Isolation of Laurus nobilis Leaf Polyphenols: A Review on Current Techniques and Future Perspectives
Abstract
:1. Introduction
2. Phenolic Compounds in L. nobilis Leaves
3. Extraction of Phenolic Compounds from L. nobilis Leaves
3.1. Preextraction Sample Preparation
3.2. Extraction Techniques
3.2.1. Conventional Techniques
Influence of Different Conventional Extraction Parameters on the Extraction Yield
3.2.2. Advanced Extraction Techniques
3.2.3. Microwave-Assisted Extraction (MAE)
3.2.4. Ultrasound-Assisted Extraction (UAE)
3.2.5. Enzyme-Assisted Extraction (EAE)
3.2.6. Supercritical Fluid Extraction (SFE)
3.2.7. Mechanochemical-Assisted Extraction (MCAE)
4. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alejo-Armijo, A.; Altarejos, J.; Salido, S. Phytochemicals and biological activities of laurel tree (Laurus nobilis). Nat. Prod. Commun. 2017, 12, 743–757. [Google Scholar] [CrossRef] [Green Version]
- Marzouki, H.; Piras, A.; Salah, K.B.H.; Medini, H.; Pivetta, T.; Bouzid, S.; Marongiu, B.; Falconieri, D. Essential oil composition and variability of Laurus nobilis L. growing in Tunisia, comparison and chemometric investigation of different plant organs. Nat. Prod. Res. 2009, 23, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, A. The Mediterranean aromatic plants and their culinary use. Nat. Prod. Res. 2015, 29, 201–206. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, J.K.S. Bay leaves. In Handbook of Herbs and Spices; KV, P., Ed.; Woodhead Publishing Ltd.: Oxford, UK, 2012; pp. 73–85. [Google Scholar]
- Aumeeruddy-Elalfi, Z.; Gurib-Fakim, A.; Mahomoodally, F. Antimicrobial, antibiotic potentiating activity and phytochemical profile of essential oils from exotic and endemic medicinal plants of Mauritius. Ind. Crops Prod. 2015, 71, 197–204. [Google Scholar] [CrossRef]
- Sıdıka, E.; Oktay, Y.; Hatice, E.T.; Aslı, A.; Merve, A. Chemical composition, antimicrobial activity and antioxidant capacity of some medicinal and aromatic plant extracts. Afr. J. Microbiol. Res. 2013, 7, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Gumus, T.; Demirci, A.S.; Sagdic, O.; Arici, M. Inhibition of heat resistant molds: Aspergillus fumigatus and Paecilomyces variotii by some plant essential oils. Food Sci. Biotechnol. 2010, 19, 1241–1244. [Google Scholar] [CrossRef]
- Houicher, A.; Hechachna, H.; Teldji, H.; Ozogul, F. In Vitro Study of the Antifungal Activity of Essential Oils Obtained from Mentha spicata, Thymus vulgaris, and Laurus nobilis. Recent Pat. Food. Nutr. Agric. 2016, 8, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Sayyah, M.; Valizadeh, J.; Kamalinejad, M. Anticonvulsant activity of the leaf essential oil of Laurus nobilis against pentylenetetrazole- and maximal electroshock-induced seizures. Phytomedicine 2002, 9, 212–216. [Google Scholar] [CrossRef]
- Brahmi, N.; Scognamiglio, M.; Pacifico, S.; Mekhoukhe, A.; Madani, K.; Fiorentino, A.; Monaco, P. 1 H NMR based metabolic profiling of eleven Algerian aromatic plants and evaluation of their antioxidant and cytotoxic properties. Food Res. Int. 2015, 76, 334–341. [Google Scholar] [CrossRef]
- Muñiz-Márquez, D.B.; Rodríguez, R.; Balagurusamy, N.; Carrillo, M.L.; Belmares, R.; Contreras, J.C.; Nevárez, G.V.; Aguilar, C.N. Phenolic content and antioxidant capacity of extracts of Laurus nobilis L., Coriandrum sativum L. and Amaranthus hybridus L. CYTA-J. Food 2014, 12, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Dias, M.I.; Barros, L.; Dueñas, M.; Alves, R.C.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Nutritional and antioxidant contributions of Laurus nobilis L. leaves: Would be more suitable a wild or a cultivated sample? Food Chem. 2014, 156, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Mazzio, E.A.; Li, N.; Bauer, D.; Mendonca, P.; Taka, E.; Darb, M.; Thomas, L.; Williams, H.; Soliman, K.F.A. Natural product HTP screening for antibacterial (E.coli 0157:H7) and anti-inflammatory agents in (LPS from E. coli O111:B4) activated macrophages and microglial cells; focus on sepsis. BMC Complement. Altern. Med. 2016, 16, 467. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, H.; Kagerura, T.; Toguchida, I.; Ueda, H.; Morikawa, T.; Yoshikawa, M. Inhibitory effects of sesquiterpenes from bay leaf on nitric oxide production in lipopolysaccharide-activated macrophages: Structure requirement and role of heat shock protein induction. Life Sci. 2000, 66, 2151–2157. [Google Scholar] [CrossRef]
- Dearlove, R.P.; Greenspan, P.; Hartle, D.K.; Swanson, R.B.; Hargrove, J.L. Inhibition of Protein Glycation by Extracts of Culinary Herbs and Spices. J. Med. Food 2008, 11, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, R.R.; Omer, A.K.; Yener, Z.; Uyar, A.; Ahmed, A.K. Biomedical effects of Laurus nobilis L. leaf extract on vital organs in streptozotocin-induced diabetic rats: Experimental research. Ann. Med. Surg. 2021, 61, 188–197. [Google Scholar] [CrossRef]
- Sahin Basak, S.; Candan, F. Effect of Laurus nobilis L. Essential Oil and its Main Components on α-glucosidase and Reactive Oxygen Species Scavenging Activity. Iran. J. Pharm. Res. IJPR 2013, 12, 367–379. [Google Scholar] [PubMed]
- Loizzo, M.R.; Tundis, R.; Menichini, F.; Saab, A.M.; Statti, G.A.; Menichini, F. Cytotoxic activity of essential oils from labiatae and lauraceae families against in vitro human tumor models. Anticancer Res. 2007, 27, 3293–3299. [Google Scholar]
- Verdian-Rizi, M. Chemical composition and larvicidal activity of the essential oil of Laurus nobilis L. from Iran. Iran. J. Pharm. Sci 2009, 5, 47–50. [Google Scholar]
- Ferreira, A.; Proença, C.; Serralheiro, M.L.M.; Araújo, M.E.M. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol. 2006, 108, 31–37. [Google Scholar] [CrossRef]
- Özcan, M.; Chalchat, J.-C. Effect of Different Locations on the Chemical Composition of Essential Oils of Laurel (Laurus nobilis L.) Leaves Growing Wild in Turkey. J. Med. Food 2005, 8, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Maroto, M.C.; Pérez-Coello, M.S.; Cabezudo, M.D. Effect of Drying Method on the Volatiles in Bay Leaf (Laurus nobilis L.). J. Agric. Food Chem. 2002, 50, 4520–4524. [Google Scholar] [CrossRef]
- Konovalov, D.A.; Alieva, N.M. Phenolic compounds of Laurus nobilis (Review). Farmatsiya I Farmakol. 2019, 7, 244–259. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Shimoda, H.; Uemura, T.; Morikawa, T.; Kawahara, Y.; Matsuda, H. Alcohol absorption inhibitors from bay leaf ( Laurus nobilis ): Structure-requirements of sesquiterpenes for the activity. Bioorg. Med. Chem. 2000, 8, 2071–2077. [Google Scholar] [CrossRef]
- Fang, F.; Sang, S.; Chen, K.Y.; Gosslau, A.; Ho, C.-T.; Rosen, R.T. Isolation and identification of cytotoxic compounds from Bay leaf (Laurus nobilis). Food Chem. 2005, 93, 497–501. [Google Scholar] [CrossRef]
- Brás, S.; Mendes-Bastos, P.; Amaro, C.; Cardoso, J. Allergic contact dermatitis caused by laurel leaf oil. Contact Dermatitis 2015, 72, 417–419. [Google Scholar] [CrossRef] [Green Version]
- Soto-Hernandez, M.; Palma-Tenango, M.; del Rosario Garcia Mateos, M. Phenolic Compounds Biological Activity; InTechOpen: London, UK, 2017. [Google Scholar]
- Zhilyakova, E.T.; Novikov, O.O.; Pisarev, D.I.; Malyutina, A.Y.; Boyko, N.N. Studying the Polyphenolic Structure of Laurus Nobilis l. Leaves. Indo Am. J. P. Sci. 2017, 4, 3066–3074. [Google Scholar]
- Li, G.; Zeng, X.; Xie, Y.; Cai, Z.; Moore, J.C.; Yuan, X.; Cheng, Z.; Ji, G. Pharmacokinetic properties of isorhamnetin, kaempferol and quercetin after oral gavage of total flavones of Hippophae rhamnoides L. in rats using a UPLC–MS method. Fitoterapia 2012, 83, 182–191. [Google Scholar] [CrossRef] [PubMed]
- De Marino, S.; Borbone, N.; Zollo, F.; Ianaro, A.; Di Meglio, P.; Iorizzi, M. Megastigmane and phenolic components from Laurus nobilis L. leaves and their inhibitory effects on nitric oxide production. J. Agric. Food Chem. 2004, 52, 7525–7531. [Google Scholar] [CrossRef]
- Lee, S.; Chung, S.-C.; Lee, S.-H.; Park, W.; Oh, I.; Mar, W.; Shin, J.; Oh, K.-B. Acylated Kaempferol Glycosides from Laurus nobilis Leaves and Their Inhibitory Effects on Na+/K+-Adenosine Triphosphatase. Biol. Pharm. Bull. 2012, 35, 428–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dall’Acqua, S.; Cervellati, R.; Speroni, E.; Costa, S.; Guerra, M.C.; Stella, L.; Greco, E.; Innocenti, G. Phytochemical composition and antioxidant activity of Laurus nobilis L. leaf infusion. J. Med. Food 2009, 12, 869–876. [Google Scholar] [CrossRef]
- Liu, M.-H.; Otsuka, N.; Noyori, K.; Shiota, S.; Ogawa, W.; Kuroda, T.; Hatano, T.; Tsuchiya, T. Synergistic Effect of Kaempferol Glycosides Purified from Laurus nobilis and Fluoroquinolones on Methicillin-Resistant Staphylococcus aureus. Biol. Pharm. Bull. 2009, 32, 489–492. [Google Scholar] [CrossRef] [Green Version]
- Muchuweti, M.; Kativu, E.; Mupure, C.H.; Chidewe, C.; Ndhlala, A.R.; Benhura, M.A.N. Phenolic composition and antioxidant properties of some spices. Am. J. Food Technol. 2007, 2, 414–420. [Google Scholar] [CrossRef]
- Papageorgiou, V.; Mallouchos, A.; Komaitis, M. Investigation of the antioxidant behavior of air- and freeze-dried aromatic plant materials in relation to their phenolic content and vegetative cycle. J. Agric. Food Chem. 2008, 56, 5743–5752. [Google Scholar] [CrossRef] [PubMed]
- AL-Samarrai, O.R.; Naji, N.A.; Hameed, R.R. Effect of Bay leaf (Laurus nobilis L.) and its isolated (flavonoids and glycosides) on the lipids profile in the local Iraqi female rabbits. Tikrit J. Pure Sci. 2017, 22, 73–75. [Google Scholar]
- Vinha, A.F.; Guido, L.F.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.B.P.P. Monomeric and oligomeric flavan-3-ols and antioxidant activity of leaves from different Laurus sp. Food Funct. 2015, 6, 1944–1949. [Google Scholar] [CrossRef] [Green Version]
- Marston, A.; Hostettmann, K. Separation and quantification of flavonoids. In Flavonoids: Chemistry, Biochemistry and Applications; Andersen; Andersen, O.M., Markham, K., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 1–32. [Google Scholar]
- Sulaiman, S.F.; Sajak, A.A.B.; Ooi, K.L.; Supriatno; Seow, E.M. Effect of solvents in extracting polyphenols and antioxidants of selected raw vegetables. J. Food Compos. Anal. 2011, 24, 506–515. [Google Scholar] [CrossRef]
- Roshanak, S.; Rahimmalek, M.; Goli, S.A.H. Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. J. Food Sci. Technol. 2016, 53, 721–729. [Google Scholar] [CrossRef] [Green Version]
- Azwanida, N. A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med. Aromat. Plants 2015, 04, 3–8. [Google Scholar] [CrossRef]
- Tzanova, M.; Atanasov, V.; Yaneva, Z.; Ivanova, D.; Dinev, T. Selectivity of Current Extraction Techniques for Flavonoids from Plant Materials. Processes 2020, 8, 1222. [Google Scholar] [CrossRef]
- Abascal, K.; Ganora, L.; Yarnell, E. The effect of freeze-drying and its implications for botanical medicine: A review. Phyther. Res. 2005, 19, 655–660. [Google Scholar] [CrossRef]
- Muñiz-Márquez, D.B.; Wong-Paz, J.E.; Contreras-Esquivel, J.C.; Rodríguez-Herrera, R.; Aguilar, C.N. Bioactive compounds from bay leaves (Laurus nobilis) extracted by microwave technology. Zeitschrift fur Naturforsch. - Sect. C J. Biosci. 2018, 73, 401–407. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Regueiro, J.; Martínez-Huélamo, M.; Rinaldi Alvarenga, J.F.; Leal, L.N.; Lamuela-Raventos, R.M. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: Rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chem. 2014, 154, 299–307. [Google Scholar] [CrossRef]
- Santoyo, S.; Lloría, R.; Jaime, L.; Ibañez, E.; Señoráns, F.J.; Reglero, G. Supercritical fluid extraction of antioxidant and antimicrobial compounds from Laurus nobilis L. Chemical and functional characterization. Eur. Food Res. Technol. 2006, 222, 565–571. [Google Scholar] [CrossRef]
- Muñiz-Márquez, D.B.; Martínez-Ávila, G.C.; Wong-Paz, J.E.; Belmares-Cerda, R.; Rodríguez-Herrera, R.; Aguilar, C.N. Ultrasound-assisted extraction of phenolic compounds from Laurus nobilis L. and their antioxidant activity. Ultrason. Sonochem. 2013, 20, 1149–1154. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Batool, S.; Khera, R.A.; Hanif, M.A.; Ayub, M.A. Bay Leaf. In Medicinal Plants of South Asia; Elsevier: Amsterdam, The Netherlands, 2020; pp. 63–74. [Google Scholar] [CrossRef]
- Simić, M.; Kundaković, T.; Kovačević, N. Preliminary assay on the antioxidative activity of Laurus nobilis extracts. Fitoterapia 2003, 74, 613–616. [Google Scholar] [CrossRef]
- Wong-paz, J.E.; Muñiz-márquez, D.B.; Aguilar-zárate, P.; Cruz, K.; Reyes-luna, C.; Rodríguez, R.; Aguilar, C.N. Extraction of Bioactive Phenolic Compounds by Alternative Technologies; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128115213. [Google Scholar]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for analysis of plant phenolic compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef]
- Stobiecki, M.; Kachlicki, P. Isolation and Identification of Flavonoids. In The Science of flavonoids; Grotewold, E., Ed.; Springer Science & Business Media, Inc.: New York, NY, USA, 2006; pp. 47–71. [Google Scholar]
- Batiha, G.E.-S.; Beshbishy, A.M.; Alkazmi, L.; Adeyemi, O.S.; Nadwa, E.; Rashwan, E.; El-Mleeh, A.; Igarashi, I. Gas chromatography-mass spectrometry analysis, phytochemical screening and antiprotozoal effects of the methanolic Viola tricolor and acetonic Laurus nobilis extracts. BMC Complement. Med. Ther. 2020, 20, 87. [Google Scholar] [CrossRef]
- Bulut Kocabas, B.; Attar, A.; Peksel, A.; Altikatoglu Yapaoz, M. Phytosynthesis of CuONPs via Laurus nobilis: Determination of antioxidant content, antibacterial activity, and dye decolorization potential. Biotechnol. Appl. Biochem. 2020, 1–7. [Google Scholar] [CrossRef]
- Fernández, N.J.; Damiani, N.; Podaza, E.A.; Martucci, J.F.; Fasce, D.; Quiroz, F.; Meretta, P.E.; Quintana, S.; Eguaras, M.J.; Gende, L.B. Laurus nobilis L. Extracts against Paenibacillus larvae: Antimicrobial activity, antioxidant capacity, hygienic behavior and colony strength. Saudi J. Biol. Sci. 2019, 26, 906–912. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Nasr, S.B.; El Beyrouthy, M.; Mnif, W. Phytochemical composition and antioxidant activity of Tunisian Laurus nobilis. Pak. J. Pharm. Sci. 2018, 31, 2397–2402. [Google Scholar]
- Kivrak, Ş.; Gokturk, T.; Kivrak, İ. Assessment of Volatile Oil Composition, Phenolics and Antioxidant Activity of Bay (Laurus nobilis) Leaf and Usage in Cosmetic Applications. Int. J. Second. Metab. 2017, 4, 148. [Google Scholar] [CrossRef] [Green Version]
- Guenane, H.; Gherib, A.; Carbonell-Barrachina, Á.; Cano-Lamadrid, M.; Krika, F.; Berrabah, M.; Maatallah, M.; Bakchiche, B. Minerals analysis, antioxidant and chemical composition of extracts of Laurus nobilis from southern algeri. J. Mater. Environ. Sci. 2016, 7, 4253–4261. [Google Scholar]
- Unver, A.; Arslan, D.; Ozcan, M.M.; Akbulut, M. Phenolic content and antioxidant activity of some spices. World Appl. Sci. J. 2016, 6, 373–377. [Google Scholar]
- Ramos, C.; Teixeira, B.; Batista, I.; Matos, O.; Serrano, C.; Neng, N.R.; Nogueira, J.M.F.; Nunes, M.L.; Marques, A. Antioxidant and antibacterial activity of essential oil and extracts of bay laurel Laurus nobilis Linnaeus (Lauraceae) from Portugal. Nat. Prod. Res. 2012, 26, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Kaurinovic, B.; Popovic, M.; Vlaisavljevic, S. In Vitro and In Vivo effects of Laurus nobilis L. leaf extracts. Molecules 2010, 15, 3378–3390. [Google Scholar] [CrossRef] [Green Version]
- Conforti, F.; Statti, G.; Uzunov, D.; Menichini, F. Comparative chemical composition and antioxidant activities of wild and cultivated Laurus nobilis L. leaves and Foeniculum vulgare subsp. piperitum (Ucria) coutinho seeds. Biol. Pharm. Bull. 2006, 29, 2056–2064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.J.; Kim, G.H. Inhibitory effects of Tunisian plants extracts on oxidative stress and lipid accumulation in HepG2 cells. Korean J. Food Preserv. 2021, 28, 403–415. [Google Scholar] [CrossRef]
- Kratchanova, M.; Denev, P.; Ciz, M.; Lojek, A.; Mihailov, A. Evaluation of antioxidant activity of medicinal plants containing polyphenol compounds. Comparison of two extraction systems. Acta Biochim. Pol. 2010, 57, 229–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmastaş, M.; Gülçin, I.; Işildak, Ö.; Küfrevioǧlu, Ö.I.; Ibaoǧlu, K.; Aboul-Enein, H.Y. Radical scavenging activity and antioxidant capacity of bay leaf extracts. J. Iran. Chem. Soc. 2006, 3, 258–266. [Google Scholar] [CrossRef]
- Dobroslavić, E.; Elez Garofulić, I.; Zorić, Z.; Pedisić, S.; Dragović-Uzelac, V. Polyphenolic Characterization and Antioxidant Capacity of Laurus nobilis L. Leaf Extracts Obtained by Green and Conventional Extraction Techniques. Processes 2021, 9, 1840. [Google Scholar] [CrossRef]
- Ying, L.; Ying, D.; Liu-juan, Z.; Xian-jin, L. Antioxidant Activities of Nine Selected Culinary Spices from China. J. Northeast Agric. Univ. (Eng. Ed.) 2015, 22, 50–57. [Google Scholar] [CrossRef]
- Rincón, E.; Balu, A.M.; Luque, R.; Serrano, L. Mechanochemical extraction of antioxidant phenolic compounds from Mediterranean and medicinal Laurus nobilis: A comparative study with other traditional and green novel techniques. Ind. Crops Prod. 2019, 141, 111805. [Google Scholar] [CrossRef]
- Speroni, E.; Cervellati, R.; Dall’Acqua, S.; Guerra, M.C.; Greco, E.; Govoni, P.; Innocenti, G. Gastroprotective effect and antioxidant properties of different Laurus nobilis L. Leaf extracts. J. Med. Food 2011, 14, 499–504. [Google Scholar] [CrossRef]
- Boulila, A.; Hassen, I.; Haouari, L.; Mejri, F.; Amor, I.B.; Casabianca, H.; Hosni, K. Enzyme-assisted extraction of bioactive compounds from bay leaves (Laurus nobilis L.). Ind. Crops Prod. 2015, 74, 485–493. [Google Scholar] [CrossRef]
- Lu, M.; Yuan, B.; Zeng, M.; Chen, J. Antioxidant capacity and major phenolic compounds of spices commonly consumed in China. Food Res. Int. 2011, 44, 530–536. [Google Scholar] [CrossRef]
- Zheng, W.; Yang, S.Y. Antioxidant Activity and Phenolic Compounds in Selected Herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef]
- Generalić Mekinić, I.; Skroza, D.; Ljubenkov, I.; Katalinić, V.; Šimat, V. Antioxidant and antimicrobial potential of phenolic metabolites from traditionally used Mediterranean herbs and spices. Foods 2019, 8, 579. [Google Scholar] [CrossRef] [Green Version]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Ramirez-Coronel, M.A.; Marnet, N.; Kolli, V.S.K.; Roussos, S.; Guyot, S.; Augur, C. Characterization and Estimation of Proanthocyanidins and Other Phenolics in Coffee Pulp ( Coffea arabica ) by Thiolysis−High-Performance Liquid Chromatography. J. Agric. Food Chem. 2004, 52, 1344–1349. [Google Scholar] [CrossRef]
- Biesaga, M.; Pyrzyńska, K. Stability of bioactive polyphenols from honey during different extraction methods. Food Chem. 2013, 136, 46–54. [Google Scholar] [CrossRef]
- Davidov-Pardo, G.; Arozarena, I.; Marín-Arroyo, M.R. Stability of polyphenolic extracts from grape seeds after thermal treatments. Eur. Food Res. Technol. 2011, 232, 211–220. [Google Scholar] [CrossRef]
- Al-Farsi, M.A.; Lee, C.Y. Nutritional and Functional Properties of Dates: A Review. Crit. Rev. Food Sci. Nutr. 2008, 48, 877–887. [Google Scholar] [CrossRef] [PubMed]
- Selvamuthukumaran, M.; Shi, J. Recent advances in extraction of antioxidants from plant by-products processing industries. Food Qual. Saf. 2017, 1, 61–81. [Google Scholar] [CrossRef]
- Huie, C.W. A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal. Bioanal. Chem. 2002, 373, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Handa, S.; Khanuja, S.P.; Longo, G.; Rakesh, D.D. Extraction Technologies for Medicinal and Aromatic Plants; United Nations Industrial Development Organization and the International Centre for Science and High Technology: Trieste, Italy, 2008. [Google Scholar]
- Škerget, M.; Kotnik, P.; Hadolin, M.; Hraš, A.R.; Simonič, M.; Knez, Ž. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 2005, 89, 191–198. [Google Scholar] [CrossRef]
- Tometri, S.S.; Ahmady, M.; Ariaii, P.; Soltani, M.S. Extraction and encapsulation of Laurus nobilis leaf extract with nano-liposome and its effect on oxidative, microbial, bacterial and sensory properties of minced beef. J. Food Meas. Charact. 2020, 14, 3333–3344. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef]
- Junior, M.R.M.; Leite, A.V.; Dragano, N.R.V. Supercritical Fluid Extraction and Stabilization of Phenolic Compounds From Natural Sources – Review (Supercritical Extraction and Stabilization of Phenolic Compounds). Open Chem. Eng. J. 2010, 4, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Khosravi Darani, K.; Mozafari, M.R. A review: Supercritical fluids technology in bioprocess industries. J. Biochem. Technol. 2009, 2, 144–152. [Google Scholar]
- James, S.L.; Adams, C.J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K.D.M.; Hyett, G.; Jones, W.; et al. Mechanochemistry: Opportunities for new and cleaner synthesis. Chem. Soc. Rev. 2012, 41, 413–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, K.; Ju, T.; Deng, Y.; Xi, J. Mechanochemical assisted extraction: A novel, efficient, eco-friendly technology. Trends Food Sci. Technol. 2017, 66, 166–175. [Google Scholar] [CrossRef]
- Camel, V. Recent extraction techniques for solid matrices—supercritical fluid extraction, pressurized fluid extraction and microwave-assisted extraction: Their potential and pitfalls. Analyst 2001, 126, 1182–1193. [Google Scholar] [CrossRef]
- Mandal, V.; Mohan, Y.; Hemalatha, S. Microwave Assisted Extraction—an Innovative and Promising Extraction Tool for Medicinal Plant Research. Pharmacogn. Rev. 2007, 1, 7–18. [Google Scholar]
- Liazid, A.; Palma, M.; Brigui, J.; Barroso, C.G. Investigation on phenolic compounds stability during microwave-assisted extraction. J. Chromatogr. A 2007, 1140, 29–34. [Google Scholar] [CrossRef]
- Hayat, K.; Hussain, S.; Abbas, S.; Farooq, U.; Ding, B.; Xia, S.; Jia, C.; Zhang, X.; Xia, W. Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity In Vitro. Sep. Purif. Technol. 2009, 70, 63–70. [Google Scholar] [CrossRef]
- Chemat, F.; Cravotto, G. Microwave-assisted Extraction for Bioactive Compounds. In Food Engineering Series; Chemat, F., Cravotto, G., Eds.; Springer: Boston, MA, USA, 2013; ISBN 978-1-4614-4829-7. [Google Scholar]
- Tóth, M.E.; Vígh, L.; Sántha, M. Alcohol stress, membranes, and chaperones. Cell Stress Chaperones 2014, 19, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Mason, T.J.; Paniwnyk, L.; Lorimer, J.P. The uses of ultrasound in food technology. Ultrason. Sonochem. 1996, 3, S253–S260. [Google Scholar] [CrossRef]
- Wang, L.; Weller, C.L. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 2006, 17, 300–312. [Google Scholar] [CrossRef]
- Vongsak, B.; Sithisarn, P.; Mangmool, S.; Thongpraditchote, S.; Wongkrajang, Y.; Gritsanapan, W. Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Ind. Crops Prod. 2013, 44, 566–571. [Google Scholar] [CrossRef]
- Meyer, A.S. Enzymatic upgrading of antioxidant phenolics in berry juices and press residues. Fruit Process. 2005, 15, 382–387. [Google Scholar]
- Puri, M.; Sharma, D.; Barrow, C.J. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 2012, 30, 37–44. [Google Scholar] [CrossRef]
- Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef] [PubMed]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valéro, J.R. Extraction and Analysis of Polyphenols: Recent trends. Crit. Rev. Biotechnol. 2011, 31, 227–249. [Google Scholar] [CrossRef]
- Nahar, L.; Sarker, S.D. Supercritical Fluid Extraction. In Natural Products Isolation; Humana Press: Totowa, NJ, USA, 2006; pp. 47–76. [Google Scholar]
- Wells, S.L.; DeSimone, J. CO2 Technology Platform: An Important Tool for Environmental Problem Solving. Angew. Chem. Int. Ed. 2001, 40, 518–527. [Google Scholar] [CrossRef]
- Bleve, M.; Ciurlia, L.; Erroi, E.; Lionetto, G.; Longo, L.; Rescio, L.; Schettino, T.; Vasapollo, G. An innovative method for the purification of anthocyanins from grape skin extracts by using liquid and sub-critical carbon dioxide. Sep. Purif. Technol. 2008, 64, 192–197. [Google Scholar] [CrossRef]
- Naudé, Y.; De Beer, W.H.J.; Jooste, S.; Van Der Merwe, L.V.R.S. Comparison of supercritical fluid extraction and Soxhlet extraction for the determination of DDT, DDD and DDE in sediment. Water SA 1998, 24, 205–214. [Google Scholar]
- Caredda, A.; Marongiu, B.; Porcedda, S.; Soro, C. Supercritical Carbon Dioxide Extraction and Characterization of Laurus nobilis Essential Oil. J. Agric. Food Chem. 2002, 50, 1492–1496. [Google Scholar] [CrossRef]
- Ivanovic, J.; Misic, D.; Ristic, M.; Pesic, O.; Zizovic, I. Supercritical co2 extract and essential oil of bay (Laurus nobilis L.): Chemical composition and antibacterial activity. J. Serbian Chem. Soc. 2010, 75, 395–404. [Google Scholar] [CrossRef]
- Tyśkiewicz, K.; Konkol, M.; Rój, E. The Application of Supercritical Fluid Extraction in Phenolic Compounds Isolation from Natural Plant Materials. Molecules 2018, 23, 2625. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P.; Cebola, M.-J.; Oliveira, M.C.; Bernardo-Gil, M.G. Supercritical fluid extraction vs conventional extraction of myrtle leaves and berries: Comparison of antioxidant activity and identification of bioactive compounds. J. Supercrit. Fluids 2016, 113, 1–9. [Google Scholar] [CrossRef]
- Song, L.; Liu, P.; Yan, Y.; Huang, Y.; Bai, B.; Hou, X.; Zhang, L. Supercritical CO2 fluid extraction of flavonoid compounds from Xinjiang jujube (Ziziphus jujuba Mill.) leaves and associated biological activities and flavonoid compositions. Ind. Crops Prod. 2019, 139, 111508. [Google Scholar] [CrossRef]
- Zhu, X.-Y.; Mang, Y.-L.; Xie, J.; Wang, P.; Su, W.-K. Response surface optimization of mechanochemical-assisted extraction of flavonoids and terpene trilactones from Ginkgo leaves. Ind. Crops Prod. 2011, 34, 1041–1052. [Google Scholar] [CrossRef]
- Xie, J.; Lin, Y.-S.; Shi, X.-J.; Zhu, X.-Y.; Su, W.-K.; Wang, P. Mechanochemical-assisted extraction of flavonoids from bamboo (Phyllostachys edulis) leaves. Ind. Crops Prod. 2013, 43, 276–282. [Google Scholar] [CrossRef]
- Guo, X.; Xiang, D.; Duan, G.; Mou, P. A review of mechanochemistry applications in waste management. Waste Manag. 2010, 30, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Luthria, D.; Biswas, R.; Natarajan, S. Comparison of extraction solvents and techniques used for the assay of isoflavones from soybean. Food Chem. 2007, 105, 325–333. [Google Scholar] [CrossRef]
- Hirondart, M.; Rombaut, N.; Fabiano-Tixier, A.S.; Bily, A.; Chemat, F. Comparison between Pressurized Liquid Extraction and Conventional Soxhlet Extraction for Rosemary Antioxidants, Yield, Composition, and Environmental Footprint. Foods 2020, 9, 584. [Google Scholar] [CrossRef] [PubMed]
- Pineiro, Z.; Palma, M.; Barroso, C.G. Analysis of trans-resveratrol in grapes by pressurised fluid extraction-solid phase extraction and HPLC with fluorescence detection. Biol. Phytochem. Food 2001, 269, 226–228. [Google Scholar]
- Shishir, M.R.I.; Xie, L.; Sun, C.; Zheng, X.; Chen, W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci. Technol. 2018, 78, 34–60. [Google Scholar] [CrossRef]
- Aguiar, J.; Estevinho, B.N.; Santos, L. Microencapsulation of natural antioxidants for food application—The specific case of coffee antioxidants—A review. Trends Food Sci. Technol. 2016, 58, 21–39. [Google Scholar] [CrossRef]
- D’Archivio, M.; Filesi, C.; Varì, R.; Scazzocchio, B.; Masella, R. Bioavailability of the polyphenols: Status and controversies. Int. J. Mol. Sci. 2010, 11, 1321–1342. [Google Scholar] [CrossRef] [PubMed]
- Dima, C.; Assadpour, E.; Dima, S.; Jafari, S.M. Bioavailability and bioaccessibility of food bioactive compounds; overview and assessment by in vitro methods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2862–2884. [Google Scholar] [CrossRef] [PubMed]
Drying Method | Extraction Parameters | Solid–liquid Ratio (g mL−1) | TPC a | TFC b | Ref. | Publication Year |
---|---|---|---|---|---|---|
Maceration | ||||||
Electric dryer at 30 °C | 99.5% acetone; 72 h; 30 °C | 2:1 | 71.2 ± 2.5 mg GAE c g−1 extract | 39.2 ± 7.4 mg CAE d g−1 extract | [55] | 2020 |
Oven dried at 60 °C for a week | distilled water; 45′; 80 °C | 1:10 | 137.0 mg PE e g−1 sample | 604.12 mg CAE g−1 sample | [56] | 2020 |
Air-drying | 80% ethanol; 5 days; room temperature | 1:5 | 110.43 mg GAE g−1 extract | - | [57] | 2019 |
Air-drying | absolute methanol; 30′; room temperature | 1:10 | - | 149.2 ± 8.3 mg ECE f g−1 extract | [58] | 2018 |
Air-drying | hexane/ethyl acetate/ethanol/water 5× in 24 h; room temp. | - | 11.04–54.42 mg PE f g−1 sample | 1.01–8.60 mg QE g g−1 extract | [59] | 2017 |
Unspecified | 80% ethanol; 48 h; room temperature; Successive 24 h; evaporation at 40 °C Defatting: petroleum ether 2× Lyophilization Ethyl acetate; 20% ammonium sulphate; 2% ortho-phosporic acid | 1:1001:50 | 25.70 mg GAE g−1 extract | 12.11 mg QE g−1 extract | [60] | 2016 |
Air-drying | 90% methanol + acetic acid at 24 °C for 24 h | 1:10 | 288.15 ± 1.34 mg GAE g−1 extract | - | [61] | 2016 |
Air-drying | 99% ethanol/deionized water; 3 days; room temperature deionized boiling water; 3 h | 1:10 | 53–132 mg GAE g−1 extract | - | [62] | 2012 |
Air-drying | in 24 h Ether/chloroform/ethyl acetate/n-butanol until colorless | 1:20 | - | 0.68–1.56 mg g−1 extract | [63] | 2010 |
Unspecified | 48 h | - | 201 mg g−1 leaves | - | [64] | 2006 |
Infusion | ||||||
Unspecified | DMSO | - | 44.07 mg GAE g−1 | 60.56 mg NAE h g−1 | [65] | 2021 |
Air-drying | methanol; 2 × 1 h; 25 °C at 150 rpm/boiling distilled water (100 °C), 5′; room temperature | 1:301:200 | 76.16 ± 0.34 mg g−1 extract/64.77 ± 2.14 mg g−1 extract | - | [12] | 2014 |
Unspecified | water; 15 min; 90 °C centrifuge 6000 rpm | 1:40 | 17.66 mg GAE g−1 extract | - | [66] | 2010 |
Air-drying | boiling water (100 °C); 15′ | 1:8 | 1.03 ± 0.04 mg GAE L−1 infusion | - | [32] | 2009 |
Air-drying | boiling distilled water; 15′/ ethanol; reextracted until colorless | 1:20 | 81.7 mg GAE g−1 extract/ 84.5 mg GAE g−1 extract | - | [67] | 2006 |
Heat-reflux extraction | ||||||
Unspecified | 50–70% ethanol | 1:50 | 42.21−42.35 mg GAE g−1 leaves | - | [68] | 2021 |
Oven dried at 60 °C for 48 h | 35% ethanol; 2 h; 60 °C | 1:4 | 2.34 ± 0.93 mg GAE g−1 dry leaves | - | [44] | 2018 |
Unspecified | ethanol water | 1:7.5 | 94.07 mg GAE g−1 extract 66.70 mg GAE g−1 extract | - | [69] | 2015 |
Air-drying | ethanol (0, 35, 70%); 0–8 h; 60 °C | 1:4 | 1.5–10.23 mg GAE g−1 leaves | - | [11] | 2014 |
Soxhlet extraction | ||||||
Oven dried at 55 °C until moisture level < 10% | water/methanol/ethanol 5 h | 1:40 | 30.73–83.41 mg GAE g−1 extract 10.42–12.59 mg GAE g−1 dry leaves | - | [70] | 2019 |
Air-drying | chloroform/ methanol | - | 0.36 ± 0.01 mg L−1 extract/ 0.90 ± 0.06 mg L−1 extract | - | [71] | 2011 |
Water bath shaker | ||||||
Oven dried hydrodistilled residues (temperature unspecified) | water/methanol/80% methanol/ethyl acetate/dichloromethane ) | 1:20 | 0.50–5.87 mg GAE g−1 extract | 0.15–5.18 mg QE g−1 extract | [72] | 2015 |
Air-drying | 60% ethanol; 24 h; 35 °C | 1:20 | 46.79 ± 3.22 mg GAE g−1 dry leaves | - | [73] | 2011 |
Centrifuge | ||||||
Oven dried at 25 ± 2 °C for 3 weeks | water/50% ethanol/ethanol 1 h, 40 °C at 600 rpm | 1:10 | 14.37–43.03 mg GAE g−1 extract | 14.12–30.15 mg ECE g−1 extract | [37] | 2015 |
Freezed fresh leaves | phosphate buffer (75 mM, pH 7.0) 20 min; 20,000 rpm | 1:7.5 | 4.02 mg GAE g−1 leaves | - | [74] | 2001 |
Solid–liquid extraction | ||||||
Unspecified | 80% ethanol; 60 min; 60 °C | 1:50 | 148.3 mg GAE g−1 leaves | 110.5 mg GAE g−1 leaves | [75] | 2019 |
Unspecified | water; 50 °C | - | 59.85 mg GAE g−1 leaves | - | [76] | 2009 |
Orbital shaker | ||||||
Unspecified | 80% acetone with 0.2% formic acid; 1 h; room temperature successive) centrifuge 6000 rpm | 1:40 | 70.81 mg GAE g−1 extract | - | [66] | 2010 |
Extraction Technique | Advantages Over Conventional Techniques | Disadvantages | Precautions | Number of Studies on Laurus nobilis L. Leaf Polyphenols Isolation | Ref. |
---|---|---|---|---|---|
MAE |
|
|
| 3 | [41,44,68,70,83] |
UAE |
|
|
| 7 | [35,45,47,68,70,83,84,85] |
EAE |
|
|
| 1 | [72,86,87] |
SFE |
|
|
| 1 | [46,88,89] |
MCAE |
|
|
| 1 | [68,90,91] |
Drying Method | Extraction Parameters | Solid–liquid Ratio (g mL−1) | TPC a | TFC b | Ref. | Publication Year |
---|---|---|---|---|---|---|
Microwave-assisted extraction | ||||||
Unspecified | 50–70% ethanol; 40–80 °C; 400/800 W; 5–15 min | 1:50 | 30.88–53.57 mg GAE c g−1 | - | [68] | 2021 |
Oven dried at 55 °C until moisture level <10% | ethanol, 500 W; stirring power 50% 15–75′; 90 °C | - | 25.03–135.47 mg GAE g−1 extract 2.74–21.56 mg GAE g−1 dry leaves | - | [70] | 2019 |
Oven dried at 60 °C for 48 h | 60 ± 2 °C; three-stage irradiation power (800 W, 15 s; 400 W, 15 s; 200 W, 30 s). ethanol 25–50% 3,6,9′ | - | 1.91–10.63 mg GAE g−1 plant | - | [44] | 2018 |
Ultrasound-assisted extraction | ||||||
Unspecified | 50–70% ethanol; 5–15 min; 50–100% amplitude; 20 kHz | 1:50 | 24.43–36.74 mg GAE g−1 leaves | - | [68] | 2021 |
Air-drying + 45 min oven at 50 °C | ethanol/water/50% ethanol; 20′; 45 °C; 20 kHz | 1:10 | 476.94–796.94 µg GAE g−1 extract | 192.82–398.71 µg CAE d g−1 extract | [85] | 2020 |
Oven dried at 55 °C until moisture level <10% | ethanol; 30–150′; 360 W; 50/60 kHz | 1:40 | 44.35–164.04 mg GAE g−1 extract 3.33–24.77 mg GAE g−1 dry leaves | - | [70] | 2019 |
Air-drying | 50% ethanol + 0.1% formic acid, 5′ sonication; centrifuge: 3000× g; 10′; 4 °C | 1:5 | 1.12 ± 0.08 mg GAE g−1 extract | - | [45] | 2014 |
Air-drying | ethanol (0,35,70%); 20–60′; room temperature; 40 kHz | 1:4; 1:8; 1:12 | 3.52–17.32 mg GAE g−1 plant | - | [47] | 2013 |
Air drying (a) Freeze drying (f): 6 h at −60 °C | 70% methanol; 6 M HCl 15′ sonication + water bath reflux: 90 °C; 2 h | 1:100 | a: 22.90–80.30 f: 21.50–41.20 mg GAE g−1 extract | a: 2.90 ± 0.18 mg ECE e g−1 extract f: traces | [35] | 2008 |
Unspecified | methanol; 2 h; 40 °C ultrasonic bath | 1:100 | 99.7 mg GAE g−1 extract | 80.1 mg kg−1 extract | [84] | 2005 |
Enzyme-assisted extraction | ||||||
Oven dried (no defined temperature) hydrodistilled residues | Pretreatment: distilled water + cellulase/hemicellulase/xylanase/ternary mixture; 1 h; 40 °C methanol; 48 h; 150 rpm shaker; 2× | 1:5 1:20 | 5.85–7.12 mg GAE g−1 extract | 5.18–6.33 mg QE f g−1 extract | [72] | 2015 |
Supercritical fluid extraction | ||||||
Air-drying | 250 bar; 60 °C; 4% ethanol; 75′ 1. separator: 100 bar, 60 °C 2. separator: 20 bar, 20 °C | - | 1. 51.6 ± 0.98 mg GAE g−1 extract 2. 87.38 ± 1.32 mg GAE g−1 extract | - | [46] | 2006 |
Mechanochemical extraction | ||||||
Oven dried at 55 °C until moisture level <10% | Na2CO3, BaCO3, Li2CO3, CoCO3, K2CO3, CaCO3 (excess of 25 or 50%) ball mill: 400 rpm; 10′ ethanol; 20′; magnetic stirring. centrifuge: 2683.2× g, 10′ | - | 33.01–75.54 mg GAE g−1 extract 1.91–9.52 mg GAE g−1 dry leaves | - | [70] | 2019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobroslavić, E.; Repajić, M.; Dragović-Uzelac, V.; Elez Garofulić, I. Isolation of Laurus nobilis Leaf Polyphenols: A Review on Current Techniques and Future Perspectives. Foods 2022, 11, 235. https://doi.org/10.3390/foods11020235
Dobroslavić E, Repajić M, Dragović-Uzelac V, Elez Garofulić I. Isolation of Laurus nobilis Leaf Polyphenols: A Review on Current Techniques and Future Perspectives. Foods. 2022; 11(2):235. https://doi.org/10.3390/foods11020235
Chicago/Turabian StyleDobroslavić, Erika, Maja Repajić, Verica Dragović-Uzelac, and Ivona Elez Garofulić. 2022. "Isolation of Laurus nobilis Leaf Polyphenols: A Review on Current Techniques and Future Perspectives" Foods 11, no. 2: 235. https://doi.org/10.3390/foods11020235
APA StyleDobroslavić, E., Repajić, M., Dragović-Uzelac, V., & Elez Garofulić, I. (2022). Isolation of Laurus nobilis Leaf Polyphenols: A Review on Current Techniques and Future Perspectives. Foods, 11(2), 235. https://doi.org/10.3390/foods11020235