Facile Synthesis of Molecularly Imprinted Ratiometric Fluorescence Sensor for Ciguatoxin P-CTX-3C Detection in Fish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Apparatus
2.3. Synthesis of Blue Carbon Dots
2.4. Synthesis of Red Carbon Dots
2.5. Fabrication of Molecularly Imprinted Ratiometric Fluorescence Sensor
2.6. Fluorescence Measurements
2.7. Analysis of Reproducibility
2.8. Analysis of Selectivity and Anti-Interference Ability
2.9. Analysis of Original and Spiked Samples
3. Results and Discussion
3.1. Fabrication and Characterization of the Ratiometric Fluorescence Sensor
3.2. Optical Properties
3.3. Optimization of Fluorescent Detection Conditions
3.4. Fluorescence Detection
3.5. Selectivity and Anti-Interference Ability of the Sensor
3.6. Reproducibility of the Sensor
3.7. Analysis of Fishes Spiked with CTX
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adams, B.D.; Chen, A. The role of palladium in a hydrogen economy. Mater. Today 2011, 14, 282–289. [Google Scholar] [CrossRef]
- Vernoux, J.P.; Lewis, R.J. Isolation and characterisation of Caribbean ciguatoxins from the horse-eye jack (Caranx latus). Toxicon 1997, 35, 889–900. [Google Scholar] [CrossRef]
- Melissa, F.; Mercedes, F.; Lorraine, B.; Robert, D.; Jeffrey, B.; Kathleen, S.; Steven, K.; Wendy, S.; Matthew, G.; Paul, B.; et al. An Updated Review of Ciguatera Fish Poisoning: Clinical, Epidemiological, Environmental, and Public Health Management. Mar. Drugs 2017, 15, 72. [Google Scholar]
- Food and Drug Administration. Fish and Fishery Products Hazards and Controls Guidance, 4th ed.; Food and Drug Administration: Silver Spring, MD, USA, 2019.
- Park, D.L. Evolution of methods for assessing ciguatera toxins in fish. Rev. Environ. Contam. T 1994, 136, 1–20. [Google Scholar]
- Diaz-Asencio, L.; Clausing, R.J.; Ranada, M.L.; Alonso-Hernandez, C.M.; Bottein, M.Y.D. A radioligand receptor binding assay for ciguatoxin monitoring in environmental samples: Method development and determination of quality control criteria. J. Environ. Radioact. 2018, 192, 289–294. [Google Scholar] [CrossRef]
- Manoella, S.; Christine, H.; Taiana, D.H.; Mélanie, R.; Mireille, C.; Philipp, H. Detection of pacific ciguatoxins using liquid chromatography coupled to either low or high resolution mass spectrometry (LC-MS/MS). J. Chromatogr. A 2018, 1571, 16–28. [Google Scholar]
- Zhuang, Y.; Lin, B.; Yu, Y.; Wang, Y.; Zhang, L.; Cao, Y.; Guo, M. A ratiometric fluorescent probe based on sulfur quantum dots and calcium ion for sensitive and visual detection of doxycycline in food. Food Chem. 2021, 356, 129720. [Google Scholar] [CrossRef]
- Jalili, R.; Irani-Nezhad, M.H.; Khataee, A.; Joo, S.W. A ratiometric fluorescent probe based on carbon dots and gold nanocluster encapsulated metal-organic framework for detection of cephalexin residues in milk. Spectrochim. Acta A 2021, 262, 120089. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Z.; Miao, J.; Zhao, B. A ratiometric fluorescence probe based on a novel FRET platform for imaging endogenous HOCl in the living cells. Sens. Actuators B 2016, 229, 408–413. [Google Scholar] [CrossRef]
- Wei, J.; Chen, H.; Zhang, W.; Pan, J.; Dang, F.; Zhang, Z.; Zhang, J. Ratiometric fluorescence for sensitive and selective detection of mitoxantrone using a MIP@rQDs@SiO2 fluorescence probe. Sens. Actuators B 2017, 244, 31–37. [Google Scholar] [CrossRef]
- Hu, X.; Liu, Y.; Xia, Y.; Zhao, F.; Zeng, B. A novel ratiometric electrochemical sensor for the selective detection of citrinin based on molecularly imprinted poly(thionine) on ionic liquid decorated boron and nitrogen co-doped hierarchical porous carbon. Food Chem. 2021, 363, 130385. [Google Scholar] [CrossRef]
- Lian, Z.; Zhao, M.; Wang, J.; Yu, R. Dual-emission ratiometric fluorescent sensor based molecularly imprinted nanoparticles for visual detection of okadaic acid in seawater and sediment. Sens. Actuators B 2021, 346, 130465. [Google Scholar] [CrossRef]
- Liu, M.; Gao, Z.; Yu, Y.; Su, R.; Huang, R.; Qi, W.; He, Z. Molecularly imprinted core-shellCdSe@SiO2/CDs as a ratiometric fluorescent probe for 4-nitrophenol sensing. Nanoscale Res. Lett. 2018, 13, 27. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Wang, C.; Liu, E.; Hu, X.; Hao, H.; Fan, J. A novel ascorbic acid ratiometric fluorescent sensor based on ZnCdS quantum dots embedded molecularly imprinted polymer and silica-coated CdTeS quantum dots. J. Mol. Liq. 2021, 337, 116438. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, R.; Pan, S.; Liu, H.; Hu, X. A ratiometric fluorescence strategy based on dual-signal response of carbon dots and o-phenylenediamine for ATP detection. Microchem. J. 2021, 10164, 105976. [Google Scholar] [CrossRef]
- Amjadi, M.; Jalili, R. Molecularly imprinted mesoporous silica embedded with carbon dots and semiconductor quantum dots as a ratiometric fluorescent sensor for diniconazole. Biosens. Bioelectron. 2017, 96, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, H.; Chen, S.; Liu, Y.; Zhuang, J.; Lei, B. Synthesis of molecularly imprinted carbon dot grafted YVO4:Eu3+ for the ratiometric fluorescent determination of paranitrophenol. Biosens. Bioelectron. 2016, 86, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Lei, Y. Fluorescent carbon dots and their sensing applications. Trends Anal. Chem. 2017, 89, 163–180. [Google Scholar] [CrossRef]
- Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A.; Cai, C.; Lin, H. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem. 2015, 54, 5360–5363. [Google Scholar] [CrossRef]
- Pandey, H.; Khare, P.; Singh, S.; Singh, S.P. Carbon nanomaterials integrated molecularly imprinted polymers for biological sample analysis: A critical review. Mater. Chem. Phys. 2020, 239, 121966. [Google Scholar] [CrossRef]
- Fang, L.; Jia, M.; Zhao, H.; Kang, L.; Shi, L.; Zhou, L.; Kong, W. Molecularly imprinted polymer-based optical sensors for pesticides in foods: Recent advances and future trends. Trends Food Sci. Tech. 2021, 116, 387–404. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, T.; Hu, B.; Meng, M.; Yan, Y. Molecularly imprinted polydopamine coated CdTe@SiO2 as a ratiometric fluorescent probe for ultrafast and visual p-nitrophenol monitoring. Microchem. J. 2022, 172, 106899. [Google Scholar] [CrossRef]
- Wang, X.; Yu, S.; Liu, W.; Fu, L.; Wang, Y.; Li, J.; Chen, L. Molecular imprinting based hybrid ratiometric fluorescence sensor for the visual determination of bovine hemoglobin. ACS Sens. 2018, 3, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Liu, H.; Geng, W.; Wang, Y. A dual-function molecularly imprinted optopolymer based on quantum dotsgrafted covalent-organic frameworks for the sensitive detection of tyramine in fermented meat products. Food Chem. 2019, 277, 639–645. [Google Scholar] [CrossRef]
- Trevizan, H.F.; Olean-Oliveira, A.; Cardoso, C.X.; Teixeira, M.F.S. Development of a molecularly imprinted polymer for uric acid sensing based on a conductive azopolymer: Unusual approaches using electrochemical impedance/capacitance spectroscopy without a soluble redox probe. Sens. Actuators B 2021, 343, 130141. [Google Scholar] [CrossRef]
- Zhang, G.; Ali, M.M.; Feng, X.; Zhou, J.; Hu, L. Mesoporous molecularly imprinted materials: From preparation to biorecognition and analysis. TrAC Trends Anal. Chem. 2021, 144, 116426. [Google Scholar] [CrossRef]
- Rachkov, A.; Minoura, N. Recognition of oxytocin and oxytocin-related peptides in aqueous media using a molecularly imprinted polymer synthesized by the epitope approach. J. Chromatogr. A 2000, 889, 111–118. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, H.; Chen, J.; Zhu, W.; Liu, Y.; Min, J.; Chen, X.; Liu, B.; Yang, X. Separation and enrichment of sibiskoside from Sibiraea angustat with magnetic surface dummy template molecularly imprinted polymers. J. Chromatogr. B 2021, 1178, 122767. [Google Scholar] [CrossRef]
- Matsui, J.; Fujiwara, K.; Takeuchi, T. Atrazine-selective polymers prepared by molecular imprinting of trialkylmelamines as dummy template species of atrazine. Anal. Chem. 2000, 72, 1810–1813. [Google Scholar] [CrossRef]
- Qi, Z.; Lu, R.; Wang, S.; Xiang, C.; Xie, C.; Zheng, M.; Tian, X.; Xu, X. Selective fluorometric determination of microcystin-LR using a segment template molecularly imprinted by polymer-capped carbon quantum dots. Microchem. J. 2021, 161, 105798. [Google Scholar] [CrossRef]
- Wang, F.; Xie, Z.; Zhang, H.; Liu, C.; Zhang, Y. Highly luminescent organosilane-functionalized carbon dots. Adv. Funct. Mater. 2011, 21, 1027–1031. [Google Scholar] [CrossRef]
- Liu, M.; Chen, B.; Li, C.; Huang, C. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019, 21, 449–471. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid. Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Bhati, A.; Anand, S.R.; Kumar, G.; Garg, A.; Khare, P.; Sonkar, S.K. Sunlight-induced photocatalytic degradation of pollutant dye by highly fluorescent red-Emitting Mg-N-embedded carbon dots. ACS Sustain. Chem. Eng. 2018, 6, 9246. [Google Scholar] [CrossRef]
- Murray, J.S.; Michael, J.B.; Andrew, I.S.; Harwood, D.T. Development of an LC–MS/MS method to simultaneously monitor maitotoxins and selected ciguatoxins in algal cultures and P-CTX-1B in fish. Harmful Algae 2018, 80, 80–87. [Google Scholar] [CrossRef]
- Li, G.; Zha, J.; Niu, M.; Fan, H.; Hui, X.; Tang, T.; Fizir, M.; He, H. Bifunctional monomer molecularly imprinted sol-gel polymers based on the surface of magnetic halloysite nanotubes as an effective extraction approach for norfloxacin. Appl. Clay Sci. 2018, 162, 409–417. [Google Scholar] [CrossRef]
- Li, M.; Liu, H.; Ren, X. Ratiometric fluorescence and mesoporous structured imprinting nanoparticles for rapid and sensitive detection 2,4,6-trinitrophenol. Biosens. Bioelectron. 2017, 89, 99–905. [Google Scholar] [CrossRef]
- GB 5009.274-2016; Determination of Ciguatoxin in Aquatic Products. China National Standard: Beijing, China, 2016. Available online: http://down.foodmate.net/standard/yulan.php?itemid=50431 (accessed on 23 December 2016).
- Tsumuraya, T.; Hirama, M. Rationally designed synthetic haptens to generate anti-ciguatoxin monoclonal antibodies, and development of a practical sandwich ELISA to detect ciguatoxins. Toxins 2019, 11, 533. [Google Scholar] [CrossRef] [Green Version]
- Viallon, J.; Chinain, M.; Darius, H.T. Supplementary materials: Revisiting the neuroblastoma cell-based assay (CBA-N2a) for the improved detection of marine toxins active on voltage gated sodium channels (VGSCs). Toxins 2020, 12, 281. [Google Scholar] [CrossRef]
- Loeffler, C.R.; Bodi, D.; Tartaglione, L.; Aversano, C.D.; Weigert, A.P. Improving in vitro ciguatoxin and brevetoxin detection: Selecting neuroblastoma (Neuro-2a) cells with lower sensitivity to ouabain and veratridine (OV-LS). Harmful Algae 2021, 103, 101994. [Google Scholar] [CrossRef]
- Leonardo, S.; Gaiani, G.; Tsumuraya, T.; Hirama, M.; Campàs, M. Addressing the analytical challenges for the detection of ciguatoxins using an electrochemical biosensor. Anal. Chem. 2020, 92, 4858–4865. [Google Scholar] [CrossRef]
- M’onica, C.; Sandra, L.; Naomasa, O.; Kyoko, K.; Takeshi, T.; Masahiro, H.; Jorge, D. A smartphone-controlled amperometric immunosensor for the detection of Pacific ciguatoxins in fish. Food Chem. 2022, 374, 131687. [Google Scholar]
Samples | Added (ng/mL) | Found in this Work (ng/mL) | Found in LC/MS (ng/mL) | Average Recovery (%) | RSD (%, n = 3) |
---|---|---|---|---|---|
Eel | 0.000 | ND a | ND a | - | - |
0.025 | 0.020 ± 0.004 | 0.021 ± 0.003 | 80.00 | 9.91 | |
0.250 | 0.211 ± 0.010 | 0.203 ± 0.020 | 84.40 | 8.52 | |
0.750 | 0.685 ± 0.020 | 0.701 ± 0.030 | 91.33 | 7.71 | |
Bass | 0.000 | ND a | ND a | - | - |
0.025 | 0.020 ± 0.002 | 0.021 ± 0.004 | 80.00 | 9.62 | |
0.250 | 0.213 ± 0.030 | 0.221 ± 0.010 | 85.20 | 7.50 | |
0.750 | 0.663 ± 0.040 | 0.706 ± 0.030 | 88.40 | 6.81 | |
Grouper | 0.000 | ND a | ND a | - | - |
0.025 | 0.021 ± 0.003 | 0.021 ± 0.005 | 84.00 | 9.20 | |
0.250 | 0.207 ± 0.010 | 0.222 ± 0.030 | 82.80 | 5.62 | |
0.750 | 0.679 ± 0.020 | 0.713 ± 0.020 | 90.53 | 7.93 |
Samples | Method | LOD (ng/mL) | Detection Time | References |
---|---|---|---|---|
Aquatic products | LC-MS | 0.10 | 30 min | [39] |
Tripneustes gratilla, etc. | LC-MS/MS | 0.01 | 30 min | [7] |
Variola louti, etc. | Sandwich ELISA | 9.0 × 10−5 | 2.5 h | [40] |
Aquatic products | Neuroblastoma cell-based assay | 0.031 | 3 h | [41] |
Lutjanus malabaricus | Neuroblastoma cell-based assay | 1.35 × 10−3 | >1 day | [42] |
Variola louti, etc. | Electrochemical biosensor | 3.59 × 10−3 | 2.1 h | [43] |
L. bohar, etc. | Immunosensor controlled by a smartphone | 1.0 × 10−3 | 2 h | [44] |
Barracuda, etc. | Radioligand receptor binding assay | 0.75 | 3 h | [6] |
Coral reef fish meat | Molecularly imprinted fluorometry | 3.3 × 10−4 | 15 min | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Z.; Xiang, C.; Tian, X.; Xu, X. Facile Synthesis of Molecularly Imprinted Ratiometric Fluorescence Sensor for Ciguatoxin P-CTX-3C Detection in Fish. Foods 2022, 11, 3239. https://doi.org/10.3390/foods11203239
Qi Z, Xiang C, Tian X, Xu X. Facile Synthesis of Molecularly Imprinted Ratiometric Fluorescence Sensor for Ciguatoxin P-CTX-3C Detection in Fish. Foods. 2022; 11(20):3239. https://doi.org/10.3390/foods11203239
Chicago/Turabian StyleQi, Zhenke, Cheng Xiang, Xingguo Tian, and Xiaoyan Xu. 2022. "Facile Synthesis of Molecularly Imprinted Ratiometric Fluorescence Sensor for Ciguatoxin P-CTX-3C Detection in Fish" Foods 11, no. 20: 3239. https://doi.org/10.3390/foods11203239
APA StyleQi, Z., Xiang, C., Tian, X., & Xu, X. (2022). Facile Synthesis of Molecularly Imprinted Ratiometric Fluorescence Sensor for Ciguatoxin P-CTX-3C Detection in Fish. Foods, 11(20), 3239. https://doi.org/10.3390/foods11203239