Effects of Ultrasound-Assisted Immersion Freezing on the Protein Structure, Physicochemical Properties and Muscle Quality of the Bay Scallop (Argopecten irradians) during Frozen Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Muscle Samples
2.3. Extraction of MPs
2.4. SDS-PAGE
2.5. FTIR
2.6. Fluorescence Intensity
2.7. DSC
2.8. Scanning Electron Microscopy Observation
2.9. Determination of TBARS and TVB-N
2.10. Determination of Thawing Loss and Texture
2.11. Statistical Analysis
3. Results and Discussion
3.1. Changes in the Primary Structure of MPs
3.2. Changes in the Secondary and Tertiary Structure of MPs
3.3. Changes in the Thermal Denaturation of AMS
3.4. Changes in the Microstructure of AMSs
3.5. Changes in the TBARS and TVB-N of AMS
3.6. Changes in Thawing Loss and Texture of AMS
3.7. Selection of an Effective Ultrasound Treatment
3.8. Relationship between All Physicochemical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, H.K.; Zhou, D.Y.; Liu, Z.Y.; Li, D.Y.; Tan, Z.F.; Dong, X.F.; Liu, X.Y.; Shahidi, F.; Zhu, B.W. Effects of natural phenolics on shelf life and lipid stability of freeze-dried scallop adductor muscle. Food Chem. 2019, 295, 423–431. [Google Scholar] [CrossRef]
- Wu, Z.X.; Fan, Y.C.; Guo, C.; Liu, Y.X.; Li, D.Y.; Jiang, P.F.; Qin, L.; Bai, Y.H.; Zhou, D.Y. Effects of Boiling Processing on Texture of Scallop Adductor Muscle and Its Mechanism. Foods 2022, 11, 1947. [Google Scholar] [CrossRef]
- Xie, H.K.; Zhou, D.Y.; Yin, F.W.; Rakariyatham, K.; Zhao, M.T.; Liu, Z.Y.; Li, D.Y.; Zhao, Q.; Liu, Y.X.; Shahidi, F.; et al. Mechanism of antioxidant action of natural phenolics on scallop (Argopecten irradians) adductor muscle during drying process. Food Chem. 2019, 281, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, D.Y.; Wu, Z.X.; Yang, W.J.; Zhou, D.Y.; Zhu, B.W. Combined effects of ultrasound and antioxidants on the quality maintenance of bay scallop (Argopecten irradians) adductor muscles during cold storage. Ultrason. Sonochem. 2021, 82, 105883. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, Y.X.; Liu, Z.Q.; Yu, M.M.; Liu, H.L.; Qin, L.; Zhou, D.Y.; Zhu, B.W. Effects of natural trypsin inhibitor from soybean on texture deterioration of the bay scallop (Argopecten irradians) during cold storage and its mechanism. Int. J. Food Sci. Technol. 2020, 55, 3432–3440. [Google Scholar] [CrossRef]
- Vidode Mattio, N.D.; Paredi, M.E.; Crupkin, M. Postmortem Changes in the Adductor Muscle of Scallop (Chlamys tehuelchus) in Chilled and Frozen Storage. J. Aquat. Food Prod. Technol. 2001, 10, 49–60. [Google Scholar] [CrossRef]
- Wei, H.; Tian, Y.; Yamashita, T.; Ishimura, G.; Sasaki, K.; Niu, Y.; Yuan, C. Effects of thawing methods on the biochemical properties and microstructure of pre-rigor frozen scallop striated adductor muscle. Food Chem. 2020, 319, 126559. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Horner, W.; Gillyon, C. Effect of packaging on the spoilage of king scallop (Pecten maximus) during chilled storage. Eur. Food Res. Technol. 2001, 213, 95–98. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Ma, W.; Xian, Z.; Liu, Q.; Hui, A.; Zhang, W. The impact of quick-freezing methods on the quality, moisture distribution and microstructure of prepared ground pork during storage duration. Ultrason. Sonochem. 2021, 78, 105707. [Google Scholar] [CrossRef]
- Qiu, S.; Cui, F.; Wang, J.; Zhu, W.; Xu, Y.; Yi, S.; Li, X.; Li, J. Effects of ultrasound-assisted immersion freezing on the muscle quality and myofibrillar protein oxidation and denaturation in Sciaenops ocellatus. Food Chem. 2022, 377, 131949. [Google Scholar] [CrossRef]
- Angane, M.; Gupta, S.; Fletcher, G.C.; Summers, G.; Hedderley, D.I.; Quek, S.Y. Effect of air blast freezing and frozen storage on Escherichia coli survival, n-3 polyunsaturated fatty acid concentration and microstructure of Greenshell™ mussels. Food Control 2020, 115, 107284. [Google Scholar] [CrossRef]
- Sun, Q.; Sun, F.; Xia, X.; Xu, H.; Kong, B. The comparison of ultrasound-assisted immersion freezing, air freezing and immersion freezing on the muscle quality and physicochemical properties of common carp (Cyprinus carpio) during freezing storage. Ultrason. Sonochem. 2019, 51, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Magro, A.; Puolanne, E.; Zotte, A.D.; Ertbjerg, P. Myofibrillar protein characteristics of fast or slow frozen pork during subsequent storage at -3 degrees C. Meat Sci. 2021, 176, 108468. [Google Scholar] [CrossRef]
- Sun, Q.; Chen, Q.; Xia, X.; Kong, B.; Diao, X. Effects of ultrasound-assisted freezing at different power levels on the structure and thermal stability of common carp (Cyprinus carpio) proteins. Ultrason. Sonochem. 2019, 54, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Cao, H.J.; Lin, H.M.; Deng, S.G.; Wu, H. Insights into ice-growth inhibition by trehalose and alginate oligosaccharides in peeled Pacific white shrimp (Litopenaeus vannamei) during frozen storage. Food Chem. 2019, 278, 482–490. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Xia, X.; Sun, Q.; Sun, F.; Kong, B. Changes in protein oxidation, structure, and thermal stability of chicken breast subjected to ultrasound-assisted immersion freezing during frozen storage. Food Chem. 2022, 398, 133874. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, N.; Mor, R.S.; Kumar, K.; Sharanagat, V.S. Advances in application of ultrasound in food processing: A review. Ultrason. Sonochem. 2021, 70, 105293. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Sun, D.-W.; Han, Z.; Zeng, X.-A. Texture and Structure Measurements and Analyses for Evaluation of Fish and Fillet Freshness Quality: A Review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 52–61. [Google Scholar] [CrossRef]
- Ma, X.; Mei, J.; Qiu, W.; Xie, J. Influence of Multi-Frequency Ultrasound-Assisted Freezing on the Freezing Rate, Physicochemical Quality and Microstructure of Cultured Large Yellow Croaker (Larimichthys crocea). Front Nutr. 2022, 9, 906911. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, Z.-Q.; Li, D.-Y.; Yu, M.-M.; Liu, Y.-X.; Qin, L.; Zhou, D.-Y.; Shahidi, F.; Zhu, B.-W. Action of endogenous proteases on texture deterioration of the bay scallop (Argopecten irradians) adductor muscle during cold storage and its mechanism. Food Chem. 2020, 323, 126790. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, M.; Cui, C.; Sun, W. Influence of linoleic acid-induced oxidative modifications on physicochemical changes and in vitro digestibility of porcine myofibrillar proteins. LWT Food Sci. Technol. 2015, 61, 414–421. [Google Scholar] [CrossRef]
- Li, F.; Du, X.; Ren, Y.; Kong, B.; Wang, B.; Xia, X.; Bao, Y. Impact of ice structuring protein on myofibrillar protein aggregation behaviour and structural property of quick-frozen patty during frozen storage. Int. J. Biol. Macromol. 2021, 178, 136–142. [Google Scholar] [CrossRef]
- Ma, X.; Mei, J.; Xie, J. Effects of multi-frequency ultrasound on the freezing rates, quality properties and structural characteristics of cultured large yellow croaker (Larimichthys crocea). Ultrason. Sonochem. 2021, 76, 105657. [Google Scholar] [CrossRef]
- Mackie, I.M. The effects of freezing on flesh proteins. Food Rev. Int. 2009, 9, 575–610. [Google Scholar] [CrossRef]
- Delbarre-Ladrat, C.; Cheret, R.; Taylor, R.; Verrez-Bagnis, V. Trends in postmortem aging in fish: Understanding of proteolysis and disorganization of the myofibrillar structure. Crit. Rev. Food Sci. 2006, 46, 409–421. [Google Scholar] [CrossRef]
- Baptista, R.C.; Horita, C.N.; Sant’Ana, A.S. Natural products with preservative properties for enhancing the microbiological safety and extending the shelf-life of seafood: A review. Food Res. Int. 2020, 127, 108762. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Benjakul, S. Proteolysis and Its Control Using Protease Inhibitors in Fish and Fish Products: A Review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 496–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, J.; Mei, J.; Wu, G.; Yu, H.; Xie, J. Gum tragacanth-sodium alginate active coatings containing epigallocatechin gallate reduce hydrogen peroxide content and inhibit lipid and protein oxidations of large yellow croaker (Larimichthys crocea) during superchilling storage. Food Chem. 2022, 397, 133792. [Google Scholar] [CrossRef]
- Bi, C.-H.; Wang, P.-L.; Sun, D.-Y.; Yan, Z.-M.; Liu, Y.; Huang, Z.-G.; Gao, F. Effect of high-pressure homogenization on gelling and rheological properties of soybean protein isolate emulsion gel. J. Food Eng. 2020, 277, 109923. [Google Scholar] [CrossRef]
- Hassoun, A.; Heia, K.; Lindberg, S.K.; Nilsen, H. Spectroscopic Techniques for Monitoring Thermal Treatments in Fish and Other Seafood: A Review of Recent Developments and Applications. Foods 2020, 9, 767. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.X.; Li, D.Y.; Shen, M.; Wang, Z.Y.; Wang, Z.W.; Liu, Y.X.; Bai, Y.H.; Zhou, D.Y. Effect of different sous-vide cooking conditions on textural properties, protein physiochemical properties and microstructure of scallop (Argopecten irradians) adductor muscle. Food Chem. 2022, 394, 133470. [Google Scholar] [CrossRef] [PubMed]
- Sveinsdottir, H.I.; Karlsdottir, M.G.; Arason, S.; Stefansson, G.; Sone, I.; Skara, T.; Rustad, T.; Larsson, K.; Undeland, I.; Gudjonsdottir, M. Effect of antioxidants on the sensory quality and physicochemical stability of Atlantic mackerel (Scomber scombrus) fillets during frozen storage. Food Chem. 2020, 321, 126744. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, F.; Chouljenko, A.; Lin, A.; Young, B.M.; Goribidanur, T.S.; Blake, J.C.; Bechtel, P.J.; Sathivel, S. Chitosan and water-soluble chitosan effects on refrigerated catfish fillet quality. Food Biosci. 2019, 31, 100426. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Benjakul, S. Natural Preservatives for Extending the Shelf-Life of Seafood: A Revisit. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1595–1612. [Google Scholar] [CrossRef] [Green Version]
- Aguilera Barraza, F.A.; León, R.A.Q.; Álvarez, P.X.L. Kinetics of protein and textural changes in Atlantic salmon under frozen storage. Food Chem. 2015, 182, 120–127. [Google Scholar] [CrossRef]
- Raman, M.; Mathew, S. Physiochemical and Textural Alterations in Indian Squid (Loligo duvauceli) Mantle During Frozen Storage and Cooking. J. Aquat. Food Prod. Technol. 2014, 24, 454–467. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Benjakul, S. Nonthermal Processes for Shelf-Life Extension of Seafoods: A Revisit. Compr. Rev. Food Sci. Food Saf. 2018, 17, 892–904. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.; Ma, J.; Sun, D.-W. Enhancing physical and chemical quality attributes of frozen meat and meat products: Mechanisms, techniques and applications. Trends Food Sci. Technol. 2022, 124, 63–85. [Google Scholar] [CrossRef]
TBARS | TVB-N | Thawing Loss | Instrumental Texture Analysis | |||
---|---|---|---|---|---|---|
Hardness (g) | Springiness | Chewiness | ||||
Control | 5.60 ± 0.08 e | 5.1 ± 0.3 e | 8.5 ± 0.11 h | 1449 ± 35 a | 0.66 ± 0.02 a | 540 ± 28 a |
AF | 17.96 ± 0.66 a | 20.7 ± 0.5 a | 34.3 ± 0.13 a | 1034 ± 23 e | 0.52 ± 0.02 c | 343 ± 31 d |
IF | 10.30 ± 0.31 cd | 17.9 ± 0.7 b | 32.2 ± 0.07 e | 1192 ± 24 c | 0.56 ± 0.02 bc | 354 ± 32 cd |
UIF-100 | 12.81 ± 0.86 b | 19.1 ± 0.5 ab | 33.2 ± 0.12 c | 1068 ± 23 e | 0.50 ± 0.03 c | 400 ± 22 cd |
UIF-125 | 9.95 ± 0.81 cd | 16.3 ± 0.7 c | 31.5 ± 0.08 f | 1190 ± 62 c | 0.54 ± 0.01 bc | 434 ± 75 bc |
UIF-150 | 8.35 ± 0.28 d | 14.3 ± 0.3 d | 26.1 ± 0.09 g | 1278 ± 31 b | 0.59 ± 0.06 b | 468 ± 61 ab |
UIF-175 | 10.39 ± 0.23 cd | 18.0 ± 0.4 b | 33.5 ± 0.14 b | 1139 ± 52 cd | 0.53 ± 0.03 bc | 389 ± 54 cd |
UIF-200 | 11.84 ± 0.40 bc | 19.9 ± 0.3 a | 32.6 ± 0.06 d | 1091 ± 43 de | 0.52 ± 0.02 c | 402 ± 31 cd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Liao, Y.-L.; Jiang, L.-L.; Chen, M.-M.; Yang, S.-B. Effects of Ultrasound-Assisted Immersion Freezing on the Protein Structure, Physicochemical Properties and Muscle Quality of the Bay Scallop (Argopecten irradians) during Frozen Storage. Foods 2022, 11, 3247. https://doi.org/10.3390/foods11203247
Liu B, Liao Y-L, Jiang L-L, Chen M-M, Yang S-B. Effects of Ultrasound-Assisted Immersion Freezing on the Protein Structure, Physicochemical Properties and Muscle Quality of the Bay Scallop (Argopecten irradians) during Frozen Storage. Foods. 2022; 11(20):3247. https://doi.org/10.3390/foods11203247
Chicago/Turabian StyleLiu, Bing, You-Lin Liao, Liang-Liang Jiang, Miao-Miao Chen, and Shan-Bin Yang. 2022. "Effects of Ultrasound-Assisted Immersion Freezing on the Protein Structure, Physicochemical Properties and Muscle Quality of the Bay Scallop (Argopecten irradians) during Frozen Storage" Foods 11, no. 20: 3247. https://doi.org/10.3390/foods11203247
APA StyleLiu, B., Liao, Y. -L., Jiang, L. -L., Chen, M. -M., & Yang, S. -B. (2022). Effects of Ultrasound-Assisted Immersion Freezing on the Protein Structure, Physicochemical Properties and Muscle Quality of the Bay Scallop (Argopecten irradians) during Frozen Storage. Foods, 11(20), 3247. https://doi.org/10.3390/foods11203247