Vegan Egg: A Future-Proof Food Ingredient?
Abstract
:1. Introduction
2. Global Market Landscape of Vegan Eggs
3. Major Components of Vegan Eggs
4. Nutritional Value of Vegan Eggs
5. Main Food Applications of Vegan Eggs
5.1. Egg-Free and Egg-Reduced Mayonnaise
5.2. Egg-Free and Egg-Reduced Bakery Products
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mirzanajafi-Zanjani, M.; Yousefi, M.; Ehsani, A. Challenges and approaches for production of a healthy and functional mayonnaise sauce. Food Sci. Nutr. 2019, 7, 2471–2484. [Google Scholar] [CrossRef] [PubMed]
- Bhat, Z.F.; Morton, J.D.; Bekhit, A.E.D.A.; Kumar, S.; Bhat, H.F. Effect of processing technologies on the digestibility of egg proteins. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4703–4738. [Google Scholar] [CrossRef]
- Réhault-Godbert, S.; Guyot, N.; Nys, Y. The golden egg: Nutritional value, bioactivities, and emerging benefits for human health. Nutrients 2019, 11, 684. [Google Scholar] [CrossRef] [Green Version]
- Maeta, A.; Matsushima, M.; Katahira, R.; Sakamoto, N.; Takahashi, K. Diets Supplemented with 1% Egg White Induce Oral Desensitization and Immune Tolerance in an Egg White-Specific Allergic Mouse Model. Int. Arch. Allergy Immunol. 2018, 176, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Drouin-Chartier, J.P.; Chen, S.; Li, Y.; Schwab, A.L.; Stampfer, M.J.; Sacks, F.M.; Rosner, B.; Willett, W.C.; Hu, F.B.; Bhupathiraju, S.N. Egg consumption and risk of cardiovascular disease: Three large prospective US cohort studies, systematic review, and updated meta-analysis. BMJ 2020, 368, 1986–2012. [Google Scholar] [CrossRef] [Green Version]
- Xia, P.F.; Pan, X.F.; Chen, C.; Wang, Y.; Ye, Y.; Pan, A. Dietary intakes of eggs and cholesterol in relation to all-cause and heart disease mortality: A prospective cohort study. J. Am. Heart Assoc. 2020, 9, 15743. [Google Scholar] [CrossRef]
- Zhuang, P.; Wu, F.; Mao, L.; Zhu, F.; Zhang, Y.; Chen, X.; Jiao, J.; Zhang, Y. Egg and cholesterol consumption and mortality from cardiovascular and different causes in the United States: A population-based cohort study. PLoS Med. 2021, 18, e1003508. [Google Scholar] [CrossRef] [PubMed]
- FAO. The Future of Food and Agriculture; FAO: Rome, Italy, 2017. [Google Scholar]
- Hafez, H.M.; Attia, Y.A. Challenges to the Poultry Industry: Current Perspectives and Strategic Future After the COVID-19 Outbreak. Front. Vet. Sci. 2020, 7, 516. [Google Scholar] [CrossRef]
- Sanchez-Sabate, R.; Sabaté, J. Consumer attitudes towards environmental concerns of meat consumption: A systematic review. Int. J. Environ. Res. Public Health 2019, 16, 1220. [Google Scholar] [CrossRef] [Green Version]
- Kopplin, C.S.; Rausch, T.M. Above and beyond meat: The role of consumers’ dietary behavior for the purchase of plant-based food substitutes. Rev. Manag. Sci. 2021, 1–30. [Google Scholar] [CrossRef]
- Al Sattar, A.; Mahmud, R.; Mohsin, M.A.S.; Chisty, N.N.; Uddin, M.H.; Irin, N.; Barnett, T.; Fournie, G.; Houghton, E.; Hoque, M.A. COVID-19 Impact on Poultry Production and Distribution Networks in Bangladesh. Front. Sustain. Food Syst. 2021, 5, 306. [Google Scholar] [CrossRef]
- Whiley, H.; Ross, K. Salmonella and Eggs: From Production to Plate. Int. J. Environ. Res. Public Health 2015, 12, 2543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reich, H.; Triacchini, G.A. Occurrence of residues of fipronil and other acaricides in chicken eggs and poultry muscle/fat. EFSA J. 2018, 16, e05164. [Google Scholar] [CrossRef]
- Mund, M.D.; Khan, U.H.; Tahir, U.; Mustafa, B.E.; Fayyaz, A. Antimicrobial drug residues in poultry products and implications on public health: A review. Int. J. Food Prop. 2016, 20, 1433–1446. [Google Scholar] [CrossRef]
- Kang, J.; Hossain, M.A.; Park, H.C.; Jeong, O.M.; Park, S.W.; Her, M. Cross-Contamination of Enrofloxacin in Veterinary Medicinal and Nutritional Products in Korea. Antibiotics 2021, 10, 128. [Google Scholar] [CrossRef] [PubMed]
- Dang, T.D.; Peters, R.L.; Koplin, J.J.; Dharmage, S.C.; Gurrin, L.C.; Ponsonby, A.-L.; Martino, D.J.; Neeland, M.; Tang, M.L.K.; Allen, K.J.; et al. Egg allergen specific IgE diversity predicts resolution of egg allergy in the population cohort HealthNuts. Allergy 2019, 74, 318–326. [Google Scholar] [CrossRef]
- Sabouraud, M.; Biermé, P.; Andre-Gomez, S.A.; Villard-Truc, F.; Corréard, A.K.; Garnier, L.; Payot, F.; Braun, C. Oral immunotherapy in food allergies: A practical update for pediatricians. Arch. Pediatr. 2021, 28, 319–324. [Google Scholar] [CrossRef]
- Mills, E.N.C. Allergies: Public Health: From Encyclopedia Food and Health; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; pp. 115–121. [Google Scholar] [CrossRef]
- Sakai, S.; Adachi, R.; Teshima, R. Detection and control of eggs as a food allergen. Handb. Food Allerg. Detect. Control 2015, 313–340. [Google Scholar] [CrossRef]
- Uneoka, K.; Horino, S.; Ozaki, A.; Aki, H.; Toda, M.; Miura, K. Differences in allergic symptoms after the consumption of egg yolk and egg white. Allergy Asthma. Clin. Immunol. 2021, 17, 97. [Google Scholar] [CrossRef]
- Ngai, N.A.; Leung, A.S.Y.; Leung, J.C.H.; Chan, O.M.; Leung, T.F. Identification of predictors for persistence of immediate-type egg allergy in Chinese children. Asia Pac. Allergy 2021, 11, e41. [Google Scholar] [CrossRef]
- Murai, H.; Irahara, M.; Sugimoto, M.; Takaoka, Y.; Takahashi, K.; Wada, T.; Yamamoto-Hanada, K.; Okafuji, I.; Yamada, Y.; Futamura, M.; et al. Is oral food challenge useful to avoid complete elimination in Japanese patients diagnosed with or suspected of having IgE-dependent hen’s egg allergy? A systematic review. Allergol. Int. 2021, in press. [Google Scholar] [CrossRef]
- Han, P.; Gu, J.Q.; Li, L.S.; Wang, X.Y.; Wang, H.T.; Wang, Y.; Chang, C.; Sun, J.L. The Association Between Intestinal Bacteria and Allergic Diseases—Cause or Consequence? Front. Cell. Infect. Microbiol. 2021, 11, 284. [Google Scholar] [CrossRef]
- Ma, X.; Liang, R.; Xing, Q.; Lozano-Ojalvo, D. Can food processing produce hypoallergenic egg? J. Food Sci. 2020, 85, 2635–2644. [Google Scholar] [CrossRef]
- Tong, P.; Chen, S.; Gao, J.; Li, X.; Wu, Z.; Yang, A.; Yuan, J.; Chen, H. Caffeic acid-assisted cross-linking catalyzed by polyphenol oxidase decreases the allergenicity of ovalbumin in a Balb/c mouse model. Food Chem. Toxicol. 2018, 111, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Puertas, G.; Vázquez, M. Advances in techniques for reducing cholesterol in egg yolk: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 2276–2286. [Google Scholar] [CrossRef] [PubMed]
- Gardner, F.A.; Beck, M.L.; Denton, J.H. Functional Quality Comparison of Whole Egg and Selected Egg Substitute Products. Poult. Sci. 1982, 61, 75–78. [Google Scholar] [CrossRef]
- Childs, M.T.; Ostrander, J. Egg substitutes: Chemical and biologic evaluations. J. Am. Diet. Assoc. 1976, 68, 229–234. [Google Scholar] [CrossRef]
- Mohamed, S.; Lajis, S.M.M.; Hamid, N.A. Effects of protein from different sources on the characteristics of sponge cakes, rice cakes (apam), doughnuts and frying batters. J. Sci. Food Agric. 1995, 68, 271–277. [Google Scholar] [CrossRef]
- Myhara, R.M.; Kruger, G. The performance of decolorized bovine plasma protein as a replacement for egg white in high ratio white cakes. Food Qual. Prefer. 1998, 9, 135–138. [Google Scholar] [CrossRef]
- Paraskevopoulou, A.; Donsouzi, S.; Nikiforidis, C.V.; Kiosseoglou, V. Quality characteristics of egg-reduced pound cakes following WPI and emulsifier incorporation. Food Res. Int. 2015, 69, 72–79. [Google Scholar] [CrossRef]
- Boukid, F.; Rosell, C.M.; Rosene, S.; Bover-Cid, S.; Castellari, M. Non-animal proteins as cutting-edge ingredients to reformulate animal-free foodstuffs: Present status and future perspectives. Crit. Rev. Food Sci. Nutr. 2021, 137, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Fehér, A.; Gazdecki, M.; Véha, M.; Szakály, M.; Szakály, Z. A comprehensive review of the benefits of and the barriers to the switch to a plant-based diet. Sustainability 2020, 12, 4136. [Google Scholar] [CrossRef]
- Di Renzo, L.; Gualtieri, P.; Pivari, F.; Soldati, L.; Attinà, A.; Cinelli, G.; Leggeri, C.; Caparello, G.; Barrea, L.; Scerbo, F.; et al. Eating habits and lifestyle changes during COVID-19 lockdown: An Italian survey. J. Transl. Med. 2020, 18, 229. [Google Scholar] [CrossRef]
- GlobeNewsWire Global Egg Market Forecasts 2020–2030: COVID-19 Impact and Recovery. Available online: https://www.globenewswire.com/news-release/2020/05/08/2030249/0/en/Global-Egg-Market-Forecasts-2020-2030-COVID-19-Impact-and-Recovery.html (accessed on 21 November 2021).
- Marchant-Forde, J.N.; Boyle, L.A. COVID-19 Effects on Livestock Production: A One Welfare Issue. Front. Vet. Sci. 2020, 7, 625372. [Google Scholar] [CrossRef]
- Buhl, T.F.; Christensen, C.H.; Hammershøj, M. Aquafaba as an egg white substitute in food foams and emulsions: Protein composition and functional behavior. Food Hydrocoll. 2019, 96, 354–364. [Google Scholar] [CrossRef]
- FACTMR Vegan Egg Market Size, Share, Trends & Forecast, 2021–2031. Available online: https://www.factmr.com/report/vegan-eggs-market (accessed on 21 November 2021).
- Mintel Mintel Global New Product Database. Available online: https://www.gnpd.com/sinatra/search_results/?search_id=3tMdwh5e47&page=0 (accessed on 1 October 2021).
- Boukid, F.; Castellari, M. Veggie burgers in the EU market: A nutritional challenge? Eur. Food Res. Technol. 2021, 247, 2445–2453. [Google Scholar] [CrossRef]
- Boukid, F. Plant-based meat analogues: From niche to mainstream. Eur. Food Res. Technol. 2020, 247, 297–308. [Google Scholar] [CrossRef]
- Boukid, F.; Lamri, M.; Dar, B.N.; Garron, M.; Castellari, M. Vegan Alternatives to Processed Cheese and Yogurt Launched in the European Market during 2020: A Nutritional Challenge? Foods 2021, 10, 2782. [Google Scholar] [CrossRef]
- Lentz, G.; Connelly, S.; Mirosa, M.; Jowett, T. Gauging attitudes and behaviours: Meat consumption and potential reduction. Appetite 2018, 127, 230–241. [Google Scholar] [CrossRef]
- Román, S.; Sánchez-Siles, L.M.; Siegrist, M. The importance of food naturalness for consumers: Results of a systematic review. Trends Food Sci. Technol. 2017, 67, 44–57. [Google Scholar] [CrossRef]
- Janssen, M. Determinants of organic food purchases: Evidence from household panel data. Food Qual. Prefer. 2018, 68, 19–28. [Google Scholar] [CrossRef]
- Alcorta, A.; Porta, A.; Tárrega, A.; Alvarez, M.D.; Vaquero, M.P. Foods for Plant-Based Diets: Challenges and Innovations. Foods 2021, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- Rondoni, A.; Millan, E.; Asioli, D. Plant-based Eggs: Views of Industry Practitioners and Experts. J. Int. Food Agribus. Mark. 2021, 1–24. [Google Scholar] [CrossRef]
- Rondoni, A.; Millan, E.; Asioli, D. Consumers’ preferences for intrinsic and extrinsic product attributes of plant-based eggs: An exploratory study in the United Kingdom and Italy. Br. Food J. 2021, 123, 3704–3725. [Google Scholar] [CrossRef]
- FutureMarketInsights Egg Replacement Ingredient Market Analysis and Review 2019–2026|Future Market Insights (FMI). Available online: https://www.futuremarketinsights.com/reports/egg-replacement-ingredient-market (accessed on 26 October 2021).
- Mintel How Plant-Based Eggs will Crack into Mainstream Food—Mintel. Available online: https://clients.mintel.com/insight/how-plant-based-eggs-will-crack-into-mainstream-food?fromSearch=%3Ffreetext%3Dvegan%2520egg (accessed on 28 October 2021).
- Boukid, F.; Zannini, E.; Carini, E.; Vittadini, E. Pulses for bread fortification: A necessity or a choice? Trends Food Sci. Technol. 2019, 88, 416–428. [Google Scholar] [CrossRef]
- Boukid, F.; Rosell, C.M.; Castellari, M. Pea protein ingredients: A mainstream ingredient to (re)formulate innovative foods and beverages. Trends Food Sci. Technol. 2021, 110, 729–742. [Google Scholar] [CrossRef]
- Boukid, F.; Pasqualone, A. Lupine (Lupinus spp.) proteins: Characteristics, safety and food applications. Eur. Food Res. Technol. 2021, 1, 3. [Google Scholar] [CrossRef]
- Boukid, F. Chickpea (Cicer arietinum L.) protein as a prospective plant-based ingredient: A review. Int. J. Food Sci. Technol. 2021, 56, 5435–5444. [Google Scholar] [CrossRef]
- Ladjal-Ettoumi, Y.; Boudries, H.; Chibane, M.; Romero, A. Pea, Chickpea and Lentil Protein Isolates: Physicochemical Characterization and Emulsifying Properties. Food Biophys. 2016, 11, 43–51. [Google Scholar] [CrossRef]
- Rachwa-Rosiak, D.; Nebesny, E.; Budryn, G. Chickpeas—Composition, Nutritional Value, Health Benefits, Application to Bread and Snacks: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Moreno, H.M.; Herranz, B.; Borderías, A.J.; Tovar, C.A. Effect of high pressure treatment on the structural, mechanical and rheological properties of glucomannan gels. Food Hydrocoll. 2016, 60, 437–444. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Roohinejad, S.; George, S.; Barba, F.J.; Greiner, R.; Barbosa-Cánovas, G.V.; Mallikarjunan, K. Innovative food processing technologies on the transglutaminase functionality in protein-based food products: Trends, opportunities and drawbacks. Trends Food Sci. Technol. 2018, 75, 194–205. [Google Scholar] [CrossRef]
- Cai, Q.; Zhang, W.J.; Zhu, Q.Q.; Chen, Q. Influence of heat treatment on the structure and core IgE-binding epitopes of rAra h 2.02. Food Chem. 2016, 202, 404–408. [Google Scholar] [CrossRef]
- Ma, Z.; Boye, J.I.; Hu, X. Nutritional quality and techno-functional changes in raw, germinated and fermented yellow field pea (Pisum sativum L.) upon pasteurization. LWT-Food Sci. Technol. 2018, 92, 147–154. [Google Scholar] [CrossRef]
- Damian, J.J.; Huo, S.; Serventi, L. Phytochemical content and emulsifying ability of pulses cooking water. Eur. Food Res. Technol. 2018, 244, 1647–1655. [Google Scholar] [CrossRef]
- Fischer, E.; Cachon, R.; Cayot, N. Pisum sativum vs Glycine max, a comparative review of nutritional, physicochemical, and sensory properties for food uses. Trends Food Sci. Technol. 2020, 95, 196–204. [Google Scholar] [CrossRef]
- Trikusuma, M.; Paravisini, L.; Peterson, D.G. Identification of aroma compounds in pea protein UHT beverages. Food Chem. 2020, 312, 126082. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.; Saeed, S.M.G.; Ali, S.A.; Sayed, S.A.; Ahmed, R.; Mobin, L. Effect of black gram flour as egg replacer on microstructure of biscuit dough and its impact on edible qualities. J. Food Meas. Charact. 2018, 12, 1641–1647. [Google Scholar] [CrossRef]
- Martinez, M.M.; Boukid, F. Future-Proofing Dietary Pea Starch. ACS Food Sci. Technol. 2021, 1, 1371–1372. [Google Scholar] [CrossRef]
- Ashogbon, A.O.; Akintayo, E.T.; Oladebeye, A.O.; Oluwafemi, A.D.; Akinsola, A.F.; Imanah, O.E. Developments in the isolation, composition, and physicochemical properties of legume starches. Crit. Rev. Food Sci. Nutr. 2021, 61, 2938–2959. [Google Scholar] [CrossRef]
- Dong, H.; Vasanthan, T. Amylase resistance of corn, faba bean, and field pea starches as influenced by three different phosphorylation (cross-linking) techniques. Food Hydrocoll. 2020, 101, 105506. [Google Scholar] [CrossRef]
- Yildiz, G.; Ding, J.; Andrade, J.; Engeseth, N.J.; Feng, H. Effect of plant protein-polysaccharide complexes produced by mano-thermo-sonication and pH-shifting on the structure and stability of oil-in-water emulsions. Innov. Food Sci. Emerg. Technol. 2018, 47, 317–325. [Google Scholar] [CrossRef]
- Saget, S.; Costa, M.; Styles, D.; Williams, M. Does Circular Reuse of Chickpea Cooking Water to Produce Vegan Mayonnaise Reduce Environmental Impact Compared with Egg Mayonnaise? Sustainability 2021, 13, 4726. [Google Scholar] [CrossRef]
- Yazici, G.N.; Ozer, M.S. A review of egg replacement in cake production: Effects on batter and cake properties. Trends Food Sci. Technol. 2021, 111, 346–359. [Google Scholar] [CrossRef]
- Serventi, L. Upcycling Legume Water: From Wastewater to Food Ingredients; Springer Nature: Berlin/Heidelberg, Germany, 2020; pp. 1–174. [Google Scholar] [CrossRef]
- Stantiall, S.E.; Dale, K.J.; Calizo, F.S.; Serventi, L. Application of pulses cooking water as functional ingredients: The foaming and gelling abilities. Eur. Food Res. Technol. 2018, 244, 97–104. [Google Scholar] [CrossRef]
- Mustafa, R.; He, Y.; Shim, Y.Y.; Reaney, M.J.T. Aquafaba, wastewater from chickpea canning, functions as an egg replacer in sponge cake. Int. J. Food Sci. Technol. 2018, 53, 2247–2255. [Google Scholar] [CrossRef]
- He, Y.; Purdy, S.K.; Tse, T.J.; Tar’an, B.; Meda, V.; Reaney, M.J.T.; Mustafa, R. Standardization of Aquafaba Production and Application in Vegan Mayonnaise Analogs. Foods 2021, 10, 1978. [Google Scholar] [CrossRef]
- Shim, Y.Y.; Mustafa, R.; Shen, J.; Ratanapariyanuch, K.; Reaney, M.J.T. Composition and properties of aquafaba: Water recovered from commercially canned chickpeas. J. Vis. Exp. 2018, 132, e56305. [Google Scholar] [CrossRef]
- Hedayatnia, S.; Tan, C.P.; Joanne Kam, W.L.; Tan, T.B.; Mirhosseini, H. Modification of physicochemical and mechanical properties of a new bio-based gelatin composite films through composition adjustment and instantizing process. LWT 2019, 116, 108575. [Google Scholar] [CrossRef]
- Larrosa, V.; Lorenzo, G.; Zaritzky, N.; Califano, A. Dynamic rheological analysis of gluten-free pasta as affected by composition and cooking time. J. Food Eng. 2015, 160, 11–18. [Google Scholar] [CrossRef]
- Varela, M.S.; Navarro, A.S.; Yamul, D.K. Effect of hydrocolloids on the properties of wheat/potato starch mixtures. Starch/Staerke 2016, 68, 753–761. [Google Scholar] [CrossRef]
- Li, H.; Zhu, K.; Zhou, H.; Peng, W.; Guo, X. Comparative study of four physical approaches about allergenicity of soybean protein isolate for infant formula. Food Agric. Immunol. 2016, 27, 604–623. [Google Scholar] [CrossRef]
- Lam, A.C.Y.; Can Karaca, A.; Tyler, R.T.; Nickerson, M.T. Pea protein isolates: Structure, extraction, and functionality. Food Rev. Int. 2018, 34, 126–147. [Google Scholar] [CrossRef]
- Boukid, F. Oat proteins as emerging ingredients for food formulation: Where we stand? Eur. Food Res. Technol. 2021, 247, 535–544. [Google Scholar] [CrossRef]
- Yi-Shen, Z.; Shuai, S.; Fitzgerald, R. Mung bean proteins and peptides: Nutritional, functional and bioactive properties. Food Nutr. Res. 2018, 62, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jeske, S.; Bez, J.; Arendt, E.K.; Zannini, E. Formation, stability, and sensory characteristics of a lentil-based milk substitute as affected by homogenisation and pasteurisation. Eur. Food Res. Technol. 2019, 245, 1519–1531. [Google Scholar] [CrossRef]
- Boukid, F.; Castellari, M. Food and Beverages Containing Algae and Derived Ingredients Launched in the Market from 2015 to 2019: A Front-of-Pack Labeling Perspective with a Special Focus on Spain. Foods 2021, 10, 173. [Google Scholar] [CrossRef]
- Lafarga, T.; Acién-Fernández, F.G.; Garcia-Vaquero, M. Bioactive peptides and carbohydrates from seaweed for food applications: Natural occurrence, isolation, purification, and identification. Algal Res. 2020, 48, 101909. [Google Scholar] [CrossRef]
- Edelmann, M.; Aalto, S.; Chamlagain, B.; Kariluoto, S.; Piironen, V. Riboflavin, niacin, folate and vitamin B12 in commercial microalgae powders. J. Food Compos. Anal. 2019, 82, 103226. [Google Scholar] [CrossRef]
- Ahmmed, M.K.; Ahmmed, F.; Tian, H.; Carne, A.; Bekhit, A.E.D. Marine omega-3 (n-3) phospholipids: A comprehensive review of their properties, sources, bioavailability, and relation to brain health. Compr. Rev. Food Sci. Food Saf. 2020, 19, 64–123. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, G.F.; Pessoa, J.G.B.; Ríos Pinto, L.F.; Maciel Filho, R.; Fregolente, L.V. Mono- and diglyceride production from microalgae: Challenges and prospects of high-value emulsifiers. Trends Food Sci. Technol. 2021, 118, 589–600. [Google Scholar] [CrossRef]
- Ismail, B.P.; Senaratne-Lenagala, L.; Stube, A.; Brackenridge, A. Protein demand: Review of plant and animal proteins used in alternative protein product development and production. Anim. Front. Rev. Mag. Anim. Agric. 2020, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Kuang, H.; Yang, F.; Zhang, Y.; Wang, T.; Chen, G. The Impact of Egg Nutrient Composition and Its Consumption on Cholesterol Homeostasis. Cholesterol 2018, 2018, 6303810. [Google Scholar] [CrossRef]
- Miranda, J.M.; Anton, X.; Redondo-Valbuena, C.; Roca-Saavedra, P.; Rodriguez, J.A.; Lamas, A.; Franco, C.M.; Cepeda, A. Egg and egg-derived foods: Effects on human health and use as functional foods. Nutrients 2015, 7, 706–729. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Grossmann, L. A brief review of the science behind the design of healthy and sustainable plant-based foods. npj Sci. Food 2021, 5, 17. [Google Scholar] [CrossRef]
- Carcelli, A.; Crisafulli, G.; Carini, E.; Vittadini, E. Can a physically modified corn flour be used as fat replacer in a mayonnaise? Eur. Food Res. Technol. 2020, 246, 2493–2503. [Google Scholar] [CrossRef]
- Sun, C.; Liu, R.; Liang, B.; Wu, T.; Sui, W.; Zhang, M. Microparticulated whey protein-pectin complex: A texture-controllable gel for low-fat mayonnaise. Food Res. Int. 2018, 108, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Villarreal, M.B.; Gallardo Rivera, C.T.; Márquez, E.G.; Rodríguez, J.R.; González, M.A.N.; Montes, A.C.; Báez González, J.G. Comparative Reduction of Egg Yolk Cholesterol Using Anionic Chelating Agents. Molecules 2018, 23, 3204. [Google Scholar] [CrossRef] [Green Version]
- Ghazaei, S.; Mizani, M.; Piravi-Vanak, Z.; Alimi, M. Particle size and cholesterol content of a mayonnaise formulated by OSA-modified potato starch. Food Sci. Technol. 2015, 35, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.R.; EL Said, R.M. Assessment of the potential of Arabic gum as an antimicrobial and antioxidant agent in developing vegan “egg-free” mayonnaise. J. Food Saf. 2020, 40, 40. [Google Scholar] [CrossRef]
- Sridharan, S.; Meinders, M.B.J.; Bitter, J.H.; Nikiforidis, C.V. Pea flour as stabilizer of oil-in-water emulsions: Protein purification unnecessary. Food Hydrocoll. 2020, 101, 105533. [Google Scholar] [CrossRef]
- Yerramilli, M.; Longmore, N.; Ghosh, S. Improved stabilization of nanoemulsions by partial replacement of sodium caseinate with pea protein isolate. Food Hydrocoll. 2017, 64, 99–111. [Google Scholar] [CrossRef]
- Garcia, K.; Sriwattana, S.; No, H.K.; Corredor, J.A.H.; Prinyawiwatkul, W. Sensory optimization of a mayonnaise-type spread made with rice bran oil and soy protein. J. Food Sci. 2009, 74, S248–S254. [Google Scholar] [CrossRef] [PubMed]
- Nikzade, V.; Tehrani, M.M.; Saadatmand-Tarzjan, M. Optimization of low-cholesterol-low-fat mayonnaise formulation: Effect of using soy milk and some stabilizer by a mixture design approach. Food Hydrocoll. 2012, 28, 344–352. [Google Scholar] [CrossRef]
- Rahmati, K.; Mazaheri Tehrani, M.; Daneshvar, K. Soy milk as an emulsifier in mayonnaise: Physico-chemical, stability and sensory evaluation. J. Food Sci. Technol. 2014, 51, 3341–3347. [Google Scholar] [CrossRef] [Green Version]
- Mozafari, H.R.; Hosseini, E.; Hojjatoleslamy, M.; Mohebbi, G.H.; Jannati, N. Optimization low-fat and low cholesterol mayonnaise production by central composite design. J. Food Sci. Technol. 2017, 54, 591. [Google Scholar] [CrossRef] [Green Version]
- Karshenas, M.; Goli, M.; Zamindar, N. The effect of replacing egg yolk with sesame–peanut defatted meal milk on the physicochemical, colorimetry, and rheological properties of low-cholesterol mayonnaise. Food Sci. Nutr. 2018, 6, 824. [Google Scholar] [CrossRef]
- Raikos, V.; Hayes, H.; Ni, H. Aquafaba from commercially canned chickpeas as potential egg replacer for the development of vegan mayonnaise: Recipe optimisation and storage stability. Int. J. Food Sci. Technol. 2020, 55, 1935–1942. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Adhikari, R.; Barrow, C.J.; Adhikari, B. Physicochemical and functional properties of protein isolate produced from Australian chia seeds. Food Chem. 2016, 212, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Timilsena, Y.P.; Wang, B.; Adhikari, R.; Adhikari, B. Preparation and characterization of chia seed protein isolate-chia seed gum complex coacervates. Food Hydrocoll. 2015, 52, 554–563. [Google Scholar] [CrossRef]
- Fernandes, S.S.; Mellado, M.D.L.M.S. Development of Mayonnaise with Substitution of Oil or Egg Yolk by the Addition of Chia (Salvia Hispânica L.) Mucilage. J. Food Sci. 2018, 83, 74–83. [Google Scholar] [CrossRef]
- Hashemi, M.M.; Aminlari, M.; Forouzan, M.M.; Moghimi, E.; Tavana, M.; Shekarforoush, S.; Mohammadifar, M.A. Production and Application of lysozyme-Gum Arabic Conjugate in Mayonnaise as a natural Preservative and Emulsifier. Pol. J. Food Nutr. Sci. 2018, 68, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Cornelia, M.; Siratantri, T.; Prawita, R. The Utilization of Extract Durian (Durio zibethinus L.) Seed Gum as an Emulsifier in Vegan Mayonnaise. Procedia Food Sci. 2015, 3, 1–18. [Google Scholar] [CrossRef] [Green Version]
- El-Razik, M.A.; Mohamed, A. Utilization of Acid Casein Curd Enriched with Chlorella vulgaris Biomass as Substitute of Egg in Mayonnaise Production. World Appl. Sci. J. 2013, 26, 917–925. [Google Scholar] [CrossRef]
- Arozarena, I.; Bertholo, H.; Empis, J.; Bunger, A.; de Sousa, I. Study of the total replacement of egg by white lupine protein, emulsifiers and xanthan gum in yellow cakes. Eur. Food Res. Technol. 2014, 213, 312–316. [Google Scholar] [CrossRef]
- Lin, M.; Tay, S.H.; Yang, H.; Yang, B.; Li, H. Replacement of eggs with soybean protein isolates and polysaccharides to prepare yellow cakes suitable for vegetarians. Food Chem. 2017, 229, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Hedayati, S.; Mazaheri Tehrani, M. Effect of total replacement of egg by soymilk and lecithin on physical properties of batter and cake. Food Sci. Nutr. 2018, 6, 1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdul Hussain, S.S. Studying the Possibility of Preparing An Egg-Free Or Egg-Less Cake. Int. J. Eng. Technol. 2009, 1, 324–329. [Google Scholar] [CrossRef] [Green Version]
- Hesarinejad, M.A.; Rezaiyan Attar, F.; Mossaffa, O.; Shokrolahi, B. The effect of incorporation of chlorella vulgaris into cake as an egg white substitute on physical and sensory properties. Iran. J. Food Sci. Technol. 2017, 14, 61–72. [Google Scholar]
- Ashwini, A.; Jyotsna, R.; Indrani, D. Effect of hydrocolloids and emulsifiers on the rheological, microstructural and quality characteristics of eggless cake. Food Hydrocoll. 2009, 23, 700–707. [Google Scholar] [CrossRef]
- Ratnayake, W.S.; Geera, B.; Rybak, D.A. Effects of egg and egg replacers on yellow cake product quality. J. Food Process. Preserv. 2012, 36, 21–29. [Google Scholar] [CrossRef]
Trends | Sub-Trends | Number of Products | Percentage Products Out of Total Launches (%) |
---|---|---|---|
Health and well-being | Minus | ||
Low/no/reduced fat | 4 | 3.92% | |
Low/no/reduced trans-fat | 1 | 0.98% | |
Low/no/reduced sodium | 4 | 3.92% | |
Low/no/reduced calorie | 2 | 1.96% | |
Low/no/reduced cholesterol | 42 | 41.2% | |
Sugar free | 3 | 2.94% | |
No added sugar | 3 | 2.94% | |
Low/no/reduced saturated fat | 1 | 0.98% | |
Plus | |||
High/added protein | 5 | 4.90% | |
Vitamin/mineral fortified | 1 | 0.98% | |
High/added fiber | 8 | 7.84% | |
Free from | |||
Hormone free | 2 | 1.96% | |
Dairy free | 39 | 38.20% | |
Functional | |||
Functional—other | 1 | 0.98% | |
Functional—digestive | 1 | 0.98% | |
Suitability | |||
Low/no/reduced allergen | 82 | 80.44% | |
Gluten free | 67 | 65.69% | |
Kosher | 43 | 42.16% | |
Low/no/reduced lactose | 19 | 18.63% | |
Suitable for vegan and vegetarian | 102 | 100% | |
Plant based | 32 | 31.37% | |
Convenience | Microwaveable | 4 | 3.92% |
Ease of use | 35 | 34.31% | |
Convenient packaging | 3 | 2.94% | |
Time/speed | 1 | 0.98% | |
Naturalness | No additives/preservatives | 23 | 22.55% |
Free from added/artificial preservatives | 8 | 7.84% | |
Organic | 28 | 27.45% | |
Free from added/artificial colorings | 6 | 5.88% | |
GMO-free | 36 | 35.29% | |
Free from added/artificial flavorings | 6 | 5.88% | |
Natural product | 3 | 2.94% | |
Wholegrain | 1 | 0.98% | |
Free from added/artificial additives | 3 | 2.94% | |
Ethical & environmental | Environmentally friendly package | 33 | 32.35% |
Recycling | 26 | 25.49% | |
Sustainable (habitat/resources) | 6 | 5.88% | |
Environmentally friendly | 8 | 7.84% | |
Animal welfare | 6 | 5.88% | |
Toxins free | 2 | 1.96% | |
Biodegradable packaging | 4 | 3.92% |
Segment | Segmentation |
---|---|
Form | Powder Liquid Egg shape |
Type | Starch Soy products (lecithin, tofu, and tahini) Plant proteins, such as pea and chickpea Algal flour Others (fruit purees and vinegar) |
Application | Mayonnaise Biscuits and Cookies Cakes/Pastries/Muffins/Breads Chocolates Noodles and Pasta |
Main players | Glanbia plc Ingredion Incorporated Cargill Bob’s Red Mill Natural Foods, Inc. House Foods America Corporation EVO Foods Mantiqueira (N.Ovo) JUST Inc. Orgran Foods Terra Vegane Free and Easy Follow Your Heart The Vegg Vezlay Foods Private Limited Now Foods The Neat Egg Conagra Brands, Inc. Ener-G |
Region | North America Latin America Europe, Middle East, and Africa Asia Pacific |
Vegan Egg | Egg Yolk | Egg White | Whole Egg | |
---|---|---|---|---|
Number of retrieved products | 102 | 37 | 54 | 6517 |
Average values of nutrients | ||||
Energy (kcal/100 g) | 298.55 | 153.66 | 98.36 | 152.18 |
Fat (g/100 g) | 6.10 | 10.40 | 2.35 | 9.97 |
Of which saturated (g/100 g) | 2.10 | 2.72 | 1.19 | 3.26 |
Carbohydrates (g/100 g) | 41.89 | 3.77 | 2.59 | 2.32 |
Of which sugars (g/100 g) | 1.77 | 3.77 | 0.53 | 0.45 |
Fiber (g/100 g) | 8.56 | 0.00 | 0.00 | 0.00 |
Protein (g/100 g) | 11.60 | 13.69 | 16.53 | 12.39 |
Sodium (mg/100 g) | 912.59 | 682.67 | 353.01 | 385.74 |
Vitamin B12 (µg per 100 g/mL) | 0.75 | nr | nr | 21,844.4 |
Cholesterol (mg per 100 g/mL) | 0.00 | 339.26 | 11.64 | 1509.53 |
Calcium (mg per 100 g/mL) | 286.59 | 39.88 | 122.23 | 159.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukid, F.; Gagaoua, M. Vegan Egg: A Future-Proof Food Ingredient? Foods 2022, 11, 161. https://doi.org/10.3390/foods11020161
Boukid F, Gagaoua M. Vegan Egg: A Future-Proof Food Ingredient? Foods. 2022; 11(2):161. https://doi.org/10.3390/foods11020161
Chicago/Turabian StyleBoukid, Fatma, and Mohammed Gagaoua. 2022. "Vegan Egg: A Future-Proof Food Ingredient?" Foods 11, no. 2: 161. https://doi.org/10.3390/foods11020161
APA StyleBoukid, F., & Gagaoua, M. (2022). Vegan Egg: A Future-Proof Food Ingredient? Foods, 11(2), 161. https://doi.org/10.3390/foods11020161