Bioplastics for Food Packaging: Environmental Impact, Trends and Regulatory Aspects
Abstract
:1. Introduction
2. Definitions and Regulations
Countries | Level | Types of Banned Plastic Materials | References |
---|---|---|---|
Canada, Costa Rica, Taiwan, Belize, India, and the USA (California and Florida) | National bans | Single-use plastics (SUPs), including plastic bags, straws, and cutlery | [52] |
The Netherlands, Tanzania, Australia, Italy, South Korea, New Zealand, the UK, the USA, and Canada | National bans | Microbead plastics | |
25 African countries | National bans | Plastic bags | [53] |
Australia | National bans | Lightweight plastic bags | |
Papua New Guinea | National bans | Nonbiodegradable plastic bags |
3. The Common Misconception in the Definition of Biodegradable and Compostable Polymers
Brief Overview of Degradation Pathways for Polymers
4. Research on Bioplastics
4.1. Protein-Based Bioplastics
4.2. Polysaccharide-Based Bioplastics
4.2.1. Cellulose-Based Bioplastics
4.2.2. Starch-Based Bioplastics
4.3. Synthetic Bioplastics
5. Applications
- Coating—bioplastic is used as a coating on the substrate material, forming a multi-layer material to increase barrier functions, enhance processability (printability and sealability), functionalize the surface, or serve another duty. Typically, a coating is accomplished by extrusion, film casting, or common lacquer application techniques [126];
- Filler—bio-based materials serve as fillers that can reduce material costs and/or increase the ratio of renewable resources in bioplastic packaging materials [129].
5.1. Processing
- Extrusion coating and film production (casting and blown film)
- Injection molding (I)
- Thermoforming (T)
- Blow molding (B)
5.2. Properties
5.2.1. Biodegradability
- Category 1—marine biodegradable (claimed to be biodegradable in the marine environment);
- Category 2—home compostable (claimed to be biodegradable in soil without optimized composting conditions);
- Category 3—industrially compostable (according to EN 13432);
- Category 4—non-biodegradable (within the time frame specified by definition).
5.2.2. Barrier Functions
5.2.3. Feedstock
- Petrol-based (P);
- Natural biomass (N);
- Monomers from starch/food or feed competition (first-generation) (S);
- Agricultural waste/nonfood competition land use (second-generation) (W);
- CO2 or other feedstocks decoupled from land use (third-generation) (C).
5.2.4. Price
- Category A (0.5–2 €/kg);
- Category B (2.1–5 €/kg);
- Category C (6–10 €/kg);
- Category D (>11 €/kg).
5.2.5. Production
- Category A (>100 kt/a);
- Category B (51–100 kt/a);
- Category C (10–50 kt/a);
- Category D (<10 kt/a).
5.2.6. Food-Contact Material
- Not tested (~);
- Declined (o);
- Approved (+).
5.3. Examples
5.4. Commercial Applications and Supply Chain
6. Environmental Impact
6.1. “During the Production”
6.1.1. Land Use—Soil Erosion
6.1.2. Loss of Biodiversity
6.2. “At the End of life”
6.2.1. Recycling of Bioplastics
6.2.2. Biodegradation of Bioplastics
- Release of micro- and nano-plastics into the environment during biodegradation
6.2.3. Incineration with Energy Recovery
6.2.4. Disposal in Landfill
7. Consumer Research
Influencing Factors
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- HLPE. Nutrition and food systems. A report by the High-Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security, Rome. 2017. Available online: https://www.fao.org/3/i7846e/i7846e.pdf (accessed on 12 April 2022).
- Van Alfen, N.K. Encyclopedia of Agriculture and Food Systems; Academic Press: Cambridge, MA, USA, 2014; pp. 232–249. [Google Scholar]
- Robertson, G.L. Food Packaging—Principles and Practice, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2012; p. 736. [Google Scholar]
- Singh, P.; Wani, A.A.; Langowski, H.-C. Food Packaging Materials: Testing & Quality Assurance; CRC Press: New York, NY, USA, 2017; p. 356. [Google Scholar]
- Soroka, W. Fundamentals of Packaging Technology, 5th ed.; Institute of Packaging Professional: Herndon, VA, USA, 2014. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A new Circular Economy Action Plan. For a Cleaner and More Competitive Europe COM (2020) 98 Final, Brussels. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1583933814386&uri=COM:2020:98:FIN (accessed on 2 February 2022).
- Circularity Gap Report 2022: Five Years of Analysis by Circle Economy, European Circular Economy Stakeholder 1878 Platform. Available online: https://circulareconomy.europa.eu/platform/en/knowledge/circularity-gap-report-2022-five-years-analysis-circle-economy (accessed on 27 March 2022).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A European Strategy for Plastics in a Circular Economy COM/2018/028 Final, Brussels. 2018. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:2df5d1d2-fac7-11e7-b8f5-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 2 February 2022).
- United Nations. Resolution Adopted by the General Assembly on 25 September 2015: Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed on 2 February 2022).
- Bakri, A.A.; Nordenfelt, M.; Ajdic, T.; Nail, E.L. Recycling Food Packaging and Food Waste in Plastic Revolution; The European Economic and Social Committee: Bruxelles, Belgium, 2021. [Google Scholar] [CrossRef]
- Bonilla, J.; Talón, E.; Atarés, L.; Vargas, M.; Chiralt, A. Effect of the Incorporation of Antioxidants on Physicochemical and Antioxidant Properties of Wheat Starch–Chitosan Films. J. Food Eng. 2013, 118, 271–278. [Google Scholar] [CrossRef]
- Eurostat. Packaging Waste Statistics. Consulted in October. 2021. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Packaging_waste_statistics (accessed on 10 May 2022).
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Cortés-García, F.J.; Camacho-Ferre, F. Agricultural Waste: Review of the Evolution, Approaches and Perspectives on Alternative Uses. Glob. Ecol. Conserv. 2020, 22, e00902. [Google Scholar] [CrossRef]
- United Nations (UN) General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; Resolution Adopted by the General Assembly A/RES/70/1. 2015. Available online: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf (accessed on 10 May 2022).
- Jariyasakoolroj, P.; Leelaphiwat, P.; Harnkarnsujarit, N. Advances in Research and Development of Bioplastic for Food Packaging. J. Sci. Food Agric. 2020, 100, 5032–5045. [Google Scholar] [CrossRef] [PubMed]
- de Boer, J.; Aiking, H. Prospects for pro-environmental protein consumption in Europe: Cultural, culinary, economic and psychological factors. Appetite 2018, 121, 29–40. [Google Scholar] [CrossRef] [PubMed]
- European Bioplastics. What Are Bioplastics? Available online: https://www.european-bioplastics.org/bioplastics (accessed on 22 August 2021).
- Iacovidou, E.; Gerassimidou, S. Sustainable Packaging and the Circular Economy: An EU Perspective. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Hahladakis, J.N.; Iacovidou, E.; Gerassimidou, S. Plastic Waste in a Circular Economy. In Plastic Waste and Recycling; Elsevier: Oxford, UK, 2020; pp. 481–512. [Google Scholar]
- Plastics—The Facts 2021. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/ (accessed on 10 May 2022).
- Guengerich, F.P.; Yoshimoto, F.K. Formation and Cleavage of C-C Bonds by Enzymatic Oxidation-Reduction Reactions. Chem. Rev. 2018, 118, 6573–6655. [Google Scholar] [CrossRef]
- Chen, F.; Wang, T.; Jiao, N. Recent Advances in Transition-Metal-Catalyzed Functionalization of Unstrained Carbon-Carbon Bonds. Chem. Rev. 2014, 114, 8613–8661. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Uyama, H.; Kimura, S. Enzymatic Polymerization. Chem. Rev. 2001, 101, 3793–3818. [Google Scholar] [CrossRef]
- Beringer, M.; Rodnina, M.V. The Ribosomal Peptidyl Transferase. Mol. Cell 2007, 26, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Luley-Goedl, C.; Nidetzky, B. Glycosides as Compatible Solutes: Biosynthesis and Applications. Nat. Prod. Rep. 2011, 28, 875–896. [Google Scholar] [CrossRef]
- Rehm, B.H.A. Polyester Synthases: Natural Catalysts for Plastics. Biochem. J. 2003, 376, 15–33. [Google Scholar] [CrossRef] [Green Version]
- Behabtu, N.; Kralj, S. Enzymatic Polymerization Routes to Synthetic–Natural Materials: A Review. ACS Sustain. Chem. Eng. 2020, 8, 9947–9954. [Google Scholar] [CrossRef]
- Douka, A.; Vouyiouka, S.; Papaspyridi, L.-M.; Papaspyrides, C.D. A Review on Enzymatic Polymerization to Produce Polycondensation Polymers: The Case of Aliphatic Polyesters, Polyamides and Polyesteramides. Prog. Polym. Sci. 2018, 79, 1–25. [Google Scholar] [CrossRef]
- Samuels, A.L.; Rensing, K.H.; Douglas, C.J.; Mansfield, S.D.; Dharmawardhana, D.P.; Ellis, B.E. Cellular Machinery of Wood Production: Differentiation of Secondary Xylem in Pinus contorta Var. latifolia. Planta 2002, 216, 72–82. [Google Scholar] [CrossRef]
- Ganster, J.; Fink, H.-P. Cellulose and Cellulose Acetate. In Bio-Based Plastics; John Wiley & Sons Ltd: Chichester, UK, 2013; pp. 35–62. [Google Scholar]
- Meister, J.J. Modification of Lignin. J. Macromol. Sci. Part C Polym. Rev. 2002, 42, 235–289. [Google Scholar] [CrossRef]
- Alma, M.H.; Kelley, S.S. Conversion of barks of several tree species into bakelite-like thermosetting materials by their phenolysis. J. Polym. Eng. 2000, 20, 365–380. [Google Scholar] [CrossRef]
- Bai, Y.; Gao, Z. Water-Resistant Plywood Adhesives Prepared from Phenolated Larch Bark in the Presence of Various Combination Catalysts. J. Appl. Polym. Sci. 2012, 126, E374–E382. [Google Scholar] [CrossRef]
- Zadeh, E.M.; O’Keefe, S.F.; Kim, Y.-T. Utilization of Lignin in Biopolymeric Packaging Films. ACS Omega 2018, 3, 7388–7398. [Google Scholar] [CrossRef] [Green Version]
- Bioplastics, European. Frequently Asked Questions on Bioplastics. Available online: https://docs.european-bioplastics.org/publications/EUBP_FAQ_on_bioplastics.pdf (accessed on 10 May 2022).
- USDA. Voluntary Labeling Program for Bio-Based Products; United States Department of Agriculture (USDA): Washington, DC, USA, 2011; pp. 3789–3813. [Google Scholar]
- Gerassimidou, S.; Martin, O.V.; Chapman, S.P.; Hahladakis, J.N.; Iacovidou, E. Development of an Integrated Sustainability Matrix to Depict Challenges and Trade-Offs of Introducing Bio-Based Plastics in the Food Packaging Value Chain. J. Clean. Prod. 2021, 286, 125378. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: The Role of Waste-To-Energy in the Circular Economy COM/2017/034 Final, Brussels. 2017. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A52017DC0034 (accessed on 11 May 2022).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: Closing the Loop—An EU Action Plan for the Circular Economy COM/2015/0614 Final, Brussels. 2015. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A52015DC0614 (accessed on 11 May 2022).
- European Parliament and Council of the European Union. Directive (EU) 2019/904 of the European Parliament and of the Council of 5 June 2019 on the Reduction of the Impact of Certain Plastic Products on the Environment; Official Journal of the European Union: Brussels, Belgium, 2019; Volume 155. [Google Scholar]
- Ellen MacArthur Foundation. Global Commitment. A Circular Economy for Plastic in which It Never Becomes Waste. 2020. Available online: https://www.newplasticseconomy.org/projects/global-commitment (accessed on 16 September 2020).
- European Plastics Pact. The European Plastics Pact. Bringing Together Frontrunner Companies and Governments to Accelerate the Transition toward Circular Plastics Economy. 2020. Available online: https://europeanplasticspact.org/ (accessed on 16 September 2020).
- United Nations. The Sustainable Development Goals Report; United Nations: New York, NY, USA, 2020. [Google Scholar]
- Nikiema, J.; Asiedu, Z. A Review of the Cost and Effectiveness of Solutions to Address Plastic Pollution. Environ. Sci. Pollut. Res. Int. 2022, 29, 24547–24573. [Google Scholar] [CrossRef]
- Shin, S.-K.; Um, N.; Kim, Y.-J.; Cho, N.-H.; Jeon, T.-W. New Policy Framework with Plastic Waste Control Plan for Effective Plastic Waste Management. Sustainability 2020, 12, 6049. [Google Scholar] [CrossRef]
- Nikiema, J.; Mateo-Sagasta, J.; Asiedu, Z.; Saad, D.; Lamizana, B. Water Pollution by Macroplastics and Microplastics: A Review of Technical Solutions from Source to Sea; United Nations Environment Programme (UNEP): Nairobi, Kenia, 2020; Available online: https://www.unep.org/resources/report/water-pollution-plastics-and-microplastics-review-technical-solutions-source-sea (accessed on 27 July 2022).
- EU. A European Strategy for Plastics in a Circular Economy. 2018. Available online: https://www.europarc.org/wp-content/uploads/2018/01/Eu-plastics-strategy-brochure.pdf (accessed on 30 July 2022).
- PlasticAtlas. Plastic Atlas 2019: Facts and Figures about the World of Synthetic Polymers; Heinrich Boll Foundation: Berlin, Germany, 2019. [Google Scholar]
- Filiciotto, L.; Rothenberg, G. Biodegradable Plastics: Standards, Policies, and Impacts. ChemSusChem 2021, 14, 56–72. [Google Scholar] [CrossRef] [PubMed]
- Brooks, A.L.; Wang, S.; Jambeck, J.R. The Chinese Import Ban and Its Impact on Global Plastic Waste Trade. Sci. Adv. 2018, 4, eaat0131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Environment Agency (EEA). Plastics, the Circular Economy and Europe′s Environment—A Priority for Action; European Environment Agency: Copenhagen, Denmark, 2021. [Google Scholar]
- Hira, A.; Pacini, H.; Attafuah-Wadee, K.; Vivas-Eugui, D.; Saltzberg, M.; Yeoh, T.N. Plastic Waste Mitigation Strategies: A Review of Lessons from Developing Countries. J. Dev. Soc. 2022, 38, 336–359. [Google Scholar] [CrossRef]
- UNEP (United Nations Environment Programme). Single-Use Plastics: A Roadmap for Sustainability. 2018. Available online: https://www.unep.org/resources/report/single-use-plastics-roadmap-sustainability (accessed on 27 July 2022).
- Lam, C.-S.; Ramanathan, S.; Carbery, M.; Gray, K.; Vanka, K.S.; Maurin, C.; Bush, R.; Palanisami, T. A Comprehensive Analysis of Plastics and Microplastic Legislation Worldwide. Water Air Soil Pollut. 2018, 229, 345. [Google Scholar] [CrossRef]
- Eriksen, M.; Thiel, M.; Prindiville, M.; Kiessling, T. Microplastic: What Are the Solutions? In The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2018; pp. 273–298. ISBN 9783319616148. [Google Scholar]
- United Nations. Report of the Conference of the Parties to the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal on the Work of Its Fourteenth Meeting. In Proceedings of the 14th Meeting of the Conference of the Parties to the Basel Convention (COP14), Geneva, Switzerland, 29 May–10 April 2019. UNEP/CHW.14/28. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions: The European Green Deal COM(2019) 640 Final, Brussels. 2019. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (accessed on 22 May 2022).
- European Commission. Proposal for a Regulation of the European Parliament and of the Council on the Establishment of a Framework to Facilitate Sustainable Investment COM(2018) 253 Final, Brussels. 2018. Available online: https://ec.europa.eu/transparency/regdoc/rep/1/2018/EN/COM-2018-353-F1-EN-MAIN-PART-1.PDF (accessed on 22 May 2022).
- Legislative Train Schedule. Available online: https://www.europarl.europa.eu/legislative-train (accessed on 22 May 2022).
- Monier, V.; Hestin, M.; Cavé, J.; Laureysens, I.; Watkins, E.; Reisinger, H.; Porsch, L. Development of Guidance on Extended Producer Responsibility (EPR). 2014. Available online: https://ec.europa.eu/environment/archives/waste/eu_guidance/pdf/Guidance%20on%20EPR%20-%20Final%20Report.pdf (accessed on 22 May 2022).
- European Chemicals Agency (ECHA). Annex XV Restriction Report: Proposal of Restriction for Intentionally Added Microplastics. 2019. Available online: https://echa.europa.eu/documents/10162/05bd96e3-b969-0a7c-c6d0-441182893720 (accessed on 22 May 2022).
- European Chemicals Agency (ECHA). Authorisation-ECHA. 2019. Available online: https://echa.europa.eu/substances-of-very-high-concernidentification-explained (accessed on 22 May 2022).
- Kubicki, M. Guidance on the Preparation of an Application for Authorisation; European Chemicals Agency: Helsinki, Finland, 2011. [Google Scholar]
- Singh, M. Most Ambitious US Law to Tackle Single-Use Plastics Faces Make-Or-Break Moment. 2019. Available online: http://www.theguardian.com/us-news/2019/sep/13/california-plastics-legislation-singleuse (accessed on 22 May 2022).
- OECD. Policies for Bioplastics in the Context of a Bioeconomy. 2013. Available online: https://www.oecd-ilibrary.org/science-and-technology/policies-for-bioplastics-in-the-context-of-a-bioeconomy_5k3xpf9rrw6den (accessed on 22 May 2022).
- Ugorji, C.; van der Ven, C. Trade and the Circular Economy: A Deep Dive into Plastics Action in Ghana. 2021. Available online: https://globalplasticaction.org/wp-content/uploads/Ghana_NPAP_Trade_and_Circular_Economy.pdf (accessed on 30 July 2022).
- Briassoulis, D.; Dejean, C.; Picuno, P. Critical Review of Norms and Standards for Biodegradable Agricultural Plastics Part II: Composting. J. Polym. Environ. 2010, 18, 364–383. [Google Scholar] [CrossRef]
- European Commission. Bio-Based, Biodegradable and Compostable Plastics. Environment. 2022. Available online: https://ec.europa.eu/environment/topics/plastics/bio-based-biodegradable-and-compostable-plastics_en (accessed on 6 June 2022).
- Lucas, N.; Bienaime, C.; Belloy, C.; Queneudec, M.; Silvestre, F.; Nava-Saucedo, J.E. Polymer Biodegradation: Mechanisms and Estimation Techniques—A Review. Chemosphere 2008, 73, 429–442. [Google Scholar] [CrossRef]
- Meereboer, K.W.; Misra, M.; Mohanty, A.K. Review of Recent Advances in the Biodegradability of Polyhydroxyalkanoate (PHA) Bioplastics and Their Composites. Green Chem. 2020, 22, 5519–5558. [Google Scholar] [CrossRef]
- Xu, L.; Crawford, K.; Gorman, C.B. Effects of Temperature and pH on the Degradation of Poly(Lactic Acid) Brushes. Macromolecules 2011, 44, 4777–4782. [Google Scholar] [CrossRef]
- Volova, T.G.; Gladyshev, M.I.; Trusova, M.Y.; Zhila, N.O. Degradation of Polyhydroxyalkanoates in Eutrophic Reservoir. Polym. Degrad. Stab. 2007, 92, 580–586. [Google Scholar] [CrossRef]
- Liu, M.; Zhuo, J.K.; Xiong, S.J.; Yao, Q. Catalytic Degradation of High-Density Polyethylene over a Clay Catalyst Compared with Other Catalysts. Energy Fuels 2014, 28, 6038–6045. [Google Scholar] [CrossRef]
- Michalak, M.; Kwiecień, M.; Kawalec, M.; Kurcok, P. Oxidative Degradation of Poly (3-Hydroxybutyrate). A New Method of Synthesis for the Malic Acid Copolymers. RSC Adv. 2016, 6, 12809–12818. [Google Scholar]
- Verhoogt, H.; Ramsay, B.A.; Favis, B.D. Polymer Blends Containing Poly(3-Hydroxyalkanoate)s. Polymer 1994, 35, 5155–5169. [Google Scholar] [CrossRef]
- Kijchavengkul, T.; Auras, R.; Rubino, M.; Alvarado, E.; Camacho Montero, J.R.; Rosales, J.M. Atmospheric and Soil Degradation of Aliphatic–Aromatic Polyester Films. Polym. Degrad. Stab. 2010, 95, 99–107. [Google Scholar] [CrossRef]
- Proikakis, C.S.; Mamouzelos, N.J.; Tarantili, P.A.; Andreopoulos, A.G. Swelling and Hydrolytic Degradation of Poly(d,l-Lactic Acid) in Aqueous Solutions. Polym. Degrad. Stab. 2006, 91, 614–619. [Google Scholar] [CrossRef]
- Helbling, C.; Abanilla, M.; Lee, L.; Karbhari, V.M. Issues of Variability and Durability under Synergistic Exposure Conditions Related to Advanced Polymer Composites in the Civil Infrastructure. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1102–1110. [Google Scholar] [CrossRef]
- İpekoğlu, B.; Böke, H.; Çizer, Ö. Assessment of Material Use in Relation to Climate in Historical Buildings. Build. Environ. 2007, 42, 970–978. [Google Scholar] [CrossRef] [Green Version]
- Kijchavengkul, T.; Auras, R.; Rubino, M.; Ngouajio, M.; Fernandez, R.T. Assessment of Aliphatic–Aromatic Copolyester Biodegradable Mulch Films. Part I: Field Study. Chemosphere 2008, 71, 942–953. [Google Scholar] [CrossRef]
- Karan, H.; Funk, C.; Grabert, M.; Oey, M.; Hankamer, B. Green Bioplastics as Part of a Circular Bioeconomy. Trends Plant Sci. 2019, 24, 237–249. [Google Scholar] [CrossRef]
- Aggarwal, J.; Sharma, S.; Kamyab, H.; Kumar, A. The Realm of Biopolymers and Their Usage:An Overview The Realm of Biopolymers and Their Usage: An Overview. J. Environ. Treat. Tech. 2020, 8, 1005–1016. [Google Scholar]
- Brodin, M.; Vallejos, M.; Opedal, M.T.; Area, M.C.; Chinga-Carrasco, G. Lignocellulosics as Sustainable Resources for Production of Bioplastics—A Review. J. Clean. Prod. 2017, 162, 646–664. [Google Scholar] [CrossRef]
- Kumar, S.; Thakur, K.S. Bioplastics—Classification, Production and Their Potential Food Applications. J. Hill Agric. 2017, 8, 118. [Google Scholar] [CrossRef]
- Acquavia, M.A.; Pascale, R.; Martelli, G.; Bondoni, M.; Bianco, G. Natural Polymeric Materials: A Solution to Plastic Pollution from the Agro-Food Sector. Polymers 2021, 13, 158. [Google Scholar] [CrossRef] [PubMed]
- Nilsen-Nygaard, J.; Fernández, E.N.; Radusin, T.; Rotabakk, B.T.; Sarfraz, J.; Sharmin, N.; Sivertsvik, M.; Sone, I.; Pettersen, M.K. Current Status of Bio-based and Biodegradable Food Packaging Materials: Impact on Food Quality and Effect of Innovative Processing Technologies. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1333–1380. [Google Scholar] [CrossRef] [PubMed]
- Jafarzadeh, S.; Jafari, S.M.; Salehabadi, A.; Nafchi, A.M.; Uthaya Kumar, U.S.; Khalil, H.P.S.A. Biodegradable Green Packaging with Antimicrobial Functions Based on the Bioactive Compounds from Tropical Plants and Their By-Products. Trends Food Sci. Technol. 2020, 100, 262–277. [Google Scholar] [CrossRef]
- Singha, S.; Mahmutovic, M.; Zamalloa, C.; Stragier, L.; Verstraete, W.; Svagan, A.J.; Das, O.; Hedenqvist, M.S. Novel Bioplastic from Single Cell Protein as a Potential Packaging Material. ACS Sustain. Chem. Eng. 2021, 9, 6337–6346. [Google Scholar] [CrossRef]
- Coltelli, M.-B.; Wild, F.; Bugnicourt, E.; Cinelli, P.; Lindner, M.; Schmid, M.; Weckel, V.; Müller, K.; Rodriguez, P.; Staebler, A.; et al. State of the Art in the Development and Properties of Protein-Based Films and Coatings and Their Applicability to Cellulose Based Products: An Extensive Review. Coatings 2015, 6, 1. [Google Scholar] [CrossRef]
- Zubair, M.; Ullah, A. Recent Advances in Protein Derived Bionanocomposites for Food Packaging Applications. Crit. Rev. Food Sci. Nutr. 2020, 60, 406–434. [Google Scholar] [CrossRef]
- Zárate-Ramírez, L.S.; Romero, A.; Bengoechea, C.; Partal, P.; Guerrero, A. Thermo-Mechanical and Hydrophilic Properties of Polysaccharide/Gluten-Based Bioplastics. Carbohydr. Polym. 2014, 112, 24–31. [Google Scholar] [CrossRef]
- Reshmy, R.; Philip, E.; Madhavan, A.; Sindhu, R.; Pugazhendhi, A.; Binod, P.; Sirohi, R.; Awasthi, M.K.; Tarafdar, A.; Pandey, A. Advanced Biomaterials for Sustainable Applications in the Food Industry: Updates and Challenges. Environ. Pollut. 2021, 283, 117071. [Google Scholar] [CrossRef]
- Wang, S.; Lu, A.; Zhang, L. Recent Advances in Regenerated Cellulose Materials. Prog. Polym. Sci. 2016, 53, 169–206. [Google Scholar] [CrossRef]
- Qasim, U.; Osman, A.I.; Al-Muhtaseb, A.H.; Farrell, C.; Al-Abri, M.; Ali, M.; Vo, D.-V.N.; Jamil, F.; Rooney, D.W. Renewable Cellulosic Nanocomposites for Food Packaging to Avoid Fossil Fuel Plastic Pollution: A Review. Environ. Chem. Lett. 2021, 19, 613–641. [Google Scholar] [CrossRef]
- Bayer, I.S.; Guzman-Puyol, S.; Heredia-Guerrero, J.A.; Ceseracciu, L.; Pignatelli, F.; Ruffilli, R.; Cingolani, R.; Athanassiou, A. Direct Transformation of Edible Vegetable Waste into Bioplastics. Macromolecules 2014, 47, 5135–5143. [Google Scholar] [CrossRef]
- Vilarinho, F.; Sanches Silva, A.; Vaz, M.F.; Farinha, J.P. Nanocellulose in Green Food Packaging. Crit. Rev. Food Sci. Nutr. 2018, 58, 1526–1537. [Google Scholar] [CrossRef]
- Jabeen, N.; Majid, I.; Nayik, G.A. Bioplastics and Food Packaging: A Review. Cogent Food Agric. 2015, 1, 1117749. [Google Scholar] [CrossRef]
- Nemes, S.A.; Szabo, K.; Vodnar, D.C. Applicability of Agro-Industrial by-Products in Intelligent Food Packaging. Coatings 2020, 10, 550. [Google Scholar] [CrossRef]
- Freeland, B.; McCarthy, E.; Balakrishnan, R.; Fahy, S.; Boland, A.; Rochfort, K.D.; Dabros, M.; Marti, R.; Kelleher, S.M.; Gaughran, J. A Review of Polylactic Acid as a Replacement Material for Single-Use Laboratory Components. Materials 2022, 15, 2989. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Biesold, G.M.; Choi, W.; Yu, J.; Deng, Y.; Silvestre, C.; Lin, Z. Recent advances in polymers and polymer composites for food packaging. Materials Today. 2022, 53, 134–161. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Sauraj; Kumar, B.; Deeba, F.; Kulshreshtha, A.; Negi, Y.S. Chitosan Films Incorporated with Apricot (Prunus armeniaca) Kernel Essential Oil as Active Food Packaging Material. Food Hydrocoll. 2018, 85, 158–166. [Google Scholar] [CrossRef]
- Kim, J.-H.; Hong, W.-S.; Oh, S.-W. Effect of Layer-by-Layer Antimicrobial Edible Coating of Alginate and Chitosan with Grapefruit Seed Extract for Shelf-Life Extension of Shrimp (Litopenaeus vannamei) Stored at 4 °C. Int. J. Biol. Macromol. 2018, 120, 1468–1473. [Google Scholar] [CrossRef]
- Dilucia, F.; Lacivita, V.; Conte, A.; Del Nobile, M.A. Sustainable Use of Fruit and Vegetable By-Products to Enhance Food Packaging Performance. Foods 2020, 9, 857. [Google Scholar] [CrossRef]
- Torres-León, C.; Vicente, A.A.; Flores-López, M.L.; Rojas, R.; Serna-Cock, L.; Alvarez-Pérez, O.B.; Aguilar, C.N. Edible Films and Coatings Based on Mango (Var. Ataulfo) by-Products to Improve Gas Transfer Rate of Peach. LWT 2018, 97, 624–631. [Google Scholar] [CrossRef]
- Adilah, Z.A.M.; Jamilah, B.; Nur Hanani, Z.A. Functional and Antioxidant Properties of Protein-Based Films Incorporated with Mango Kernel Extract for Active Packaging. Food Hydrocoll. 2018, 74, 207–218. [Google Scholar] [CrossRef]
- Riaz, A.; Lei, S.; Akhtar, H.M.S.; Wan, P.; Chen, D.; Jabbar, S.; Abid, M.; Hashim, M.M.; Zeng, X. Preparation and Characterization of Chitosan-Based Antimicrobial Active Food Packaging Film Incorporated with Apple Peel Polyphenols. Int. J. Biol. Macromol. 2018, 114, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.; Chang, Y.; Shin, S.-H.; Joo, E.; Song, H.J.; Eom, H.; Han, J. Development of Biopolymer Composite Films Using a Microfluidization Technique for Carboxymethylcellulose and Apple Skin Particles. Int. J. Mol. Sci. 2017, 18, 1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Li, X.; Jiang, W. Development of Antioxidant Chitosan Film with Banana Peels Extract and Its Application as Coating in Maintaining the Storage Quality of Apple. Int. J. Biol. Macromol. 2020, 154, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Pratibha; Neeraj; Ojha, A.; Upadhyay, A.; Singh, R.; Kumar, S. Effect of Active Chitosan-Pullulan Composite Edible Coating Enrich with Pomegranate Peel Extract on the Storage Quality of Green Bell Pepper. LWT 2021, 138, 110435. [Google Scholar] [CrossRef]
- Hanani, Z.A.N.; Yee, F.C.; Nor-Khaizura, M.A.R. Effect of Pomegranate (Punica granatum L.) Peel Powder on the Antioxidant and Antimicrobial Properties of Fish Gelatin Films as Active Packaging. Food Hydrocoll. 2019, 89, 253–259. [Google Scholar] [CrossRef]
- Mushtaq, M.; Gani, A.; Gani, A.; Punoo, H.A.; Masoodi, F.A. Use of Pomegranate Peel Extract Incorporated Zein Film with Improved Properties for Prolonged Shelf Life of Fresh Himalayan Cheese (Kalari/Kradi). Innov. Food Sci. Emerg. Technol. 2018, 48, 25–32. [Google Scholar] [CrossRef]
- Kurek, M.; Benbettaieb, N.; Ščetar, M.; Chaudy, E.; Repajić, M.; Klepac, D.; Valić, S.; Debeaufort, F.; Galić, K. Characterization of Food Packaging Films with Blackcurrant Fruit Waste as a Source of Antioxidant and Color Sensing Intelligent Material. Molecules 2021, 26, 2569. [Google Scholar] [CrossRef]
- Xie, Y.; Niu, X.; Yang, J.; Fan, R.; Shi, J.; Ullah, N.; Feng, X.; Chen, L. Active Biodegradable Films Based on the Whole Potato Peel Incorporated with Bacterial Cellulose and Curcumin. Int. J. Biol. Macromol. 2020, 150, 480–491. [Google Scholar] [CrossRef]
- Szabo, K.; Teleky, B.-E.; Mitrea, L.; Călinoiu, L.-F.; Martău, G.-A.; Simon, E.; Varvara, R.-A.; Vodnar, D.C. Active Packaging—Poly(Vinyl Alcohol) Films Enriched with Tomato by-Products Extract. Coatings 2020, 10, 141. [Google Scholar] [CrossRef]
- Stoll, L.; Rech, R.; Flôres, S.H.; Nachtigall, S.M.B.; de Oliveira Rios, A. Poly(Acid Lactic) Films with Carotenoids Extracts: Release Study and Effect on Sunflower Oil Preservation. Food Chem. 2019, 281, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Musso, Y.S.; Salgado, P.R.; Mauri, A.N. Smart Gelatin Films Prepared Using Red Cabbage (Brassica oleracea L.) Extracts as Solvent. Food Hydrocoll. 2019, 89, 674–681. [Google Scholar] [CrossRef]
- Uranga, J.; Etxabide, A.; Guerrero, P.; de la Caba, K. Development of Active Fish Gelatin Films with Anthocyanins by Compression Molding. Food Hydrocoll. 2018, 84, 313–320. [Google Scholar] [CrossRef]
- Mustafa, P.; Niazi, M.B.K.; Jahan, Z.; Samin, G.; Hussain, A.; Ahmed, T.; Naqvi, S.R. PVA/Starch/Propolis/Anthocyanins Rosemary Extract Composite Films as Active and Intelligent Food Packaging Materials. J. Food Saf. 2020, 40, e12725. [Google Scholar] [CrossRef]
- Vannini, M.; Marchese, P.; Sisti, L.; Saccani, A.; Mu, T.; Sun, H.; Celli, A. Integrated Efforts for the Valorization of Sweet Potato By-Products within a Circular Economy Concept: Biocomposites for Packaging Applications Close the Loop. Polymers 2021, 13, 1048. [Google Scholar] [CrossRef]
- Assis, R.Q.; Pagno, C.H.; Costa, T.M.H.; Flôres, S.H.; Rios, A.d.O. Synthesis of Biodegradable Films Based on Cassava Starch Containing Free and Nanoencapsulated β-Carotene. Packag. Technol. Sci. 2018, 31, 157–166. [Google Scholar] [CrossRef]
- Mitrea, L.; Călinoiu, L.-F.; Martău, G.-A.; Szabo, K.; Teleky, B.-E.; Mureșan, V.; Rusu, A.-V.; Socol, C.-T.; Vodnar, D.-C. Poly(Vinyl Alcohol)-Based Biofilms Plasticized with Polyols and Colored with Pigments Extracted from Tomato by-Products. Polymers 2020, 12, 532. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, H.; Kamkar, A.; Misaghi, A.; Zunabovic-Pichler, M.; Fatehi, S. Nanocomposite Films with CMC, Okra Mucilage, and ZnO Nanoparticles: Extending the Shelf-Life of Chicken Breast Meat. Food Packag. Shelf Life 2019, 21, 100330. [Google Scholar] [CrossRef]
- Peelman, N.; Ragaert, P.; De Meulenaer, B.; Adons, D.; Peeters, R.; Cardon, L.; Van Impe, F.; Devlieghere, F. Application of Bioplastics for Food Packaging. Trends Food Sci. Technol. 2013, 32, 128–141. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, N.I.; Shahar, F.S.; Sultan, M.T.H.; Shah, A.U.M.; Safri, S.N.A.; Mat Yazik, M.H. Overview of Bioplastic Introduction and Its Applications in Product Packaging. Coatings 2021, 11, 1423. [Google Scholar] [CrossRef]
- Nanda, S.; Patra, B.R.; Patel, R.; Bakos, J.; Dalai, A.K. Innovations in Applications and Prospects of Bioplastics and Biopolymers: A Review. Environ. Chem. Lett. 2022, 20, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Asgher, M.; Qamar, S.A.; Bilal, M.; Iqbal, H.M.N. Bio-Based Active Food Packaging Materials: Sustainable Alternative to Conventional Petrochemical-Based Packaging Materials. Food Res. Int. 2020, 137, 109625. [Google Scholar] [CrossRef] [PubMed]
- Dang, B.-T.; Bui, X.-T.; Tran, D.P.H.; Hao Ngo, H.; Nghiem, L.D.; Hoang, T.-K.-D.; Nguyen, P.-T.; Nguyen, H.H.; Vo, T.-K.-Q.; Lin, C.; et al. Current Application of Algae Derivatives for Bioplastic Production: A Review. Bioresour. Technol. 2022, 347, 126698. [Google Scholar] [CrossRef]
- Brodin, F.W.; Gregersen, Ø.W.; Syverud, K. Cellulose Nanofibrils: Challenges and Possibilities as a Paper Additive or Coating Material: A Review. Nord. Pulp Paper Res. J. 2014, 29, 156–166. [Google Scholar] [CrossRef]
- Yang, J.; Ching, Y.C.; Chuah, C.H. Applications of Lignocellulosic Fibers and Lignin in Bioplastics: A Review. Polymers 2019, 11, 751. [Google Scholar] [CrossRef] [Green Version]
- Polychronopoulos, N.D.; Vlachopoulos, J. Polymer Processing and Rheology. In Functional Polymers. Polymers and Polymeric Composites: A Reference Series; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Liang, J.-Z. Characteristics of Melt Shear Viscosity during Extrusion of Polymers. Polym. Test. 2002, 21, 307–311. [Google Scholar] [CrossRef]
- Irgens, F. Rheology and Non-Newtonian Fluids; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Shenoy, A.V.; Saini, D.R. Melt Flow Index: More than Just a Quality Control Rheological Parameter. Part, I. Adv. Polym. Technol. 1986, 6, 1–58. [Google Scholar] [CrossRef]
- Hieber, C.A. Melt-Viscosity Characterization and Its Application to Injection Molding. In Injection and Compression Molding Fundamentals; Routledge: London, UK, 2017; pp. 1–136. [Google Scholar]
- Lord, H.A. Flow of Polymers with Pressure-Dependent Viscosity in Injection Molding Dies. Polym. Eng. Sci. 1979, 19, 469–473. [Google Scholar] [CrossRef]
- Capone, C.; Di Landro, L.; Inzoli, F.; Penco, M.; Sartore, L. Thermal and Mechanical Degradation during Polymer Extrusion Processing. Polym. Eng. Sci. 2007, 47, 1813–1819. [Google Scholar] [CrossRef]
- Hermabessiere, L.; Dehaut, A.; Paul-Pont, I.; Lacroix, C.; Jezequel, R.; Soudant, P.; Duflos, G. Occurrence and Effects of Plastic Additives on Marine Environments and Organisms: A Review. Chemosphere 2017, 182, 781–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauwendaal, C. Polymer Extrusion; Carl Hanser Verlag: Munich, Germany, 2014. [Google Scholar]
- Abeykoon, C.; Pérez, P.; Kelly, A.L. The Effect of Materials’ Rheology on Process Energy Consumption and Melt Thermal Quality in Polymer Extrusion. Polym. Eng. Sci. 2020, 60, 1244–1265. [Google Scholar] [CrossRef] [Green Version]
- Mileva, D.; Tranchida, D.; Gahleitner, M. Designing Polymer Crystallinity: An Industrial Perspective. Polym. Cryst. 2018, 1, e10009. [Google Scholar] [CrossRef]
- Billham, M.; Clarke, A.H.; Garrett, G.; Mcnally, G.M.; Murphy, W.R. The Effect of Extrusion Processing Conditions on the Properties of Blown and Cast Polyolefin Packaging Films. Dev. Chem. Eng. Miner. Process. 2008, 11, 137–146. [Google Scholar] [CrossRef]
- Gruenwald, G. Thermoforming: A Plastics Processing Guide; Routledge: London, UK, 2018. [Google Scholar]
- Farotti, E.; Natalini, M. Injection Molding. Influence of Process Parameters on Mechanical Properties of Polypropylene Polymer. A First Study. Procedia Struct. Integr. 2018, 8, 256–264. [Google Scholar] [CrossRef]
- Hishinuma, K. Heat Sealing Technology and Engineering: Principles and Packaging Applications; Miyagawa, H., Translator; DEStech Publications: Lancaster, CA, USA, 2009. [Google Scholar]
- Lee, N.C. Understanding Blow Molding, 2nd ed.; Carl Hanser Verlag: Munich, Germany, 2007. [Google Scholar]
- Cantor, K. Blown Film Extrusion; Hanser Publications: Liberty Twp, OH, USA, 2018. [Google Scholar]
- Siracusa, V. Food Packaging Permeability Behaviour: A Report. Int. J. Polym. Sci. 2012, 2012, 302029. [Google Scholar] [CrossRef]
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological Degradation of Plastics: A Comprehensive Review. Biotechnol. Adv. 2008, 26, 246–265. [Google Scholar] [CrossRef]
- Choe, S.; Kim, Y.; Won, Y.; Myung, J. Bridging Three Gaps in Biodegradable Plastics: Misconceptions and Truths about Biodegradation. Front. Chem. 2021, 9, 671750. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; AbdulGhani, A. Biodegradable Plastic Applications towards Sustainability: A Recent Innovations in the Green Product. Clean. Eng. Technol. 2022, 6, 100404. [Google Scholar] [CrossRef]
- Fan, P.; Yu, H.; Xi, B.; Tan, W. A Review on the Occurrence and Influence of Biodegradable Microplastics in Soil Ecosystems: Are Biodegradable Plastics Substitute or Threat? Environ. Int. 2022, 163, 107244. [Google Scholar] [CrossRef]
- Dey, A.; Neogi, S. Oxygen Scavengers for Food Packaging Applications: A Review. Trends Food Sci. Technol. 2019, 90, 26–34. [Google Scholar] [CrossRef]
- Pascall, M.A.; Siddiq, F. Fresh Vegetables and Vegetable Products Packaging. In Handbook of Vegetables and Vegetable Processing; John Wiley & Sons, Ltd: Chichester, UK, 2018; pp. 265–286. [Google Scholar]
- Baschetti, M.G.; Minelli, M. Test Methods for the Characterization of Gas and Vapor Permeability in Polymers for Food Packaging Application: A Review. Polym. Test. 2020, 89, 106606. [Google Scholar] [CrossRef]
- Pandit, P.; Nadathur, G.T.; Maiti, S.; Regubalan, B. Functionality and Properties of Bio-Based Materials. In Bio-Based Materials for Food Packaging; Springer: Singapore, 2018; pp. 81–103. [Google Scholar]
- Pauer, E.; Tacker, M.; Gabriel, V.; Krauter, V. Sustainability of Flexible Multilayer Packaging: Environmental Impacts and Recyclability of Packaging for Bacon in Block. Cleaner Environ. Syst. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Wu, F.; Misra, M.; Mohanty, A.K. Challenges and New Opportunities on Barrier Performance of Biodegradable Polymers for Sustainable Packaging. Prog. Polym. Sci. 2021, 117, 101395. [Google Scholar] [CrossRef]
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Grabowski, A.; Selke, S.E.M.; Auras, R.; Patel, M.K.; Narayan, R. Life Cycle Inventory Data Quality Issues for Bioplastics Feedstocks. Int. J. Life Cycle Assess. 2015, 20, 584–596. [Google Scholar] [CrossRef]
- 2013/179/EU; Commission Recommendation of 9 April 2013 on the Use of Common Methods to Measure and Communicate the Life Cycle Environmental Performance of Products and Organisations. European Commission: Brussels, Belgium, 9 April 2013.
- Brizga, J.; Hubacek, K.; Feng, K. The Unintended Side Effects of Bioplastics: Carbon, Land, and Water Footprints. One Earth 2020, 3, 45–53. [Google Scholar] [CrossRef]
- Wellenreuther, C.; Wolf, A. Innovative Feedstocks in Biodegradable Bio-Based Plastics: A Literature Review; HWWI Research Papers 194; Hamburg Institute of International Economics (HWWI): Hamburg, Germany, 2020. [Google Scholar]
- De Souza Vandenberghe, L.P.; de Oliveira, P.Z.; Bittencourt, G.A.; de Mello, A.F.M.; Vásquez, Z.S.; Karp, S.G.; Soccol, C.R. The 2G and 3G Bioplastics: An Overview. Biotechnol. Res. Innov. 2021, 5, e2021004. [Google Scholar] [CrossRef]
- Rosenboom, J.-G.; Langer, R.; Traverso, G. Bioplastics for a Circular Economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef]
- Filho, W.L.; Barbir, J.; Abubakar, I.R.; Paço, A.; Stasiskiene, Z.; Hornbogen, M.; Christin Fendt, M.T.; Voronova, V.; Klõga, M. Consumer Attitudes and Concerns with Bioplastics Use: An International Study. PLoS ONE 2022, 17, e0266918. [Google Scholar] [CrossRef]
- Bioplastics: Facts and figures. Available online: https://docs.european-bioplastics.org/publications/EUBP_Facts_and_figures.pdf (accessed on 22 June 2022).
- Regulation (EC) No 1935/2004 of the European Parliament and of the Council of 27 October 2004 on materials and articles intended to come into contact with food and repealing Directives 80/590/EEC and 89/109/EEC. Available online: https://eur-lex.europa.eu/eli/reg/2004/1935/oj (accessed on 22 June 2022).
- Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Text with EEA relevance. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32011R0010 (accessed on 22 June 2022).
- Takeshita, A.; Igarashi-Migitaka, J.; Nishiyama, K.; Takahashi, H.; Takeuchi, Y.; Koibuchi, N. Acetyl Tributyl Citrate, the Most Widely Used Phthalate Substitute Plasticizer, Induces Cytochrome P450 3a through Steroid and Xenobiotic Receptor. Toxicol. Sci. 2011, 123, 460–470. [Google Scholar] [CrossRef]
- Sheikh, I.A.; Beg, M.A. Structural Characterization of Potential Endocrine Disrupting Activity of Alternate Plasticizers Di-(2-Ethylhexyl) Adipate (DEHA), Acetyl Tributyl Citrate (ATBC) and 2,2,4-Trimethyl 1,3-Pentanediol Diisobutyrate (TPIB) with Human Sex Hormone-Binding Globulin. Reprod. Toxicol. 2019, 83, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Rainer, B.; Pinter, E.; Czerny, T.; Riegel, E.; Kirchnawy, C.; Marin-Kuan, M.; Schilter, B.; Tacker, M. Suitability of the Ames Test to Characterise Genotoxicity of Food Contact Material Migrates. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018, 35, 2230–2243. [Google Scholar] [CrossRef] [PubMed]
- Kato, L.S.; Conte-Junior, C.A. Safety of Plastic Food Packaging: The Challenges about Non-Intentionally Added Substances (NIAS) Discovery, Identification and Risk Assessment. Polymers 2021, 13, 2077. [Google Scholar] [CrossRef] [PubMed]
- Cavazza, A.; Mattarozzi, M.; Franzoni, A.; Careri, M. A Spotlight on Analytical Prospects in Food Allergens: From Emerging Allergens and Novel Foods to Bioplastics and Plant-Based Sustainable Food Contact Materials. Food Chem. 2022, 388, 132951. [Google Scholar] [CrossRef]
- Tihminlioglu, F.; Atik, İ.D.; Özen, B. Water Vapor and Oxygen-Barrier Performance of Corn–Zein Coated Polypropylene Films. J. Food Eng. 2010, 96, 342–347. [Google Scholar] [CrossRef] [Green Version]
- Koh, H.-Y.; Chinnan, M.S. Characteristics of Corn Zein and Methyl Cellulose Bilayer Edible Films according to Preparation Protocol. Food Sci. Biotechnol. 2002, 11, 310–315. [Google Scholar]
- Bayer, I.S. Zein in Food Packaging. In Sustainable Food Packaging Technology; Wiley: Hoboken, NJ, USA, 2021; pp. 199–224. [Google Scholar] [CrossRef]
- Álvarez-Castillo, E.; Felix, M.; Bengoechea, C.; Guerrero, A. Proteins from Agri-Food Industrial Biowastes or Co-Products and Their Applications as Green Materials. Foods 2021, 10, 981. [Google Scholar] [CrossRef]
- Verbeek, C.J.R.; van den Berg, L.E. Extrusion Processing and Properties of Protein-Based Thermoplastics. Macromol. Mater. Eng. 2010, 295, 10–21. [Google Scholar] [CrossRef]
- Di Gioia, L.; Guilbert, S. Corn Protein-Based Thermoplastic Resins: Effect of Some Polar and Amphiphilic Plasticizers. J. Agric. Food Chem. 1999, 47, 1254–1261. [Google Scholar] [CrossRef]
- Wang, Y.; Padua, G.W. Tensile Properties of Extruded Zein Sheets and Extrusion Blown Films. Macromol. Mater. Eng. 2003, 288, 886–893. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Cheng, Y.; Wang, C.; Liu, H.; Bian, H.; Pan, Y.; Sun, J.; Han, W. Application of Protein-Based Films and Coatings for Food Packaging: A Review. Polymers 2019, 11, 2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Türe, H.; Gällstedt, M.; Johansson, E.; Hedenqvist, M.S. Wheat-Gluten/Montmorillonite Clay Multilayer-Coated Paperboards with High Barrier Properties. Ind. Crops Prod. 2013, 51, 1–6. [Google Scholar] [CrossRef]
- Klüver, E.; Meyer, M. Thermoplastic Processing, Rheology, and Extrudate Properties of Wheat, Soy, and Pea Proteins. Polym. Eng. Sci. 2015, 55, 1912–1919. [Google Scholar] [CrossRef]
- Cho, S.-W.; Gällstedt, M.; Johansson, E.; Hedenqvist, M.S. Injection-Molded Nanocomposites and Materials Based on Wheat Gluten. Int. J. Biol. Macromol. 2011, 48, 146–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tunc, S.; Angellier, H.; Cahyana, Y.; Chalier, P.; Gontard, N.; Gastaldi, E. Functional Properties of Wheat Gluten/Montmorillonite Nanocomposite Films Processed by Casting. J. Memb. Sci. 2007, 289, 159–168. [Google Scholar] [CrossRef]
- Redl, A.; Morel, M.H.; Bonicel, J.; Vergnes, B.; Guilbert, S. Extrusion of Wheat Gluten Plasticized with Glycerol: Influence of Process Conditions on Flow Behavior, Rheological Properties, and Molecular Size Distribution. Cereal Chem. 1999, 76, 361–370. [Google Scholar] [CrossRef]
- Pallos, F.M.; Robertson, G.H.; Pavlath, A.E.; Orts, W.J. Thermoformed Wheat Gluten Biopolymers. J. Agric. Food Chem. 2006, 54, 349–352. [Google Scholar] [CrossRef]
- Swain, S.N.; Biswal, S.M.; Nanda, P.K.; Nayak, P.L. Biodegradable Soy-Based Plastics: Opportunities and Challenges. J. Polym. Environ. 2004, 12, 35–42. [Google Scholar] [CrossRef]
- Gökkaya Erdem, B.; Dıblan, S.; Kaya, S. A Comprehensive Study on Sorption, Water Barrier, and Physicochemical Properties of Some Protein- and Carbohydrate-Based Edible Films. Food Bioproc. Tech. 2021, 14, 2161–2179. [Google Scholar] [CrossRef]
- Garrido, T.; Peñalba, M.; de la Caba, K.; Guerrero, P. Injection-Manufactured Biocomposites from Extruded Soy Protein with Algae Waste as a Filler. Compos. B Eng. 2016, 86, 197–202. [Google Scholar] [CrossRef]
- Mohareb, E.; Mittal, G.S. Formulation and Process Conditions for Biodegradable/Edible Soy-Based Packaging Trays. Packag. Technol. Sci. 2007, 20, 1–15. [Google Scholar] [CrossRef]
- Schmid, M.; Dallmann, K.; Bugnicourt, E.; Cordoni, D.; Wild, F.; Lazzeri, A.; Noller, K. Properties of Whey-Protein-Coated Films and Laminates as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties. Int. J. Polym. Sci. 2012, 2012, 562381. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Izquierdo, V.M.; Krochta, J.M. Thermoplastic Processing of Proteins for Film Formation—A Review. J. Food Sci. 2008, 73, R30–R39. [Google Scholar] [CrossRef] [PubMed]
- Phupoksakul, T.; Leuangsukrerk, M.; Somwangthanaroj, A.; Tananuwong, K.; Janjarasskul, T. Storage Stability of Packaged Baby Formula in Poly(Lactide)-Whey Protein Isolate Laminated Pouch. J. Sci. Food Agric. 2017, 97, 3365–3373. [Google Scholar] [CrossRef] [PubMed]
- Pankaj, S.K.; Bueno-Ferrer, C.; Misra, N.N.; O’Neill, L.; Tiwari, B.K.; Bourke, P.; Cullen, P.J. Physicochemical Characterization of Plasma-Treated Sodium Caseinate Film. Food Res. Int. 2014, 66, 438–444. [Google Scholar] [CrossRef]
- Nurdiani, R.; Ma’rifah, R.D.A.; Busyro, I.K.; Jaziri, A.A.; Prihanto, A.A.; Firdaus, M.; Talib, R.A.; Huda, N. Physical and Functional Properties of Fish Gelatin-Based Film Incorporated with Mangrove Extracts. PeerJ 2022, 10, e13062. [Google Scholar] [CrossRef] [PubMed]
- Mi, X.; Xu, H.; Yang, Y. Submicron Amino Acid Particles Reinforced 100% Keratin Biomedical Films with Enhanced Wet Properties via Interfacial Strengthening. Colloids Surf. B Biointerfaces 2019, 177, 33–40. [Google Scholar] [CrossRef]
- Nair, S.S.; Zhu, J.Y.; Deng, Y.; Ragauskas, A.J. High Performance Green Barriers Based on Nanocellulose. Sustain. Chem. Process. 2014, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Fazeli, M.; Keley, M.; Biazar, E. Preparation and Characterization of Starch-Based Composite Films Reinforced by Cellulose Nanofibers. Int. J. Biol. Macromol. 2018, 116, 272–280. [Google Scholar] [CrossRef]
- Song, J.H.; Murphy, R.J.; Narayan, R.; Davies, G.B.H. Biodegradable and Compostable Alternatives to Conventional Plastics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2127–2139. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-H.; Lee, H.S.; Choi, J.H.; Jeong, C.M.; Sung, M.H.; Park, H.J. Improvements in Barrier Properties of Poly(Lactic Acid) Films Coated with Chitosan or Chitosan/Clay Nanocomposite. J. Appl. Polym. Sci. 2012, 125, E675–E680. [Google Scholar] [CrossRef]
- Wiles, J.L.; Vergano, P.J.; Barron, F.H.; Bunn, J.M.; Testin, R.F. Water Vapor Transmission Rates and Sorption Behavior of Chitosan Films. J. Food Sci. 2000, 65, 1175–1179. [Google Scholar] [CrossRef]
- Gu, C.-H.; Wang, J.-J.; Yu, Y.; Sun, H.; Shuai, N.; Wei, B. Biodegradable Multilayer Barrier Films Based on Alginate/Polyethyleneimine and Biaxially Oriented Poly(Lactic Acid). Carbohydr. Polym. 2013, 92, 1579–1585. [Google Scholar] [CrossRef]
- Kopacic, S.; Walzl, A.; Zankel, A.; Leitner, E.; Bauer, W. Alginate and Chitosan as a Functional Barrier for Paper-Based Packaging Materials. Coatings 2018, 8, 235. [Google Scholar] [CrossRef] [Green Version]
- Łopusiewicz, Ł.; Macieja, S.; Śliwiński, M.; Bartkowiak, A.; Roy, S.; Sobolewski, P. Alginate Biofunctional Films Modified with Melanin from Watermelon Seeds and Zinc Oxide/Silver Nanoparticles. Materials 2022, 15, 2381. [Google Scholar] [CrossRef]
- Wang, S.; Liu, B.; Qin, Y.; Guo, H. Effects of Processing Conditions and Plasticizing-Reinforcing Modification on the Crystallization and Physical Properties of PLA Films. Membranes 2021, 11, 640. [Google Scholar] [CrossRef]
- Bioplastics market. Development update 2021. Available online: https://docs.european-bioplastics.org/publications/market_data/Report_Bioplastics_Market_Data_2021_short_version.pdf (accessed on 1 June 2022).
- Thellen, C.; Coyne, M.; Froio, D.; Auerbach, M.; Wirsen, C.; Ratto, J.A. A Processing, Characterization and Marine Biodegradation Study of Melt-Extruded Polyhydroxyalkanoate (PHA) Films. J Polym Environ 2008, 16, 1–11. [Google Scholar] [CrossRef]
- Hänggi, U.J. Requirements on Bacterial Polyesters as Future Substitute for Conventional Plastics for Consumer Goods. FEMS Microbiol. Rev. 1995, 16, 213–220. [Google Scholar] [CrossRef]
- Al Rowaihi, I.S.; Kick, B.; Grötzinger, S.W.; Burger, C.; Karan, R.; Weuster-Botz, D.; Eppinger, J.; Arold, S.T. A Two-Stage Biological Gas to Liquid Transfer Process to Convert Carbon Dioxide into Bioplastic. Bioresour. Technol. Rep. 2018, 1, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.; Mori, S.; Hirata, M.; Matsusaki, H. Autotrophic Growth of Paracoccus denitrificans in Aerobic Condition and the Accumulation of Biodegradable Plastics from CO2. Environ. Ecol. Res. 2016, 4, 231–236. [Google Scholar] [CrossRef]
- Ghysels, S.; Mozumder, M.S.I.; De Wever, H.; Volcke, E.I.P.; Garcia-Gonzalez, L. Targeted Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Bioplastic Production from Carbon Dioxide. Bioresour. Technol. 2018, 249, 858–868. [Google Scholar] [CrossRef] [PubMed]
- Vytejčková, S.; Vápenka, L.; Hradecký, J.; Dobiáš, J.; Hajšlová, J.; Loriot, C.; Vannini, L.; Poustka, J. Testing of Polybutylene Succinate Based Films for Poultry Meat Packaging. Polym. Test. 2017, 60, 357–364. [Google Scholar] [CrossRef]
- Threepopnatkul, P.; Wongsuton, K.; Jaiaue, C.; Rakkietwinai, N.; Kulsetthanchalee, C. Thermal and Barrier Properties of Poly(Butylene Adipate-Coterephthalate) Incorporated with Zeolite Doped Potassium Ion for Packaging Film. IOP Conf. Ser. Mater. Sci. Eng. 2020, 773, 012042. [Google Scholar] [CrossRef]
- Guinault, A.; Messin, T.; Anderer, G.; Krawielitzki, S.; Sollogoub, C.; Roland, S.; Grandmontagne, A.; Dole, P.; Julien, J.-M.; Loriot, C.; et al. Relationship between crystallization, mechanical and gas barrier properties of poly(ethylene furanoate) (PEF) in multinanolayered PLA-PEF and PET-PEF films. In Proceedings of the ESAFORM 2021, 24th International Conference on Material Forming, Liège, Belgium, 14–16 April 2021. [Google Scholar] [CrossRef]
- Reichert, C.L.; Bugnicourt, E.; Coltelli, M.-B.; Cinelli, P.; Lazzeri, A.; Canesi, I.; Braca, F.; Martínez, B.M.; Alonso, R.; Agostinis, L.; et al. Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability. Polymers 2020, 12, 1558. [Google Scholar] [CrossRef]
- Lange, J.; Wyser, Y. Recent Innovations in Barrier Technologies for Plastic Packaging? A Review. Packag. Technol. Sci. 2003, 16, 149–158. [Google Scholar] [CrossRef]
- Tullo, A. New Route Planned to Bio-based Ethylene Glycol. C&EN Glob. Enterp. 2017, 95, 10. [Google Scholar] [CrossRef]
- Yamane, K.; Sato, H.; Ichikawa, Y.; Sunagawa, K.; Shigaki, Y. Development of an Industrial Production Technology for High-Molecular-Weight Polyglycolic Acid. Polym. J. 2014, 46, 769–775. [Google Scholar] [CrossRef]
- Hult, E.-L.; Ropponen, J.; Poppius-Levlin, K.; Ohra-Aho, T.; Tamminen, T. Enhancing the Barrier Properties of Paper Board by a Novel Lignin Coating. Ind. Crops Prod. 2013, 50, 694–700. [Google Scholar] [CrossRef]
- Bhatia, K.; Asrey, R.; Jha, S.K.; Singh, S.; Kannaujia, P.K. Influence of packaging material on quality characteristics of minimally processed Mridula pomegranate (Punica granatum) arils during cold storage. Indian J. Agric. Sci. 2013, 83, 872–876. [Google Scholar]
- Lindström, T.; Österberg, F. Evolution of Bio-based and Nanotechnology Packaging—A Review. Nord. Pulp Paper Res. J. 2020, 35, 491–515. [Google Scholar] [CrossRef]
- Bucio, A.; Moreno-Tovar, R.; Bucio, L.; Espinosa-Dávila, J.; Anguebes-Franceschi, F. Characterization of Beeswax, Candelilla Wax and Paraffin Wax for Coating Cheeses. Coatings 2021, 11, 261. [Google Scholar] [CrossRef]
- Hassan, B.; Chatha, S.A.S.; Hussain, A.I.; Zia, K.M.; Akhtar, N. Recent Advances on Polysaccharides, Lipids and Protein-Based Edible Films and Coatings: A Review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Hult, E.-L.; Koivu, K.; Asikkala, J.; Ropponen, J.; Wrigstedt, P.; Sipilä, J.; Poppius-Levlin, K. Esterified Lignin Coating as Water Vapor and Oxygen Barrier for Fiber-Based Packaging. Holzforschung 2013, 67, 899–905. [Google Scholar] [CrossRef]
- Geueke, B. FPF Dossier: Bioplastics. 2015. Zenodo. Available online: https://doi.org/10.5281/ZENODO.33517 (accessed on 3 July 2022).
- Shlush, E.; Davidovich-Pinhas, M. Bioplastics for Food Packaging. Trends Food Sci. Technol. 2022, 125, 66–80. [Google Scholar] [CrossRef]
- Zhao, X.; Cornish, K.; Vodovotz, Y. Narrowing the Gap for Bioplastic Use in Food Packaging: An Update. Environ. Sci. Technol. 2020, 54, 4712–4732. [Google Scholar] [CrossRef]
- PlasticsBusinessMagazine. Available online: http://www.plasticsbusinessmag.com/enews/stories/050713/biodegradable.shtml#.VjgZZZca6Ao> (accessed on 27 June 2022).
- European Bioplastics. FAQ-European Bioplastics. 2021. Available online: http://www.european-bioplastics.org/market (accessed on 27 June 2022).
- Rhim, J.-W.; Hong, S.-I.; Ha, C.-S. Tensile, Water Vapor Barrier and Antimicrobial Properties of PLA/Nanoclay Composite Films. LWT 2009, 42, 612–617. [Google Scholar] [CrossRef]
- Gironi, F.; Piemonte, V. Bioplastics and Petroleum-Based Plastics: Strengths and Weaknesses. Energy Sources Recovery Util. Environ. Eff. 2011, 33, 1949–1959. [Google Scholar] [CrossRef]
- Harding, K.G.; Dennis, J.S.; von Blottnitz, H.; Harrison, S.T.L. Environmental Analysis of Plastic Production Processes: Comparing Petroleum-Based Polypropylene and Polyethylene with Biologically-Based Poly-Beta-Hydroxybutyric Acid Using Life Cycle Analysis. J. Biotechnol. 2007, 130, 57–66. [Google Scholar] [CrossRef]
- Vanderreydt, I.; Rommens, T.; Tenhunen, A.; Mortensen, L.F.; Tange, I. Greenhouse Gas Emissions and Natural Capital Implications of Plastics (Including Bio-based Plastics). Eur. Top. Cent. Waste Mater. a Green Econ. 2021.
- Kircher, M. Bioeconomy: Markets, Implications, and Investment Opportunities. Economies 2019, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Woodford, C. Bioplastics and Biodegradable Plastics-How Do They Work? Explain that St. 2020. Available online: https://www.explainthatstuff.com/bioplastics.html (accessed on 28 June 2022).
- Elsawy, M.A.; Kim, K.-H.; Park, J.-W.; Deep, A. Hydrolytic Degradation of Polylactic Acid (PLA) and Its Composites. Renew. Sustain. Energy Rev. 2017, 79, 1346–1352. [Google Scholar] [CrossRef]
- Shamsuddin, I.M.; Jafar, J.A.; Shawai, A.S.A.; Yusuf, S.; Lateefah, M.; Aminu, I. Bioplastics as Better Alternative to Petroplastics and Their Role in National Sustainability: A Review. Adv. Biosci. Bioeng. 2017, 5, 63. [Google Scholar] [CrossRef] [Green Version]
- Iwata, T. Biodegradable and Bio-Based Polymers: Future Prospects of Eco-Friendly Plastics. Angew. Chem. Int. Ed Engl. 2015, 54, 3210–3215. [Google Scholar] [CrossRef] [PubMed]
- Porta, R.; Sabbah, M. Plastic Pollution and the Challenge of Bioplastics. J. Appl. Biotechnol. Bioeng. 2017, 2, 111. [Google Scholar] [CrossRef] [Green Version]
- Bazzanella, A.M.; Ausfelder, F. Low Carbon Energy and Feedstock for the European Chemical Industry; DECHEMA, Gesellschaft für Chemische Technik und Biotechnologie eV: Frankfurt Am Main, Germany, 2017. [Google Scholar]
- Ketene, M.B. Bioeconomy: Shaping the Transition to a Sustainable, Bio-based Economy, Edited by Iris Lewandowski (Springer, 2018). Corvinus J. Sociol. Soc. Policy 2019, 10, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Popp, J.; Lakner, Z.; Harangi-Rákos, M.; Fári, M. The Effect of Bioenergy Expansion: Food, Energy, and Environment. Renew. Sustain. Energy Rev. 2014, 32, 559–578. [Google Scholar] [CrossRef] [Green Version]
- Eerhart, A.J.J.E.; Faaij, A.P.C.; Patel, M.K. Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy Environ. Sci. 2012, 5, 6407. [Google Scholar] [CrossRef]
- Liptow, C.; Tillman, A.-M. A Comparative Life Cycle Assessment Study of Polyethylene Based on Sugarcane and Crude Oil. J. Ind. Ecol. 2012, 16, 420–435. [Google Scholar] [CrossRef]
- Alvarenga, R.A.F.; Dewulf, J.; De Meester, S.; Wathelet, A.; Villers, J.; Thommeret, R.; Hruska, Z. Life Cycle Assessment of Bioethanol-Based PVC: Part 2: Consequential Approach. Biofuel. Bioprod. Biorefin. 2013, 7, 396–405. [Google Scholar] [CrossRef]
- Alvarenga, R.A.F.; Dewulf, J.; De Meester, S.; Wathelet, A.; Villers, J.; Thommeret, R.; Hruska, Z. Life Cycle Assessment of Bioethanol-Based PVC: Part 1: Attributional Approach. Biofuel. Bioprod. Biorefin. 2013, 7, 386–395. [Google Scholar] [CrossRef]
- Piemonte, V.; Gironi, F. Land-Use Change Emissions: How Green Are the Bioplastics? Environ. Prog. Sustain. Energy 2011, 30, 685–691. [Google Scholar] [CrossRef]
- Tsiropoulos, I.; Faaij, A.P.C.; Lundquist, L.; Schenker, U.; Briois, J.F.; Patel, M.K. Life Cycle Impact Assessment of Bio-Based Plastics from Sugarcane Ethanol. J. Clean. Prod. 2015, 90, 114–127. [Google Scholar] [CrossRef]
- Lamberti, F.M.; Román-Ramírez, L.A.; Wood, J. Recycling of Bioplastics: Routes and Benefits. J. Polym. Environ. 2020, 28, 2551–2571. [Google Scholar] [CrossRef]
- Raheem, A.B.; Noor, Z.Z.; Hassan, A.; Abd Hamid, M.K.; Samsudin, S.A.; Sabeen, A.H. Current Developments in Chemical Recycling of Post-Consumer Polyethylene Terephthalate Wastes for New Materials Production: A Review. J. Clean. Prod. 2019, 225, 1052–1064. [Google Scholar] [CrossRef]
- Alzuhairi, M.A.H.; Khalil, B.I.; Hadi, R.S. Nano ZnO Catalyst for Chemical Recycling of Polyethylene Terephthalate (PET). Eng. Technol. J. 2017, 35, 831–837. [Google Scholar]
- Wang, Z.; Shen, D.; Wu, C.; Gu, S. Thermal Behavior and Kinetics of Co-Pyrolysis of Cellulose and Polyethylene with the Addition of Transition Metals. Energy Convers. Manag. 2018, 172, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-H. Composition of Aromatic Products in the Catalytic Degradation of the Mixture of Waste Polystyrene and High-Density Polyethylene Using Spent FCC Catalyst. Polym. Degrad. Stab. 2008, 93, 1284–1289. [Google Scholar] [CrossRef]
- Hong, M.; Chen, E.Y.X. Chemically recyclable polymers: A circular economy approach to sustainability. Green Chem. 2017, 19, 3692–3706. [Google Scholar] [CrossRef]
- Scott, G. Photo-Biodegradable Plastics. In Degradable Polymers; Springer: Dordrecht, The Netherlands, 1995; pp. 169–185. [Google Scholar]
- Claesen, C. Hycail-More than the Other PLA Producer. In Proceedings of the RSC Symposium Sustainable Plastic: Biodegradability vs. Recycling, Manchester, UK, 8–9 March 2005; pp. 8–9. [Google Scholar]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics Recycling: Challenges and Opportunities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [Green Version]
- Odegard, I.; Nusselder, S.; Lindgreen, E.R.; Bergsma, G.; Graaff, L. Biobased Plastics in a Circular Economy. 2017. Available online: https://cedelft.eu/publications/biobased-plastics-in-a-circular-economy/ (accessed on 30 June 2022).
- Ramsay, B.A.; Langlade, V.; Carreau, P.J.; Ramsay, J.A. Biodegradability and Mechanical Properties of Poly-(Beta-Hydroxybutyrate-Co-Beta-Hydroxyvalerate)-Starch Blends. Appl. Environ. Microbiol. 1993, 59, 1242–1246. [Google Scholar] [CrossRef] [Green Version]
- Mohee, R.; Unmar, G.D.; Mudhoo, A.; Khadoo, P. Biodegradability of Biodegradable/Degradable Plastic Materials under Aerobic and Anaerobic Conditions. Waste Manag. 2008, 28, 1624–1629. [Google Scholar] [CrossRef] [PubMed]
- Knoblauch, C.; Beer, C.; Liebner, S.; Grigoriev, M.N.; Pfeiffer, E.-M. Methane Production as Key to the Greenhouse Gas Budget of Thawing Permafrost. Nat. Clim. Chang. 2018, 8, 309–312. [Google Scholar] [CrossRef]
- Stevens, E.S. Green Plastics; Princeton University Press: Princeton, NJ, USA, 2020; ISBN 0691214174. [Google Scholar]
- Mohanty, A.K.; Misra, M.; Hinrichsen, G. Biofibres, Biodegradable Polymers and Biocomposites: An Overview. Macromol. Mater. Eng. 2000, 276–277, 1–24. [Google Scholar] [CrossRef]
- Lashof, D.A.; Ahuja, D.R. Relative Contributions of Greenhouse Gas Emissions to Global Warming. Nature 1990, 344, 529–531. [Google Scholar] [CrossRef]
- Atiwesh, G.; Mikhael, A.; Parrish, C.C.; Banoub, J.; Le, T.A.T. Environmental impact of bioplastic use: A review. Heliyon 2021, 7, e07918. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xu, M.; Ye, Y.; Zhang, B. On the degradation of (micro) plastics: Degradation methods, influencing factors, environmental impacts. Sci. Total Environ. 2022, 806, 151312. [Google Scholar] [CrossRef] [PubMed]
- Emadian, S.M.; Onay, T.T.; Demirel, B. Biodegradation of Bioplastics in Natural Environments. Waste Manag. 2017, 59, 526–536. [Google Scholar] [CrossRef]
- Astner, A.F.; Hayes, D.G.; O’Neill, H.; Evans, B.R.; Pingali, S.V.; Urban, V.S.; Young, T.M. Mechanical Formation of Micro- and Nano-Plastic Materials for Environmental Studies in Agricultural Ecosystems. Sci. Total Environ. 2019, 685, 1097–1106. [Google Scholar] [CrossRef]
- Haider, T.P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F.R. Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew. Chem. Int. Ed Engl. 2019, 58, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Green, D.S.; Boots, B.; O’Connor, N.E.; Thompson, R. Microplastics affect the ecological functioning of an important biogenic habitat. Environ. Sci. Technol. 2017, 51, 68–77. [Google Scholar] [CrossRef]
- Ribba, L.; Lopretti, M.; de Oca-Vásquez, G.M.; Batista, D.; Goyanes, S.; Vega-Baudrit, J.R. Biodegradable plastics in aquatic ecosystems: Latest findings, research gaps, and recommendations. Environ. Res. Lett. 2022, 17, 033003. [Google Scholar] [CrossRef]
- Chu, J.; Zhou, J.; Wang, Y.; Jones, D.L.; Yang, Y.; Brown, R.W.; Zang, H.; Zeng, Z. Field Application of Biodegradable Microplastics Has No Significant Effect on Plant and Soil Health in the Short Term. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Lau, C.W.; Kloas, W.; Bergmann, J.; Bachelier, J.B.; Faltin, E.; Becker, R.; Görlich, A.S.; Rillig, M.C. Microplastics Can Change Soil Properties and Affect Plant Performance. Environ. Sci. Technol. 2019, 53, 6044–6052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shruti, V.C.; Kutralam-Muniasamy, G. Bioplastics: Missing Link in the Era of Microplastics. Sci. Total Environ. 2019, 697, 134139. [Google Scholar] [CrossRef] [PubMed]
- Straub, S.; Hirsch, P.E.; Burkhardt-Holm, P. Biodegradable and Petroleum-Based Microplastics Do Not Differ in Their Ingestion and Excretion but in Their Biological Effects in a Freshwater Invertebrate Gammarus fossarum. Int. J. Environ. Res. Public Health 2017, 14, 774. [Google Scholar] [CrossRef] [Green Version]
- Sintim, H.Y.; Bary, A.I.; Hayes, D.G.; English, M.E.; Schaeffer, S.M.; Miles, C.A.; Zelenyuk, A.; Suski, K.; Flury, M. Release of Micro- and Nanoparticles from Biodegradable Plastic during in Situ Composting. Sci. Total Environ. 2019, 675, 686–693. [Google Scholar] [CrossRef]
- Fojt, J.; David, J.; Přikryl, R.; Řezáčová, V.; Kučerík, J. A Critical Review of the Overlooked Challenge of Determining Micro-Bioplastics in Soil. Sci. Total Environ. 2020, 745, 140975. [Google Scholar] [CrossRef]
- Crawford, C.B.; Quinn, B. Microplastic Pollutants; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 0128094060. [Google Scholar]
- Fojt, J.; Románeková, I.; Procházková, P.; David, J.; Brtnický, M.; Kučerík, J. A Simple Method for Quantification of Polyhydroxybutyrate and Polylactic Acid Micro-Bioplastics in Soils by Evolved Gas Analysis. Molecules 2022, 27, 1898. [Google Scholar] [CrossRef]
- Davis, G.; Song, J.H. Biodegradable Packaging Based on Raw Materials from Crops and Their Impact on Waste Management. Ind. Crops Prod. 2006, 23, 147–161. [Google Scholar] [CrossRef]
- Patel, M.; Bastioli, C.; Marini, L.; Würdinger, E. Life-cycle Assessment of Bio-based Polymers and Natural Fiber Composites. Biopolym. Online 2002, 10. [Google Scholar] [CrossRef]
- Stagner, J. Methane Generation from Anaerobic Digestion of Biodegradable Plastics—A Review. Int. J. Environ. Stud. 2016, 73, 462–468. [Google Scholar] [CrossRef]
- Abraham, A.; Park, H.; Choi, O.; Sang, B.-I. Anaerobic Co-Digestion of Bioplastics as a Sustainable Mode of Waste Management with Improved Energy Production—A Review. Bioresour. Technol. 2021, 322, 124537. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo-Ilarri, J.; Rodrigo-Clavero, M.-E. Mathematical Modeling of the Biogas Production in MSW Landfills. Impact of the Implementation of Organic Matter and Food Waste Selective Collection Systems. Atmosphere 2020, 11, 1306. [Google Scholar] [CrossRef]
- Donovan, S.M.; Bateson, T.; Gronow, J.R.; Voulvoulis, N. Modelling the Behaviour of Mechanical Biological Treatment Outputs in Landfills Using the GasSim Model. Sci. Total Environ. 2010, 408, 1979–1984. [Google Scholar] [CrossRef] [PubMed]
- Van Roijen, E.C.; Miller, S.A. A Review of Bioplastics at End-of-Life: Linking Experimental Biodegradation Studies and Life Cycle Impact Assessments. Resour. Conserv. Recycl. 2022, 181, 106236. [Google Scholar] [CrossRef]
- Hobbs, S.R.; Harris, T.M.; Barr, W.J.; Landis, A.E. Life Cycle Assessment of Bioplastics and Food Waste Disposal Methods. Sustainability 2021, 13, 6894. [Google Scholar] [CrossRef]
- Heide, M.; Olsen, S.O. Influence of Packaging Attributes on Consumer Evaluation of Fresh Cod. Food Qual. Prefer. 2017, 60, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Schuch, A.F.; da Silva, A.C.; Kalschne, D.L.; da Silva-Buzanello, R.A.; Corso, M.P.; Canan, C. Chicken Nuggets Packaging Attributes Impact on Consumer Purchase Intention. Food Sci. Technol. 2019, 39, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Herbes, C.; Beuthner, C.; Ramme, I. Consumer Attitudes towards Bio-based Packaging—A Cross-Cultural Comparative Study. J. Clean. Prod. 2018, 194, 203–218. [Google Scholar] [CrossRef]
- De Marchi, E.; Pigliafreddo, S.; Banterle, A.; Parolini, M.; Cavaliere, A. Plastic Packaging Goes Sustainable: An Analysis of Consumer Preferences for Plastic Water Bottles. Environ. Sci. Policy 2020, 114, 305–311. [Google Scholar] [CrossRef]
- Zwicker, M.V.; Nohlen, H.U.; Dalege, J.; Gruter, G.-J.M.; van Harreveld, F. Applying an Attitude Network Approach to Consumer Behaviour towards Plastic. J. Environ. Psychol. 2020, 69, 101433. [Google Scholar] [CrossRef]
- Grebitus, C.; Roscoe, R.D.; Van Loo, E.J.; Kula, I. Sustainable Bottled Water: How Nudging and Internet Search Affect Consumers’ Choices. J. Clean. Prod. 2020, 267, 121930. [Google Scholar] [CrossRef]
- Orset, C.; Barret, N.; Lemaire, A. How Consumers of Plastic Water Bottles Are Responding to Environmental Policies? Waste Manag. 2017, 61, 13–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boesen, S.; Bey, N.; Niero, M. Environmental Sustainability of Liquid Food Packaging: Is There a Gap between Danish Consumers’ Perception and Learnings from Life Cycle Assessment? J. Clean. Prod. 2019, 210, 1193–1206. [Google Scholar] [CrossRef]
- Taufik, D.; Reinders, M.J.; Molenveld, K.; Onwezen, M.C. The Paradox between the Environmental Appeal of Bio-Based Plastic Packaging for Consumers and Their Disposal Behaviour. Sci. Total Environ. 2020, 705, 135820. [Google Scholar] [CrossRef]
- Zwicker, M.V.; Brick, C.; Gruter, G.-J.M.; van Harreveld, F. (Not) Doing the Right Things for the Wrong Reasons: An Investigation of Consumer Attitudes, Perceptions, and Willingness to Pay for Bio-Based Plastics. Sustainability 2021, 13, 6819. [Google Scholar] [CrossRef]
- Lynch, D.H.J.; Klaassen, P.; Broerse, J.E.W. Unraveling Dutch Citizens’ Perceptions on the Bio-Based Economy: The Case of Bioplastics, Bio-Jetfuels and Small-Scale Bio-Refineries. Ind. Crops Prod. 2017, 106, 130–137. [Google Scholar] [CrossRef]
- Reinders, M.J.; Onwezen, M.C.; Meeusen, M.J.G. Can Bio-Based Attributes Upgrade a Brand? How Partial and Full Use of Bio-Based Materials Affects the Purchase Intention of Brands. J. Clean. Prod. 2017, 162, 1169–1179. [Google Scholar] [CrossRef]
- Wensing, J.; Caputo, V.; Carraresi, L.; Bröring, S. The Effects of Green Nudges on Consumer Valuation of Bio-Based Plastic Packaging. Ecol. Econ. 2020, 178, 106783. [Google Scholar] [CrossRef]
- Koutsimanis, G.; Getter, K.; Behe, B.; Harte, J.; Almenar, E. Influences of Packaging Attributes on Consumer Purchase Decisions for Fresh Produce. Appetite 2012, 59, 270–280. [Google Scholar] [CrossRef]
- Testa, F.; Di Iorio, V.; Cerri, J.; Pretner, G. Five Shades of Plastic in Food: Which Potentially Circular Packaging Solutions Are Italian Consumers More Sensitive To. Resour. Conserv. Recycl. 2021, 173, 105726. [Google Scholar] [CrossRef]
- Steenis, N.D.; van Herpen, E.; van der Lans, I.A.; Ligthart, T.N.; van Trijp, H.C.M. Consumer Response to Packaging Design: The Role of Packaging Materials and Graphics in Sustainability Perceptions and Product Evaluations. J. Clean. Prod. 2017, 162, 286–298. [Google Scholar] [CrossRef]
- Barnes, M.; Chan-Halbrendt, C.; Zhang, Q.; Abejon, N. Consumer Preference and Willingness to Pay for Non-Plastic Food Containers in Honolulu, USA. J. Environ. Prot. 2011, 2, 1264–1273. [Google Scholar] [CrossRef] [Green Version]
- Dilkes-Hoffman, L.; Ashworth, P.; Laycock, B.; Pratt, S.; Lant, P. Public Attitudes towards Bioplastics—Knowledge, Perception and End-of-Life Management. Resour. Conserv. Recycl. 2019, 151, 104479. [Google Scholar] [CrossRef]
- Herbes, C.; Friege, C.; Baldo, D.; Mueller, K.-M. Willingness to Pay Lip Service? Applying a Neuroscience-Based Method to WTP for Green Electricity. Energy Policy 2015, 87, 562–572. [Google Scholar] [CrossRef]
- Harvey, D.; Hubbard, C. Reconsidering the Political Economy of Farm Animal Welfare: An Anatomy of Market Failure. Food Policy 2013, 38, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Weinrich, R.; Kühl, S.; Spiller, A.; Zühlsdorf, A. Consumer attitudes in Germany towards different dairy housing systems and their implications for the marketing of pasture-raised milk. Int. Food Agribus. Manag. Rev. 2014, 4, 205–222. [Google Scholar]
- Tsang, Y.F.; Kumar, V.; Samadar, P.; Yang, Y.; Lee, J.; Ok, Y.S.; Song, H.; Kim, K.-H.; Kwon, E.E.; Jeon, Y.J. Production of Bioplastic through Food Waste Valorization. Environ. Int. 2019, 127, 625–644. [Google Scholar] [CrossRef]
Malaysia | Thailand | Vietnam | USA | Japan | Germany | |
---|---|---|---|---|---|---|
Imports | 11% | 6% | 5% | |||
Exports | 16% | 15% | 13% |
Fruit By-Products | Type of Bioplastic Materials | Target Microorganisms | Physical and Mechanical Properties | References |
---|---|---|---|---|
Apricot kernel essential oil | Chitosan films | Reduction in fungal growth on packaged bread slices | Improved water resistance, increased tensile strength | [101] |
Grapefruit seed extract | Coating of alginate and chitosan films | Reduced bacteria count by 2 log CFU | Increased barrier properties | [102] |
Grapefruit seed extract | Carrageenan films | Large inhibitory zone against Listeria monocytogenes, Escherichia coli, and Bacillus cereus |
Increased water vapor permeability and surface hydrophilicity | [103] |
Coconut husk extract | Nanocomposite films or gelatin films | - | Improved water sensitivity | [87] |
Mango peel flour and extracts of mango seed kernel | Biodegradable coatings and films | - | Good barrier and antioxidant activity | [104] |
Mango kernel extract | Soy protein isolate and fish gelatin films | - | Thicker and more translucent films, increased tensile strength, decreased the water solubility, and increased antioxidant activity | [105] |
Apple peel polyphenols | Chitosan films | - | Increased thickness, density, solubility, opacity, and swelling ratio, and antioxidant and antimicrobial activities | [106] |
Apple skin extract | Carboxymethylcellulose films | Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, and Shigella flexneri | Enhanced mechanical, water barrier, solubility, and antioxidant and antimicrobial activities | [107] |
Banana peel extract | Chitosan films | - | Reduced hydrophilicity and excellent antioxidant activity | [108] |
Pomegranate peel extract | Chitosan–pullulan composite edible coatings | - | Resistance to water loss and gas transpiration | [109] |
Pomegranate peel powder | Gelatin films | Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli | Increased antioxidant and antimicrobial activities | [110] |
Pomegranate peel extract | Zein films | Staphylococcus aureus, Escherichia coli, Pseudomonas perfringens, Micrococcus luteus, Enterococci faecalis, Proteus vulgaris, and Salmonella typhii | Increased tensile strength and antioxidant Activity, and decreased film solubility and water vapor transmission rate | [111] |
Blackcurrant pomace powder | Pectin-based films | - | Increased water vapor permeability and antioxidant activity, and decreased tensile strength | [112] |
Vegetable By-Products | Type of Bioplastic Materials | Target Microorganisms | Physical and Mechanical Properties | References |
---|---|---|---|---|
Whole potato peel | Active biodegradable films incorporated with bacterial cellulose and curcumin | - | Improved tensile strength, reduced water vapor, permeability, oxygen permeability, and moisture content | [113] |
Tomato extract | PVOH films mixed with chitosan and itaconic acid | Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella enterica Enteritidis, and Salmonella enterica Typhimurium | Improved physical properties | [114] |
Lycopene from tomato extract | Poly-lactic acid films | - | Improved barrier against light and oxygen | [115] |
Red cabbage extracts | Gelatin films | - | Increased water solubility, water vapor permeability | [116] |
Red cabbage extracts | Active fish gelatin films | - | Improved water and mechanical resistance, and antioxidant activity | [117] |
Red cabbage anthocyanins | PVOH and starch, propolis, anthocyanins, and rosemary extract composite films | Escherichia coli, Staphylococcus aureus | Improved mechanical strength | [118] |
Solid sweet potato by-product | Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composites | - | Increased thermal stability | [119] |
β-carotene from carrot | Films based on cassava starch | - | Increased thickness, and greater stability and solubility | [120] |
Tomato-based pigments | PVOH-based biofilms | - | Reduced transparency and increased mechanical resistance | [121] |
Okra mucilage | Carboxymethyl cellulose with ZnO nanoparticle nanocomposite films | Staphylococcus aureus | Reduced microbial growth, oxidation, and gas production. | [122] |
Class | Degradability | Barrier | Processability | Feedstock | Application | FC | Price | Prod | References | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | H | I | N | O | W | I | C | E | T | B | P | N | W | S | C | T | B | P | C | F | |||||
Proteins | |||||||||||||||||||||||||
Zein | X | X | X | - | B | D | X | X | X | X | X | - | X | X | X | - | ? | ? | ? | X | X | + | B | ? | [174,175,176,177,178,179,180,181] |
Gluten | X | X | X | - | B-C | C-E | X | X | X | X | ? | - | X | X | X | - | ? | ? | ? | X | X | + | ? | ? | [182,183,184,185,186,187] |
Soy | X | X | X | - | C | D | X | X | X | ? | ? | - | X | X | X | - | X | ? | ? | X | X | + | B | ? | [188,189,190,191] |
Whey | X | X | X | - | A-B | A-B | X | X | X | ? | ? | - | X | X | X | - | ? | ? | X | X | X | + | C | ? | [192,193,194] |
Casein | X | X | X | - | A | C | ? | ? | ? | ? | ? | - | X | X | X | - | ? | ? | ? | X | X | + | B-C | ? | [195] |
Collagen | X | X | X | - | - | C | ? | ? | ? | ? | ? | - | X | X | X | - | ? | ? | ? | X | X | + | C | ? | [196] |
Keratin | X | X | X | - | - | A-B | ? | ? | ? | ? | ? | - | X | X | X | - | ? | ? | ? | X | X | + | ? | ? | [197] |
Carbohydrates | |||||||||||||||||||||||||
Cellulose-based | X | X | X | C | D | X | X | X | ? | ? | - | X | X | X | X | - | X | X | X | + | A-B | B | [198] | ||
Starch-based | X | X | X | - | C | C-D | X | X | X | ? | ? | - | X | ? | X | X | X | X | X | X | X | + | B | A | [199,200] |
Chitosan | X | X | X | - | B-C | C-D | - | X | - | - | - | - | X | X | ? | ? | ? | ? | ? | X | X | + | B-D | ? | [201,202] |
Alginate | X | X | X | - | B | D-E | - | X | - | - | - | - | X | X | ? | ? | ? | ? | ? | X | X | + | B | - | [203,204,205] |
Polyesters | |||||||||||||||||||||||||
PLA | - | - | X | - | D | D | X | X | X | X | X | - | X | X | X | - | X | X | X | X | X | + | A-B | A | [168,201,206,207] |
PHA | X | X | X | - | C | C | X | X | X | X | X | - | X | X | X | X | X | X | ? | X | X | + | D | C | [70,208,209,210,211,212] |
PBS | - | X | X | - | D | B-C | X | X | X | X | ? | X | X | - | X | - | X | X | ? | X | X | + | B-C | B | [213] |
PBAT | ? | X | X | - | D | C | X | X | X | X | ? | X | - | - | - | - | X | X | X | X | X | + | B | A | [214] |
PEF | - | - | - | X | B | B-C | X | X | X | X | X | - | X | X | X | - | X | X | ? | ? | ? | ~ | B | D | [164,215,216] |
Bio-PET | - | - | - | X | D | C | X | X | X | X | X | X | X | X | X | - | X | X | X | X | X | + | A-B | A | [164,217,218] |
PGA | ? | X | X | - | B | B | X | X | ? | ? | ? | X | X | ? | ? | ? | ? | ? | ? | ? | ? | - | B | ? | [219] |
Ethers | |||||||||||||||||||||||||
Lignin-based | ? | X | X | - | E | D | ? | ? | ? | ? | ? | - | X | X | - | - | ? | ? | ? | X | X | ~ | A-B | ? | [220] |
Polyolefins | |||||||||||||||||||||||||
Bio-PE | - | - | - | X | E | B | X | X | X | X | X | X | X | X | X | - | X | X | X | X | X | X | A-B | A | [164,221] |
Lipid-based | |||||||||||||||||||||||||
Waxes | ? | X | X | - | E | B-C | X | ? | ? | ? | ? | X | X | X | - | - | ? | ? | ? | X | X | X | B | ? | [222,223,224] |
Fatty Acid-based | ? | X | X | - | ? | ? | ? | ? | ? | ? | ? | - | X | X | - | - | ? | ? | ? | X | X | + | ? | ? | [225] |
Packaged Products | Number of Studies | Studies |
---|---|---|
Water | 6 | [292,293,294,295,296,297,298] |
Coca Cola/other colas | 3 | [296,299,300] |
Fruit | 2 | [301,302] |
Juice | 1 | [303] |
Beer | 1 | [296] |
Soup | 1 | [304] |
Takeout food | 1 | [305] |
Food in general (unspecified) | 1 | [306] |
Studies | Price premium | Method | Remarks |
---|---|---|---|
[305] | N/A | Choice-based conjoint | The study only tested bio-based alternatives, no fossil alternatives |
[292] | 0.07 Euro / bottle (PLA) 0.05 Euro / bottle (bio-PET) | Choice-based conjoint | Percentages were not shown and could not be calculated |
[295] | 25% PLA over PET (mean) 22–35% depending on treatment 13% PLA over PEF 6–17% depending on the treatment | Direct | Treatments: different messages on the environmental effects of different plastics |
[301] | Control group: 23% Other groups: 19–51% (depending on the treatment) | Choice-based conjoint | Treatments: e.g., pictures, normative messages |
[293] study 2 | 21% | Direct | |
[293] study 3 | 18% | Direct | |
[298] Study 2 | 30% | Direct | |
[298] Study 3 | 20% | Direct | |
[298] Study 4 | 8% | Direct |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz, R.M.S.; Krauter, V.; Krauter, S.; Agriopoulou, S.; Weinrich, R.; Herbes, C.; Scholten, P.B.V.; Uysal-Unalan, I.; Sogut, E.; Kopacic, S.; et al. Bioplastics for Food Packaging: Environmental Impact, Trends and Regulatory Aspects. Foods 2022, 11, 3087. https://doi.org/10.3390/foods11193087
Cruz RMS, Krauter V, Krauter S, Agriopoulou S, Weinrich R, Herbes C, Scholten PBV, Uysal-Unalan I, Sogut E, Kopacic S, et al. Bioplastics for Food Packaging: Environmental Impact, Trends and Regulatory Aspects. Foods. 2022; 11(19):3087. https://doi.org/10.3390/foods11193087
Chicago/Turabian StyleCruz, Rui M. S., Victoria Krauter, Simon Krauter, Sofia Agriopoulou, Ramona Weinrich, Carsten Herbes, Philip B. V. Scholten, Ilke Uysal-Unalan, Ece Sogut, Samir Kopacic, and et al. 2022. "Bioplastics for Food Packaging: Environmental Impact, Trends and Regulatory Aspects" Foods 11, no. 19: 3087. https://doi.org/10.3390/foods11193087
APA StyleCruz, R. M. S., Krauter, V., Krauter, S., Agriopoulou, S., Weinrich, R., Herbes, C., Scholten, P. B. V., Uysal-Unalan, I., Sogut, E., Kopacic, S., Lahti, J., Rutkaite, R., & Varzakas, T. (2022). Bioplastics for Food Packaging: Environmental Impact, Trends and Regulatory Aspects. Foods, 11(19), 3087. https://doi.org/10.3390/foods11193087