymers solid-phase extraction of parathion. Anal. Biochem. 2017, 530, 87–93. [Google Scholar] [CrossRef]
- Wang, X.L.; Liu, Y.L.; Su, J.; Liu, X.M.; Jin, H.Y.; Ma, S.C. Guideline for quality control in analysis of harmful residues in traditional Chinese medicines. Chin. J. Pharm. Anal. 2020, 40, 1877–1881. [Google Scholar] [CrossRef]
- Henniona, M.C.; Barcelo, D. Strengths and limitations of immunoassays for effective and efficient use for pesticide analysis in water samples: A review. Anal. Chim. Acta 1998, 362, 3–34. [Google Scholar] [CrossRef]
- Meng, F.L.; Fan, H.; Tan, L.; Anna, N.; Song, Z.F.; Wei, C.Y. Contamination Status and Dietary Risk Assessment of Corn Mycotoxins in Jilin Province. J. Maize Sci. 2021, 29, 88–94. [Google Scholar] [CrossRef]
- Guo, P.; Xue, S.H.; Xie, K.; Liu, H.; Chen, M.Z.; Du, X.X.; Zhang, Q. Contamination status and exposure assessment of zearalenone in commercial food in Fujian Province. Strait J. Prev. Med. 2020, 26, 80–82. [Google Scholar]
- Hu, J.W.; Wang, C.X.; Tian, L.; Wang, M.J.; Guo, R.; Joe, S. Analysis on contamination of zearalenone and dietary exposure assessment in food samples of Shaanxi Province in 2013–2016. J. Hyg. Res. 2017, 46, 585–627. [Google Scholar] [CrossRef]
- Dong, F.G.; Yan, X.G.; Gong, C.B.; Wang, Z.X.; Xing, X.M.; Xing, Y.F.; Sun, Y.L.; Zheng, Z. Analysis on contamination of zearalenone and dietary exposure assessment in food samples of Yantai city from 2012 to 2019. J. Food Saf. Qual. 2021, 12, 376–381. [Google Scholar] [CrossRef]
- Wang, W.; Shao, B.; Zhu, J.H.; Yu, H.X.; Li, F.Q. Dietary exposure assessment of some important Fusarium toxins in cereal-based products in China. J. Health Res. 2010, 39, 709–714. [Google Scholar] [CrossRef]
MRLs (μg/kg) | Compounds | IC50 (ng/mL) | Cross-Reactivity (%) |
---|---|---|---|
60 | ZEN | 0.83 | 100.0 |
α-ZEL | 0.73 | 113.7 | |
β-ZEL | 3.15 | 26.3 | |
500 | ZEN | 0.53 | 100.0 |
α-ZEL | 0.64 | 82.8 | |
β-ZEL | 2.57 | 20.6 |
MRLs (μg/kg) | ZEN (μg/kg) | Recovery (%) | Coefficient of Variation (%) | |
---|---|---|---|---|
Spiked | Detected * | |||
60 | 30 | 30.87 ± 3.46 | 102.9 | 11.5 |
60 | 65.70 ± 3.35 | 109.5 | 5.6 | |
120 | 142.03 ± 7.27 | 118.4 | 6.0 | |
500 | 250 | 182.01 ± 10.85 | 72.80 | 4.3 |
500 | 473.38 ± 5.28 | 94.68 | 1.0 | |
1000 | 1097.08± 63.50 | 109.7 | 6.4 |
Product | n * | Occurrence Rate | Mean (μg/kg) | Range (μg/kg) | EDE ** (μg/kg bw/Day) | Reference |
---|---|---|---|---|---|---|
corn | 280 | 37.5% | 121.1 | 4.12–1712.1 | 0.0238 | [39] |
corn oil | 31 | 87.1% | 54.4 | n.d.–220.0 | 0.027 | [40] |
corn and corn products corn oil | 392 63 | 38.27% 79.37% | 12.3 149 | 5.20–218 14.3–516 | 0.004 (urban)/0.009 (rural) 0.003 (urban)/0.003 (rural) | [41] |
cereal and cereal products | 355 | 8.73% | 8.19 | n.d.–369 | 0.052 | [42] |
wheat flour corn products | 292 347 | 53.42% 87.61% | 5.05 40.87 | 0.30–55.01 0.30–942.60 | 0.01 0.03 | [43] |
coix seed | 77 | 98.7% | 242.4 | 1.1–1562.3 | - | [8] |
coix seed | 147 | 69.39% | 327.7 | <1.0–9361 | 0.0216 | [25] |
coix seed | 26 | 84.62% | - | <0.5–4075 | - | [28] |
coix seed | 9 | 100% | 92.1 | 18.7–211.4 | - | [6] |
coix seed | 122 | 97.54% | 207.65 | 17.52–5094.70 | 0.0748 (as food)/0.0220 (as medicinal herb) | this work |
ZEN Daily Exposure | Scenario I | Scenario II | Scenario III | |||
---|---|---|---|---|---|---|
P1 | P2 | P1 | P2 | P1 | P2 | |
EDE | 0.0063 | 0.0019 | 0.0748 | 0.0220 | 1.8341 | 0.5393 |
%TDI | 2.52 | 0.74 | 29.90 | 8.79 | 733.64 | 215.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, K.; Huang, R.; Liu, H.; Huang, Y.; Chen, A.; Zhao, X.; Wang, S.; Zhang, L. Development of a Reliable ic-ELISA with a Robust Antimatrix Interference Capability Based on QuEChERS Technology for the Rapid Detection of Zearalenone in Edible and Medical Coix Seeds and Subsequent Risk Assessments. Foods 2022, 11, 2983. https://doi.org/10.3390/foods11192983
Guan K, Huang R, Liu H, Huang Y, Chen A, Zhao X, Wang S, Zhang L. Development of a Reliable ic-ELISA with a Robust Antimatrix Interference Capability Based on QuEChERS Technology for the Rapid Detection of Zearalenone in Edible and Medical Coix Seeds and Subsequent Risk Assessments. Foods. 2022; 11(19):2983. https://doi.org/10.3390/foods11192983
Chicago/Turabian StyleGuan, Kaiyi, Rentang Huang, Hongmei Liu, Yuxin Huang, Ali Chen, Xiangsheng Zhao, Shumei Wang, and Lei Zhang. 2022. "Development of a Reliable ic-ELISA with a Robust Antimatrix Interference Capability Based on QuEChERS Technology for the Rapid Detection of Zearalenone in Edible and Medical Coix Seeds and Subsequent Risk Assessments" Foods 11, no. 19: 2983. https://doi.org/10.3390/foods11192983
APA StyleGuan, K., Huang, R., Liu, H., Huang, Y., Chen, A., Zhao, X., Wang, S., & Zhang, L. (2022). Development of a Reliable ic-ELISA with a Robust Antimatrix Interference Capability Based on QuEChERS Technology for the Rapid Detection of Zearalenone in Edible and Medical Coix Seeds and Subsequent Risk Assessments. Foods, 11(19), 2983. https://doi.org/10.3390/foods11192983