Optimization of Extraction Process, Structure Characterization, and Antioxidant Activity of Polysaccharides from Different Parts of Camellia oleifera Abel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Chemicals and Reagents
2.3. Experimental Design
2.4. Optimization of Polysaccharides Extraction Process by BBD
2.5. Structure Characterization
2.5.1. Determination of Chemical Composition
2.5.2. Determination of Molecular Weight
2.5.3. Monosaccharide Composition Analysis
2.5.4. UV–Visible Spectroscopy
2.5.5. Fourier Transform Infrared (FTIR) Spectroscopy
2.5.6. Congo Red Analysis
2.6. Determination of Antioxidant Activity
2.7. Statistics and Analysis
3. Results and Discussions
3.1. Optimization of Extraction Conditions
3.1.1. Effects of Single Factors on the Yield of Polysaccharide
3.1.2. Effect of Independent Variable Parameters on Response Variables
3.1.3. ANOVA Analysis of BBD and Model Fitting
3.1.4. Analysis of the Response Surface Design
3.2. Chemical Component, Molecular Weight and Monosaccharide Composition Analysis
3.3. The Results of UV–Visible Spectroscopy
3.4. FT-IR Spectra
3.5. The Result of Congo Red Test
3.6. Antioxidant Activity
3.6.1. DPPH• Scavenging Activity
3.6.2. ABTS•+ Scavenging Activity
3.6.3. Hydroxyl Radical Scavenging Activity
3.6.4. Fe2+ Chelating Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luan, F.; Zeng, J.S.; Yang, Y.; He, X.R.; Wang, B.J.; Gao, Y.B.; Zeng, N. Recent advances in Camellia oleifera Abel.: A review of nutritional constituents, biofunctional properties, and potential industrial applications. J. Funct. Foods 2020, 75, 104242. [Google Scholar] [CrossRef]
- Zhang, T.; Qiu, F.C.; Chen, L.; Liu, R.J.; Chang, M.; Wang, X.G. Identification and in vitro anti-inflammatory activity of different forms of phenolic compounds in Camellia oleifera oil. Food Chem. 2021, 344, 128660. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.X.; Yang, T.; Wang, Y.H.; Zhou, B.Q.; Yan, L.; Teng, L.Z.; Wang, F.B.; Chen, L.L.; He, Y.; Guo, K.P.; et al. New method for effective identification of adulterated Camellia oil basing on Camellia oleifera-specific DNA. Arabian J. Chem. 2018, 11, 815–826. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chen, S.Y.; Lee, W.T.; Yen, G.C. Immunomodulatory effect of camellia oil (Camellia oleifera Abel.) on CD19+ B cells enrichment and IL-10 production in BALB/c mice. J. Funct. Foods 2022, 88, 104863. [Google Scholar] [CrossRef]
- Feng, S.L.; Xu, X.Y.; Tao, S.Y.; Chen, T.; Zhou, L.J.; Huang, Y.; Yang, H.Y.; Yuan, M.; Ding, C.B. Comprehensive evaluation of chemical composition and health-promoting effects with chemometrics analysis of plant derived edible oils. Food Chem. X 2022, 14, 100341. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.L.; Cheng, H.R.; Fu, L.; Ding, C.B.; Zhang, L.; Yang, R.W.; Zhou, Y.H. Ultrasonic-assisted extraction and antioxidant activities of polysaccharides from Camellia oleifera leaves. Int. J. Biol. Macromol. 2014, 68, 7–12. [Google Scholar] [CrossRef]
- Zhang, J.P.; Ying, Y.; Li, X.B.; Yao, X.H. Changes in tannin and saponin components during co-composting of Camellia oleifera Abel shell and seed cake. PLoS ONE 2020, 15, e0230602. [Google Scholar] [CrossRef]
- Chang, S.S.; Chen, L.S.; Chu, C.Y. Active food ingredients production from cold pressed processing residues of Camellia oleifera and Camellia sinensis seeds for regulation of blood pressure and vascular function. Chemosphere 2021, 267, 129267. [Google Scholar] [CrossRef]
- Liu, W.H.; Wang, M.K.; Xu, S.J.; Gao, C.; Liu, J.J. Inhibitory effects of shell of Camellia oleifera Abel. extract on mushroom tyrosinase and human skin melanin. J. Cosmet. Dermatol. 2019, 18, 1955–1960. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X.Z. Inhibition of α-glucosidase by polysaccharides from the fruit hull of Camellia oleifera Abel. Carbohyd. Polym. 2015, 115, 38–43. [Google Scholar] [CrossRef]
- Jin, R.S.; Guo, Y.H.; Xu, B.Y.; Wang, H.X.; Yuan, C.X. Physicochemical properties of polysaccharides separated from Camellia oleifera Abel seed cake and its hypoglycemic activity on streptozotocin induced diabetic mice. Int. J. Biol. Macromol. 2019, 125, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Xie, Q.X.; Wang, H.; Hu, Y.J.; Ren, B.; Li, X.F. Recent advances in plant polysaccharide-mediated nano drug delivery systems. Int. J. Biol. Macromol. 2020, 165, 2668–2683. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.L.; Hou, C.Y.; Guo, X.D. Physicochemical properties, structures, bioactivities and future prospective for polysaccharides from Plantago L.(Plantaginaceae): A review. Int. J. Biol. Macromol. 2019, 135, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Yi, Y.L.; Guo, S.; Zhang, F.; Yan, H.; Zhan, Z.L.; Zhu, Y.; Duan, J.A. Isolation, structural characterization and bioactivities of polysaccharides from Laminaria japonica: A review. Food Chem. 2022, 370, 131010. [Google Scholar] [CrossRef]
- Chen, C.H.; Guan, X.F.; Liu, X.Y.; Zhuang, W.J.; Xiao, Y.Q.; Zheng, Y.F.; Wang, Q. Polysaccharides from Bamboo Shoot (Leleba oldhami Nakal) Byproducts Alleviate Antibiotic-Associated Diarrhea in Mice through Their Interactions with Gut Microbiota. Foods 2022, 11, 2647. [Google Scholar] [CrossRef]
- Wei, H.L.; Wang, Y.J.; Li, W.M.; Qiu, Y.; Hua, C.P.; Zhang, Y.B.; Guo, Z.H.; Xie, Z.K. Immunomodulatory activity and active mechanisms of a low molecular polysaccharide isolated from Lanzhou lily bulbs in RAW264. 7 macrophages. J. Funct Foods 2022, 92, 105071. [Google Scholar] [CrossRef]
- Martín-García, B.; Aznar-Ramos, M.J.; Verardo, V.; Gómez-Caravaca, A.M. The establishment of ultrasonic-assisted extraction for the recovery of phenolic Compounds and evaluation of their antioxidant activity from Morus alba leaves. Foods 2022, 11, 314. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Chen, X.Q.; Song, W.; Zhao, J.; Zhang, Z.F.; Zhang, Y.T. Some physical properties of protein moiety of alkali-extracted tea polysaccharide conjugates were shielded by its polysaccharide. Molecules 2017, 22, 914. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Wang, H.D.; Wang, B.L.; Fu, L.; Yuan, M.; Liu, J.; Zhou, L.J.; Ding, C.B. Characterization and antioxidant activities of polysaccharides from the leaves of Lilium lancifolium Thunb. Int. J. Biol. Macromol. 2016, 92, 148–155. [Google Scholar] [CrossRef]
- Ren, Y.P.; Liu, S.X. Effects of separation and purification on structural characteristics of polysaccharide from quinoa (Chenopodium quinoa willd). Biochem. Biophys. Res. Commun. 2020, 522, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Xiang, C.R.; Xu, Z.; Liu, J.; Li, T.; Yang, Z.S.; Ding, C.B. Quality, composition, and antioxidant activity of virgin olive oil from introduced varieties at Liangshan. LWT-Food Sci. Technol. 2017, 78, 226–234. [Google Scholar] [CrossRef]
- Li, X.C.; Lin, J.; Gao, Y.X.; Han, W.J.; Chen, D.F. Antioxidant activity and mechanism of Rhizoma Cimicifugae. Chem. Cent. J. 2012, 6, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, M.E.; Chen, M.J.; Gui, J.L.; Huang, S.D.; Liu, Y.M.; Shentu, H.F.; He, J.; Fang, Z.Y.; Wang, W.M.; Zhang, Y.J. Preparation of Chlorella vulgaris polysaccharides and their antioxidant activity in vitro and in vivo. Int. J. Biol. Macromol. 2019, 137, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, X.Y.; Wang, B.B. Synthesis, characterization and antioxidant activity of selenium modified polysaccharides from Hohenbuehelia serotina. Int. J. Biol. Macromol. 2018, 120, 1362–1368. [Google Scholar] [CrossRef] [PubMed]
- Belhaj, D.; Frikha, D.; Athmouni, K.; Jerbi, B.; Ahmed, M.B.; Bouallagui, Z.; Kallel, M.; Maalej, S.; Zhou, J.; Ayadi, H. Box-Behnken design for extraction optimization of crude polysaccharides from Tunisian Phormidium versicolor cyanobacteria (NCC 466): Partial characterization, in vitro antioxidant and antimicrobial activities. Int. J. Biol. Macromol. 2017, 105, 1501–1510. [Google Scholar] [CrossRef]
- Ye, Z.P.; Wang, W.; Yuan, Q.X.; Ye, H.; Sun, Y.; Zheng, H.C. Box−Behnken design for extraction optimization, characterization and in vitro antioxidant activity of Cicer arietinum L. hull polysaccharides. Carbohyd. Polym. 2016, 147, 354–364. [Google Scholar] [CrossRef]
- Zhang, T.T.; Lu, C.L.; Jiang, J.G.; Wang, M.; Wang, D.M.; Zhu, W. Bioactivities and extraction optimization of crude polysaccharides from the fruits and leaves of Rubus chingii Hu. Carbohyd. Polym. 2015, 130, 307–315. [Google Scholar] [CrossRef]
- Wang, R.; Yun, J.M.; Wu, S.J.; Bi, Y.; Zhao, F.Y. Optimisation andcharacterisation of novel angiotensin-converting enzyme inhibitory peptides prepared by double enzymatic hydrolysis from Agaricus bisporus Scraps. Foods 2022, 11, 394. [Google Scholar] [CrossRef]
- Yolmeh, M.; Jafari, S.M. Applications of response surface methodology in the food industry processes. Food Bioprocess Tech. 2017, 10, 413–433. [Google Scholar] [CrossRef]
- Song, X.L.; Fu, H.Y.; Chen, W. Effects of Flammulina velutipes polysaccharides on quality improvement of fermented milk and antihyperlipidemic on streptozotocin-induced mice. J. Funct. Foods 2021, 87, 104834. [Google Scholar] [CrossRef]
- Yan, Y.L.; Yu, C.H.; Chen, J.; Li, X.X.; Wang, W.; Li, S.Q. Ultrasonic-assisted extraction optimized by response surface methodology, chemical composition and antioxidant activity of polysaccharides from Tremella mesenterica. Carbohyd. Polym. 2011, 83, 217–224. [Google Scholar] [CrossRef]
- Wang, H.S.; Chen, J.R.; Ren, P.F.; Zhang, Y.W.; Onyango, S.O. Ultrasound irradiation alters the spatial structure and improves the antioxidant activity of the yellow tea polysaccharide. Ultrason. Sonochem. 2021, 70, 105355. [Google Scholar] [CrossRef]
- Cai, W.R.; Xie, L.L.; Chen, Y.; Zhang, H. Purification, characterization and anticoagulant activity of the polysaccharides from green tea. Carbohyd. Polym. 2013, 92, 1086–1090. [Google Scholar] [CrossRef]
- Dong, Y.H.; Chen, C.; Fu, X.; Liu, R.H. Study on the pharmacokinetics of mulberry fruit polysaccharides through fluorescence labeling. Int. J. Biol. Macromol. 2021, 186, 462–471. [Google Scholar]
- Yuan, L.L.; Qiu, Z.C.; Yang, Y.M.; Liu, C.; Zhang, R.T. Preparation, structural characterization and antioxidant activity of water-soluble polysaccharides and purified fractions from blackened jujube by an activity-oriented approach. Food Chem. 2022, 385, 132637. [Google Scholar] [CrossRef] [PubMed]
- Li, S.H.; Tang, D.; Wei, R.; Zhao, S.; Mu, W.J.; Qiang, S.Q.; Zhang, Z.Y.; Chen, Y. Polysaccharides production from soybean curd residue via Morchella esculenta. J. Food Biochem. 2019, 43, e12791. [Google Scholar] [PubMed]
- Wang, Z.C.; Jia, S.T.; Cui, J.W.; Qu, J.H.; Yue, Y.Y.; Sun, Q.; Zhang, H.R. Antioxidant activity of a polysaccharide produced by Chaetomium globosum CGMCC 6882. Int. J. Biol. Macromol. 2019, 141, 955–960. [Google Scholar] [CrossRef]
- Wikiera, A.; Grabacka, M.; Byczyński, Ł.; Bozena, S.; Stodolak, B.; Mika, M. Enzymatically extracted apple pectin possesses antioxidant and antitumor activity. Molecules 2021, 26, 1434. [Google Scholar] [CrossRef]
- Lo, T.C.T.; Chang, C.A.; Chiu, K.H.; Tsay, P.K.; Jen, J.F. Correlation evaluation of antioxidant properties on the monosaccharide components and glycosyl linkages of polysaccharide with different measuring methods. Carbohyd. Polym. 2011, 86, 320–327. [Google Scholar] [CrossRef]
- Liu, N.; Yang, W.N.; Li, X.; Zhao, P.; Liu, Y.; Guo, L.P.; Huang, L.Q.; Gao, W.Y. Comparison of characterization and antioxidant activity of different citrus peel pectins. Food Chem. 2022, 386, 132683. [Google Scholar] [CrossRef]
- Fimbres-Olivarria, D.; Carvajal-Millan, E.; Lopez-Elias, J.A.; Martinez-Robinson, K.G.; Miranda-Baeza, A.; Martinez-Cordova, L.R.; Enriquez-Ocana, F.; Valdez-Holguin, J.E. Chemical characterization and antioxidant activity of sulfated polysaccharides from Navicula sp. Food Hydrocolloid. 2018, 75, 229–236. [Google Scholar] [CrossRef]
- Zhong, Q.W.; Wei, B.; Wang, S.J.; Ke, S.Z.; Chen, J.W.; Zhang, H.W.; Wang, H. The antioxidant activity of polysaccharides derived from marine organisms: An overview. Mar. Drugs 2019, 17, 674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, L.M.; Zhao, Y.; Guo, C.; Yang, X.B. A comparative study on the antioxidant activities of an acidic polysaccharide and various solvent extracts derived from herbal Houttuynia cordata. Carbohyd. Polym. 2011, 83, 537–544. [Google Scholar] [CrossRef]
- Yu-Hao, D.; Chun, C.; Qiang, H.; Xiong, F. Study on a novel spherical polysaccharide from Fructus Mori with good antioxidant activity. Carbohyd. Polym. 2021, 256, 117516. [Google Scholar] [CrossRef]
- Shen, S.J.; Jia, S.R.; Wu, Y.K.; Yan, R.R.; Lin, Y.H.; Zhao, D.X.; Han, P.P. Effect of culture conditions on the physicochemical properties and antioxidant activities of polysaccharides from Nostoc flagelliforme. Carbohyd. Polym. 2018, 198, 426–433. [Google Scholar] [CrossRef]
- Hwang, K.C.; Shin, H.Y.; Kim, W.J.; Seo, M.S.; Kim, H. Effects of a high-molecular-weight polysaccharides isolated from Korean persimmon on the antioxidant, anti-inflammatory, and antiwrinkle activity. Molecules 2021, 26, 1600. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.Q.; Ye, H.; Hu, B.; Zhou, L.; Jabbar, S.; Zeng, X.X.; Shen, W.B. Optimization of extraction, characterization and antioxidant activity of polysaccharides from Brassica rapa L. Int. J. Biol. Macromol. 2016, 82, 979–988. [Google Scholar] [CrossRef]
- Yi, J.P.; Li, X.; Wang, S.; Wu, T.T.; Liu, P. Steam explosion pretreatment of Achyranthis bidentatae radix: Modified polysaccharide and its antioxidant activities. Food Chem. 2022, 375, 131746. [Google Scholar] [CrossRef]
- Chen, J.F.; Huang, G.L. Antioxidant activities of garlic polysaccharide and its phosphorylated derivative. Int. J. Biol. Macromol. 2019, 125, 432–435. [Google Scholar] [CrossRef]
- Xiong, F.; Li, X.; Zheng, L.H.; Hu, N.; Cui, M.J.; Li, H.Y. Characterization and antioxidant activities of polysaccharides from Passiflora edulis Sims peel under different degradation methods. Carbohyd. Polym. 2019, 218, 46–52. [Google Scholar] [CrossRef]
- Fakhfakh, N.; Abdelhedi, O.; Jdir, H.; Nasri, M.; Zouari, N. Isolation of polysaccharides from Malva aegyptiaca and evaluation of their antioxidant and antibacterial properties. Int. J. Biol. Macromol. 2017, 105, 1919–1925. [Google Scholar] [CrossRef]
- Sheng, J.W.; Sun, Y.L. Antioxidant properties of different molecular weight polysaccharides from Athyrium multidentatum (Doll.) Ching. Carbohyd. Polym. 2014, 108, 41–45. [Google Scholar] [CrossRef]
- Zhang, H.; Zou, P.; Zhao, H.T.; Qiu, J.Q.; Regenstein, J.M.; Yang, X. Isolation, purification, structure and antioxidant activity of polysaccharide from pinecones of Pinus koraiensis. Carbohyd. Polym. 2021, 251, 117078. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.D.; Jin, W.H.; Zhang, H.; Zhang, Q.B. Structure–activity relationship of sulfated hetero/galactofucan polysaccharides on dopaminergic neuron. Int. J. Biol. Macromol. 2016, 82, 878–883. [Google Scholar] [CrossRef]
Level | Extraction Temperature (°C, X1) | Extraction Time (min, X2) | Liquid−Solid Ratio (mL/g, X3) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P-CF | P-CL | P-CC | P-CS | P-CF | P-CL | P-CC | P-CS | P-CF | P-CL | P-CC | P-CS | |
−1 | 60 | 70 | 75 | 75 | 60 | 90 | 90 | 80 | 15 | 10 | 20 | 15 |
0 | 75 | 75 | 80 | 85 | 100 | 100 | 110 | 120 | 25 | 20 | 30 | 30 |
1 | 90 | 80 | 85 | 95 | 140 | 110 | 130 | 160 | 35 | 30 | 40 | 45 |
Run | Extraction Temperature (°C, X1) | Extraction Time (min, X2) | Liquid−Solid Ratio (mL/g, X3) | Polysaccharide Yield (%, Y) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P-CF | P-CL | P-CC | P-CS | P-CF | P-CL | P-CC | P-CS | P-CF | P-CL | P-CC | P-CS | P-CF | P-CL | P-CC | P-CS | |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 9.35 | 6.84 | 7.71 | 5.82 |
2 | 1 | 0 | 0 | 0 | 0 | −1 | 0 | −1 | 1 | 1 | 0 | −1 | 9.07 | 6.88 | 8.17 | 5.11 |
3 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | −1 | −1 | 0 | 9.25 | 6.74 | 7.83 | 5.68 |
4 | 1 | 1 | 1 | 1 | 0 | −1 | −1 | −1 | −1 | 0 | 0 | 0 | 8.47 | 6.80 | 7.97 | 5.62 |
5 | −1 | 0 | 0 | 0 | 0 | 1 | −1 | 0 | 1 | 1 | 1 | 0 | 8.28 | 7.63 | 7.99 | 5.77 |
6 | −1 | −1 | 0 | −1 | −1 | 1 | 0 | −1 | 0 | 0 | 0 | 0 | 5.24 | 6.75 | 8.19 | 5.05 |
7 | 1 | 0 | −1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 7.94 | 6.98 | 7.76 | 6.94 |
8 | 0 | −1 | 0 | 0 | −1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 7.79 | 6.90 | 8.05 | 6.21 |
9 | 1 | 1 | 0 | 0 | −1 | 0 | 0 | −1 | 0 | −1 | 0 | 1 | 8.81 | 6.80 | 8.21 | 4.80 |
10 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | −1 | 1 | −1 | 1 | 8.20 | 6.69 | 7.74 | 6.13 |
11 | 0 | 0 | −1 | −1 | 0 | −1 | 0 | 0 | 0 | −1 | 1 | −1 | 9.15 | 6.61 | 7.85 | 4.65 |
12 | 0 | 0 | −1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | −1 | −1 | 9.15 | 7.44 | 6.40 | 5.17 |
13 | −1 | 0 | 0 | 0 | 0 | 0 | −1 | 0 | −1 | 0 | −1 | 0 | 6.78 | 6.90 | 7.67 | 5.73 |
14 | 0 | −1 | 0 | −1 | 0 | 0 | 1 | 1 | 0 | −1 | 1 | 0 | 8.68 | 5.84 | 8.27 | 5.25 |
15 | 0 | −1 | 0 | 1 | 0 | −1 | 0 | 0 | 0 | 0 | 0 | −1 | 8.98 | 6.28 | 8.11 | 5.73 |
16 | −1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 8.92 | 6.77 | 7.74 | 5.35 |
17 | 0 | 0 | −1 | −1 | −1 | 0 | −1 | 0 | −1 | 0 | 0 | 1 | 6.77 | 7.13 | 6.76 | 5.28 |
Mean Square | F-Value | p-Value | Significance | ||||||
---|---|---|---|---|---|---|---|---|---|
Source | df | Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | Y1 | Y2 |
Model | 9 | 2.17 | 0.25 | 54.48 | 6.60 | <0.0001 | 0.0105 | **** | * |
X1 | 1 | 3.21 | 0.21 | 80.76 | 5.57 | <0.0001 | 0.0504 | **** | |
X2 | 1 | 3.93 | 0.22 | 98.80 | 5.74 | <0.0001 | 0.0478 | **** | * |
X3 | 1 | 2.07 | 0.55 | 52.13 | 14.67 | 0.0002 | 0.0065 | *** | ** |
X1X2 | 1 | 5.20 | 0.06 | 130.77 | 1.64 | <0.0001 | 0.2414 | **** | |
X1X3 | 1 | 0.21 | 0.34 | 5.21 | 9.11 | 0.0564 | 0.0194 | * | |
X2X3 | 1 | <0.01 | 0.10 | 0.04 | 2.64 | 0.8562 | 0.1483 | ||
X12 | 1 | 1.47 | 0.70 | 36.91 | 18.46 | 0.0005 | 0.0036 | *** | ** |
X22 | 1 | 2.46 | <0.01 | 61.92 | <0.01 | 0.0001 | 0.9867 | *** | |
X32 | 1 | 0.49 | 0.04 | 12.35 | 1.00 | 0.0098 | 0.3532 | ** | |
Residual | 7 | 0.04 | 0.04 | ||||||
Lack of Fit | 3 | <0.01 | 0.01 | 0.02 | 0.20 | 0.9962 | 0.8917 | ||
Pure Error | 4 | 0.07 | 0.06 | ||||||
Fit Statistics | Std. Dev. | Mean | C.V. % | R2 | Adjusted R2 | Predicted R2 | Adequacy Precision | ||
Y1 | 0.20 | 8.28 | 2.41 | 0.99 | 0.97 | 0.98 | 25.59 | ||
Y2 | 0.20 | 6.82 | 2.85 | 0.89 | 0.76 | 0.64 | 11.49 | ||
Source | df | Y3 | Y4 | Y3 | Y4 | Y3 | Y4 | Y3 | Y4 |
Model | 9 | 0.43 | 0.54 | 44.62 | 23.77 | <0.0001 | 0.0002 | **** | *** |
X1 | 1 | 0.76 | 2.21 | 78.59 | 96.30 | <0.0001 | <0.0001 | **** | **** |
X2 | 1 | 0.15 | 1.12 | 16.01 | 48.69 | 0.0052 | 0.0002 | ** | *** |
X3 | 1 | 0.59 | 0.39 | 61.12 | 16.87 | 0.0001 | 0.0045 | *** | ** |
X1X2 | 1 | 0.38 | 0.31 | 38.88 | 13.57 | 0.0004 | 0.0078 | *** | ** |
X1X3 | 1 | 0.61 | 0.01 | 62.85 | 0.59 | <0.0001 | 0.4661 | **** | |
X2X3 | 1 | 0.01 | 0.45 | 1.24 | 19.47 | 0.3030 | 0.0031 | ** | |
X12 | 1 | 1.18 | 0.03 | 121.72 | 1.33 | <0.0001 | 0.2871 | **** | |
X22 | 1 | 0.01 | 0.01 | 1.45 | 0.29 | 0.27 | 0.6099 | ||
X32 | 1 | 0.12 | 0.39 | 12.57 | 17.09 | 0.0094 | 0.0044 | ** | ** |
Residual | 7 | 0.01 | 0.02 | ||||||
Lack of Fit | 3 | 0.02 | 0.01 | 3.98 | 0.23 | 0.1076 | 0.8683 | ||
Pure Error | 4 | <0.01 | 0.03 | ||||||
Fit Statistics | Std. Dev. | Mean | C.V. % | R2 | Adjusted R2 | Predicted R2 | Adequacy Precision | ||
Y3 | 0.10 | 7.79 | 1.26 | 0.98 | 0.96 | 0.79 | 25.28 | ||
Y4 | 0.15 | 5.55 | 2.73 | 0.97 | 0.93 | 0.88 | 19.35 |
Extraction Temperature (°C, X1) | Extraction Time (min, X2) | Liquid−Solid Ratio (mL/g, X3) | Polysaccharide Yield (%, Y) | |||||
---|---|---|---|---|---|---|---|---|
Pre. | Pra. | Pre. | Pra. | Pre. | Pra. | Pre. | Pra. | |
P-CF | 72.43 | 73 | 123.05 | 123 | 32.86 | 33 | 9.43 | 9.32 ± 0.11 |
P-CL | 73.47 | 74 | 110 | 110 | 30 | 30 | 7.65 | 7.57 ± 0.11 |
P-CC | 78.17 | 78 | 130 | 130 | 40 | 40 | 8.45 | 8.69 ± 0.16 |
P-CS | 95 | 95 | 160 | 160 | 42.2 | 42 | 7.09 | 7.25 ± 0.07 |
Chemical Component | P-CF | P-CL | P-CC | P-CS |
---|---|---|---|---|
Total Carbohydrate (%) | 59.48 ± 0.59 | 64.37 ± 0.66 | 50.72 ± 0.57 | 52.13 ± 0.16 |
Protein (%) | 17.66 ± 0.1 | 11.77 ± 0.18 | 3.38 ± 0.2 | 7.74 ± 0.27 |
Mw Distribution (kDa) | ||||
Peak 1 | 128.06 | 84.60 | 87.76 | 67.09 |
Peak 2 | 16.75 | 3.8 | 14.95 | 4.03 |
Peak 3 | 3.31 | |||
Component Ratio (%) | 34.7:65.3 | 95.7:4.3 | 72.5:27.5 | 98.2:0.9:0.9 |
Monosaccharide Composition (mole%) | ||||
Mannose | 10.88 | 1 | 2.55 | 10.38 |
Rhamnose | 6.34 | 7.07 | 3.35 | 3.78 |
Galacturonic Acid | 5.92 | 12.8 | 11.86 | 20.56 |
Glucose | 11.32 | 1.69 | 39.75 | 16.21 |
Galactose | 23.78 | 29.59 | 15.82 | 20.76 |
Xylose | 41.19 | 47.37 | 24.17 | 27.8 |
Arabinose | 0.57 | 0.48 | 0.51 | |
Fucose | 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, S.; Tang, M.; Jiang, Z.; Ruan, Y.; Liu, L.; Kong, Q.; Xiang, Z.; Chen, T.; Zhou, L.; Yang, H.; et al. Optimization of Extraction Process, Structure Characterization, and Antioxidant Activity of Polysaccharides from Different Parts of Camellia oleifera Abel. Foods 2022, 11, 3185. https://doi.org/10.3390/foods11203185
Feng S, Tang M, Jiang Z, Ruan Y, Liu L, Kong Q, Xiang Z, Chen T, Zhou L, Yang H, et al. Optimization of Extraction Process, Structure Characterization, and Antioxidant Activity of Polysaccharides from Different Parts of Camellia oleifera Abel. Foods. 2022; 11(20):3185. https://doi.org/10.3390/foods11203185
Chicago/Turabian StyleFeng, Shiling, Min Tang, Zhengfeng Jiang, Yunjie Ruan, Li Liu, Qingbo Kong, Zhuoya Xiang, Tao Chen, Lijun Zhou, Hongyu Yang, and et al. 2022. "Optimization of Extraction Process, Structure Characterization, and Antioxidant Activity of Polysaccharides from Different Parts of Camellia oleifera Abel" Foods 11, no. 20: 3185. https://doi.org/10.3390/foods11203185
APA StyleFeng, S., Tang, M., Jiang, Z., Ruan, Y., Liu, L., Kong, Q., Xiang, Z., Chen, T., Zhou, L., Yang, H., Yuan, M., & Ding, C. (2022). Optimization of Extraction Process, Structure Characterization, and Antioxidant Activity of Polysaccharides from Different Parts of Camellia oleifera Abel. Foods, 11(20), 3185. https://doi.org/10.3390/foods11203185