Whey-Adapted versus Natural Cow’s Milk Formulation: Distinctive Feeding Responses and Post-Ingestive c-Fos Expression in Laboratory Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Milk Formulations Used in the Studies
2.3. Feeding Studies
2.3.1. Energy Deprivation-Induced Intake of Whey-Adapted vs. Control CM Formulation
2.3.2. Intake of Whey-Adapted vs. Control CM Formulation in Non-Deprived Animals
2.3.3. Preference for the Simultaneously Presented Whey-Adapted vs. Control CM Formulation (Two-Bottle Choice)
2.3.4. Preference for the Simultaneously Presented Whey-Adapted vs. Control CM and GM Formulations (Two-Bottle Choice)
2.4. c-Fos Expression in the Feeding-Related Brain Circuit after Consumption of the Same Amount of the Control 20:80 versus Whey-Adapted CM Formulation
2.5. Activation of Oxytocin (OT) Neurons after Consumption of the Same Amount of the Control 20:80 versus Whey-Adapted CM Formulation
2.6. Effect of Pharmacological Blockade of the OT Receptor on Consumption of Whey-Adapted vs. Control CM Formulation in Non-Deprived Animals
2.7. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, G.H.; Moore, S.E. Dietary proteins in the regulation of food intake and body weight in humans. J. Nutr. 2004, 134, 974S–979S. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Sun, Q.; Giovannucci, E.; Mozaffarian, D.; Manson, J.E.; Willett, W.C.; Hu, F.B. Dairy consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. BMC Med. 2014, 12, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirahatake, K.M.; Slavin, J.L.; Maki, K.C.; Adams, S.H. Associations between dairy foods, diabetes, and metabolic health: Potential mechanisms and future directions. Metabolism 2014, 63, 618–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasiakos, S.M. Metabolic advantages of higher protein diets and benefits of dairy foods on weight management, glycemic regulation, and bone. J. Food Sci. 2015, 80, A2–A7. [Google Scholar] [CrossRef]
- Jahan-Mihan, A.; Luhovyy, B.L.; El Khoury, D.; Anderson, G.H. Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract. Nutrients 2011, 3, 574–603. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.W.; Haenlein, G.F.W. Milk and Dairy Products in Human Nutrition: Production, Composition and Health; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Goedhart, A.C.; Bindels, J.G. The composition of human milk as a model for the design of infant formulas: Recent findings and possible applications. Nutr. Res. Rev. 1994, 7, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Heird, W.C. Progress in promoting breast-feeding, combating malnutrition, and composition and use of infant formula, 1981–2006. J. Nutr. 2007, 137, 499s–502s. [Google Scholar] [CrossRef] [Green Version]
- Lönnerdal, B. Nutritional and physiologic significance of human milk proteins. Am. J. Clin. Nutr. 2003, 77, 1537S–1543S. [Google Scholar] [CrossRef] [PubMed]
- Zemel, M.B. Role of calcium and dairy products in energy partitioning and weight management. Am. J. Clin. Nutr. 2004, 79, 907S–912S. [Google Scholar] [CrossRef] [Green Version]
- Boirie, Y.; Dangin, M.; Gachon, P.; Vasson, M.-P.; Maubois, J.-L.; Beaufrère, B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. USA 1997, 94, 14930–14935. [Google Scholar] [CrossRef] [Green Version]
- Dangin, M.; Boirie, Y.; Garcia-Rodenas, C.; Gachon, P.; Fauquant, J.; Callier, P.; Ballevre, O.; Beaufrere, B. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E340–E348. [Google Scholar] [CrossRef] [Green Version]
- Luiking, Y.C.; Abrahamse, E.; Ludwig, T.; Boirie, Y.; Verlaan, S. Protein type and caloric density of protein supplements modulate postprandial amino acid profile through changes in gastrointestinal behaviour: A randomized trial. Clin. Nutr. 2016, 35, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ye, A.; Lin, Q.; Han, J.; Singh, H. Gastric digestion of milk protein ingredients: Study using an in vitro dynamic model. J. Dairy Sci. 2018, 101, 6842–6852. [Google Scholar] [CrossRef] [Green Version]
- Dalziel, J.E.; Young, W.; McKenzie, C.M.; Haggarty, N.W.; Roy, N.C. Gastric Emptying and Gastrointestinal Transit Compared among Native and Hydrolyzed Whey and Casein Milk Proteins in an Aged Rat Model. Nutrients 2017, 9, 1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsset-Baglieri, A.; Fromentin, G.; Airinei, G.; Pedersen, C.; Leonil, J.; Piedcoq, J.; Remond, D.; Benamouzig, R.; Tome, D.; Gaudichon, C. Milk protein fractions moderately extend the duration of satiety compared with carbohydrates independently of their digestive kinetics in overweight subjects. Br. J. Nutr. 2014, 112, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Meyer, R.; Foong, R.-X.M.; Thapar, N.; Kritas, S.; Shah, N. Systematic review of the impact of feed protein type and degree of hydrolysis on gastric emptying in children. BMC Gastroenterol. 2015, 15, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calbet, J.A.; Holst, J.J. Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans. Eur. J. Nutr. 2004, 43, 127–139. [Google Scholar] [CrossRef]
- Hall, W.L.; Millward, D.J.; Long, S.J.; Morgan, L.M. Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite. Br. J. Nutr. 2003, 89, 239–248. [Google Scholar] [CrossRef]
- Reidelberger, R.; Haver, A.; Chelikani, P.K. Role of peptide YY(3–36) in the satiety produced by gastric delivery of macronutrients in rats. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E944–E950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zapata, R.C.; Singh, A.; Chelikani, P.K. Peptide YY mediates the satiety effects of diets enriched with whey protein fractions in male rats. FASEB J. 2018, 32, 850–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Khoury, D.; Vien, S.; Sanchez-Hernandez, D.; Kung, B.; Wright, A.; Goff, H.D.; Anderson, G.H. Increased milk protein content and whey-to-casein ratio in milk served with breakfast cereal reduce postprandial glycemia in healthy adults: An examination of mechanisms of action. J. Dairy Sci. 2019, 102, 6766–6780. [Google Scholar] [CrossRef]
- Hoefle, A.S.; Bangert, A.M.; Stamfort, A.; Gedrich, K.; Rist, M.J.; Lee, Y.M.; Skurk, T.; Daniel, H. Metabolic responses of healthy or prediabetic adults to bovine whey protein and sodium caseinate do not differ. J. Nutr. 2015, 145, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; DiSilvio, B.; Fernstrom, M.H.; Fernstrom, J.D. Meal ingestion, amino acids and brain neurotransmitters: Effects of dietary protein source on serotonin and catecholamine synthesis rates. Physiol. Behav. 2009, 98, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Orosco, M.; Rouch, C.; Beslot, F.; Feurte, S.; Regnault, A.; Dauge, V. Alpha-lactalbumin-enriched diets enhance serotonin release and induce anxiolytic and rewarding effects in the rat. Behav. Brain Res. 2004, 148, 1–10. [Google Scholar] [CrossRef]
- Pal, S.; Radavelli-Bagatini, S.; Hagger, M.; Ellis, V. Comparative effects of whey and casein proteins on satiety in overweight and obese individuals: A randomized controlled trial. Eur. J. Clin. Nutr. 2014, 68, 980–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Pezeshki, A.; Zapata, R.C.; Yee, N.J.; Knight, C.G.; Tuor, U.I.; Chelikani, P.K. Diets enriched in whey or casein improve energy balance and prevent morbidity and renal damage in salt-loaded and high-fat-fed spontaneously hypertensive stroke-prone rats. J. Nutr. Biochem. 2016, 37, 47–59. [Google Scholar] [CrossRef]
- Hodgkinson, A.J.; Wallace, O.A.M.; Smolenski, G.; Prosser, C.G. Gastric digestion of cow and goat milk: Peptides derived from simulated conditions of infant digestion. Food Chem. 2019, 276, 619–625. [Google Scholar] [CrossRef]
- Nilsson, M.; Holst, J.J.; Bjorck, I.M. Metabolic effects of amino acid mixtures and whey protein in healthy subjects: Studies using glucose-equivalent drinks. Am. J. Clin. Nutr. 2007, 85, 996–1004. [Google Scholar] [CrossRef] [Green Version]
- Pezeshki, A.; Fahim, A.; Chelikani, P.K. Dietary Whey and Casein Differentially Affect Energy Balance, Gut Hormones, Glucose Metabolism, and Taste Preference in Diet-Induced Obese Rats. J. Nutr. 2015, 145, 2236–2244. [Google Scholar] [CrossRef] [Green Version]
- Wood, E.L.; Christian, D.G.; Arafat, M.; McColl, L.K.; Prosser, C.G.; Carpenter, E.A.; Levine, A.S.; Klockars, A.; Olszewski, P.K. Adjustment of Whey:Casein Ratio from 20:80 to 60:40 in Milk Formulation Affects Food Intake and Brainstem and Hypothalamic Neuronal Activation and Gene Expression in Laboratory Mice. Foods 2021, 10, 658. [Google Scholar] [CrossRef]
- Lawson, E.A.; Olszewski, P.K.; Weller, A.; Blevins, J.E. The role of oxytocin in regulation of appetitive behaviour, body weight and glucose homeostasis. J. Neuroendocr. 2020, 32, e12805. [Google Scholar] [CrossRef] [PubMed]
- Herisson, F.M.; Brooks, L.L.; Waas, J.R.; Levine, A.S.; Olszewski, P.K. Functional relationship between oxytocin and appetite for carbohydrates versus saccharin. Neuroreport 2014, 25, 909–914. [Google Scholar] [CrossRef]
- Olszewski, P.K.; Klockars, A.; Olszewska, A.M.; Fredriksson, R.; Schiöth, H.B.; Levine, A.S. Molecular, immunohistochemical, and pharmacological evidence of oxytocin’s role as inhibitor of carbohydrate but not fat intake. Endocrinology 2010, 151, 4736–4744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klockars, A.; Wood, E.L.; Gartner, S.N.; McColl, L.K.; Levine, A.S.; Carpenter, E.A.; Prosser, C.G.; Olszewski, P.K. Palatability of Goat’s versus Cow’s Milk: Insights from the Analysis of Eating Behavior and Gene Expression in the Appetite-Relevant Brain Circuit in Laboratory Animal Models. Nutrients 2019, 11, 720. [Google Scholar] [CrossRef] [Green Version]
- Olszewski, P.K.; Cedernaes, J.; Olsson, F.; Levine, A.S.; Schioth, H.B. Analysis of the network of feeding neuroregulators using the Allen Brain Atlas. Neurosci. Biobehav. Rev. 2008, 32, 945–956. [Google Scholar] [CrossRef] [Green Version]
- Olszewski, P.K.; Billington, C.J.; Levine, A.S. Fos expression in feeding-related brain areas following intracerebroventricular administration of orphanin FQ in rats. Brain Res. 2000, 855, 171–175. [Google Scholar] [CrossRef]
- Li, D.; Olszewski, P.K.; Shi, Q.; Grace, M.K.; Billington, C.J.; Kotz, C.M.; Levine, A.S. Effect of opioid receptor ligands injected into the rostral lateral hypothalamus on c-fos and feeding behavior. Brain Res. 2006, 1096, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Olszewski, P.K.; Klockars, A.; Schioth, H.B.; Levine, A.S. Oxytocin as feeding inhibitor: Maintaining homeostasis in consummatory behavior. Pharmacol. Biochem. Behav. 2010, 97, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Potier, M.; Fromentin, G.; Calvez, J.; Benamouzig, R.; Martin-Rouas, C.; Pichon, L.; Tomé, D.; Marsset-Baglieri, A. A high-protein, moderate-energy, regular cheesy snack is energetically compensated in human subjects. Br. J. Nutr. 2009, 102, 625–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olszewski, P.K.; Shaw, T.J.; Grace, M.K.; Hoglund, C.E.; Fredriksson, R.; Schioth, H.B.; Levine, A.S. Complexity of neural mechanisms underlying overconsumption of sugar in scheduled feeding: Involvement of opioids, orexin, oxytocin and NPY. Peptides 2009, 30, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Olszewski, P.K.; McColl, L.K.; Herisson, F.M.; Klockars, A.; Levine, A.S. Blunted hyperphagic and c-Fos immunoreactivity responsiveness to an orexigen, butorphanol tartrate, in aged rats. Neurosci. Lett. 2019, 711, 134409. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.S.; Grace, M.K.; Cleary, J.P.; Billington, C.J. Naltrexone infusion inhibits the development of preference for a high-sucrose diet. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R1149–R1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olszewski, P.K.; Levine, A.S. Central opioids and consumption of sweet tastants: When reward outweighs homeostasis. Physiol. Behav. 2007, 91, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Alsio, J.; Olszewski, P.K.; Levine, A.S.; Schioth, H.B. Feed-forward mechanisms: Addiction-like behavioral and molecular adaptations in overeating. Front. Neuroendocr. 2012, 33, 127–139. [Google Scholar] [CrossRef]
- Leibowitz, S.F.; Hammer, N.J.; Chang, K. Hypothalamic paraventricular nucleus lesions produce overeating and obesity in the rat. Physiol. Behav. 1981, 27, 1031–1040. [Google Scholar] [CrossRef]
- Johnstone, L.E.; Fong, T.M.; Leng, G. Neuronal activation in the hypothalamus and brainstem during feeding in rats. Cell Metab. 2006, 4, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Rinaman, L. Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res. 2010, 1350, 18–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horst, G.J.T.; De Boer, P.; Luiten, P.G.M.; Van Willigen, J.D. Ascending projections from the solitary tract nucleus to the hypothalamus. A Phaseolus vulgaris lectin tracing study in the rat. Neuroscience 1989, 31, 785–797. [Google Scholar] [CrossRef]
- Kang, L.; Routh, V.H.; Kuzhikandathil, E.V.; Gaspers, L.D.; Levin, B.E. Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes 2004, 53, 549–559. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, E.B.; Culbert, K.M.; Gradl, D.R.; Richardson, K.A.; Klump, K.L.; Sisk, C.L. Differential mesocorticolimbic responses to palatable food in binge eating prone and binge eating resistant female rats. Physiol. Behav. 2015, 152, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Pomonis, J.D.; Jewett, D.C.; Kotz, C.M.; Briggs, J.E.; Billington, C.J.; Levine, A.S. Sucrose consumption increases naloxone-induced c-Fos immunoreactivity in limbic forebrain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 278, R712–R719. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Brands, B.; Grote, V.; Kirchberg, F.F.; Prell, C.; Rzehak, P.; Uhl, O.; Weber, M.; Early Nutrition Programming Project. Long-Term Health Impact of Early Nutrition: The Power of Programming. Ann. Nutr. Metab. 2017, 70, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.J.; Sullivan, T.; Gibson, R.A.; Lonnerdal, B.; Prosser, C.G.; Lowry, D.J.; Makrides, M. Nutritional adequacy of goat milk infant formulas for term infants: A double-blind randomised controlled trial. Br. J. Nutr. 2014, 111, 1641–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, S.J.; Hawke, K.; Collins, C.T.; Gibson, R.A.; Makrides, M. Does maternal smoking in pregnancy explain the differences in the body composition trajectory between breastfed and formula-fed infants? Br. J. Nutr. 2020, 123, 402–409. [Google Scholar] [CrossRef]
Composition (g/100 mL Milk) | Control CM (Natural 20:80 Whey:Casein) | Whey+ CM (60:40 Whey:Casein) | Control GM (Natural 20:80 Whey:Casein) | Whey+ GM (60:40 Whey:Casein) | Human |
---|---|---|---|---|---|
Energy (kJ) | 286.5 | 273.5 | 278.1 | 275.5 | 275 |
Protein (g) | 1.6 | 1.4 | 1.3 | 1.4 | 0.97 |
Lactose (g) | 7.3 | 7.2 | 7.5 | 7.1 | 6.5 |
Fat (g) | 3.8 | 3.4 | 3.5 | 3.5 | 3.4 |
αS1 casein (g) | 0.43 | 0.19 | - | - | 0.039 |
αS2 casein (g) | 0.13 | 0.06 | 0.21 | 0.12 | - |
B casein (g) | 0.54 | 0.24 | 0.66 | 0.38 | 0.29 |
κ casein (g) | 0.14 | 0.06 | 0.1 | 0.06 | 0.078 |
B-lactoglobulin (g) | 0.26 | 0.61 | 0.22 | 0.57 | - |
α-lactalbumin (g) | 0.06 | 0.15 | 0.08 | 0.2 | 0.24 |
Other whey proteins (g) | 0.03 | 0.08 | 0.03 | 0.07 | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wood, E.L.; Gartner, S.N.; Klockars, A.; McColl, L.K.; Christian, D.G.; Jervis, R.E.; Prosser, C.G.; Carpenter, E.A.; Olszewski, P.K. Whey-Adapted versus Natural Cow’s Milk Formulation: Distinctive Feeding Responses and Post-Ingestive c-Fos Expression in Laboratory Mice. Foods 2022, 11, 141. https://doi.org/10.3390/foods11020141
Wood EL, Gartner SN, Klockars A, McColl LK, Christian DG, Jervis RE, Prosser CG, Carpenter EA, Olszewski PK. Whey-Adapted versus Natural Cow’s Milk Formulation: Distinctive Feeding Responses and Post-Ingestive c-Fos Expression in Laboratory Mice. Foods. 2022; 11(2):141. https://doi.org/10.3390/foods11020141
Chicago/Turabian StyleWood, Erin L., Sarah N. Gartner, Anica Klockars, Laura K. McColl, David G. Christian, Robin E. Jervis, Colin G. Prosser, Elizabeth A. Carpenter, and Pawel K. Olszewski. 2022. "Whey-Adapted versus Natural Cow’s Milk Formulation: Distinctive Feeding Responses and Post-Ingestive c-Fos Expression in Laboratory Mice" Foods 11, no. 2: 141. https://doi.org/10.3390/foods11020141
APA StyleWood, E. L., Gartner, S. N., Klockars, A., McColl, L. K., Christian, D. G., Jervis, R. E., Prosser, C. G., Carpenter, E. A., & Olszewski, P. K. (2022). Whey-Adapted versus Natural Cow’s Milk Formulation: Distinctive Feeding Responses and Post-Ingestive c-Fos Expression in Laboratory Mice. Foods, 11(2), 141. https://doi.org/10.3390/foods11020141