Calcium Binding Mechanism of Soybean Peptide with Histidine Alteration by Molecular Docking Analysis and Spectroscopic Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Soy Peptides (CBP-H)
2.2. Molecular Docking
2.3. Analysis of the Calcium-Chelating Activity
2.3.1. Preparation of the CBP-H–Ca Complexes and Determination of Calcium Binding
Capacity
2.3.2. Isothermal Titration Calorimetry (ITC)
2.3.3. Ultraviolet Spectroscopy
2.3.4. Fourier Transform Infrared Spectroscopy
2.3.5. X-Ray Diffractograms
2.4. Detection of Stability of CBP-H–Ca Complexes
2.4.1. Simulated Gastrointestinal Digestion
2.4.2. Thermogravimetric Analysis -Differential Scanning Calorimetry (TG-DSC)
2.4.3. Cell Culture and Establishment of Caco-2 Cell In Vitro Absorption Model
2.5. Proliferation Assay of MC3T3-E1 Cell
2.6. Intracellular Ca2+ Concentration ([Ca2+]i) Measurement
2.7. Statistical Analysis
3. Results
3.1. Bioinformatics Analysis of the Interaction between CBP-H and Calcium Ion
3.1.1. Stability of the Dynamic Trajectory from RMSD Analysis
3.1.2. Intermolecular Interaction Analysis from MD Simulation
3.2. Analysis of the Calcium-Binding Capacity of the CBP-H by ICP-AES
3.3. Determination of the Binding Stoichiometry and Binding Constant
3.4. Functional Groups Responsible for Calcium Binding
3.5. Analysis of Structural Change of CBP-H–Ca Complex
3.6. Thermal Stability and Trypsin Digests Stability Analysis of Peptide–Calcium Chelate In Vivo
3.7. CBP-H Stimulated Cell Proliferation in MC3T3-E1 Cells
3.8. CBP-H Increase the Contents of Intracellular Calcium Ions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CBP | soy peptide |
CBP-H | soy peptide with histidine mutation |
DEDEQIPSHPPR | Asp-Glu-Asp-Glu-Gln-IIe-Pro-Ser-His-Pro-Pro-Arg |
DEDEQIPSLPPR | Asp-Glu-Asp-Glu-Gln-IIe-Pro-Ser-Leu-Pro-Pro-Arg |
DEDEQIPHHPPR | Asp-Glu-Asp-Glu-Gln-IIe-Pro-His-His-Pro-Pro-Arg |
DHDHQIPSHPPR | Asp-His-Asp- His -Gln-IIe-Pro-His-His-Pro-Pro-Arg |
VSEE | Val-Ser-Glu-Glu |
PKSETKNLL | Phe-Lys-Ser-Glu-Thr-Lys-Asn-Leu-Leu |
DEDEEIPSHPPR | Asp-Glu-Asp-Glu-Gln-IIe-Pro-Ser-His-Pro-Pro-Arg |
HHGDQGAPGAVGPAGPRGPAGPSGPAGKDGR | His-His-Gly-Asp-Gln-Gly-Ala-Pro-Gly-Ala-Val-Gly-Pro-Ala-Gly-Pro-Arg-Gly-Pro-Ala-Gly-Pro-Ser-Gly-Pro-Ala-Gly-Lys-Asp-Gly-Arg |
GANGDRGEAGPAGPAGPAGPR | Gly-Ala-Asn-Gly-Asp-Arg-Gly-Glu-Ala-Gly-Pro-Ala-Gly-Pro-Ala-Gly-Pro-Ala-Gly-Pro-Arg |
References
- Donida, B.M.; Mrak, E.; Gravaghi, C.; Villa, I.; Cosentino, S.; Zacchi, E.; Perego, S.; Rubinacci, A.; Fiorilli, A.; Tettamanti, G.; et al. Casein phosphopeptides promote calcium uptake and modulate the differentiation pathway in human primary osteoblast-like cells. Peptides 2009, 30, 2233–2241. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Liu, W.; Zhang, X.; Zhao, M.; Zhu, B.; Hou, T.; He, H. Duck Egg White-Derived Peptide VSEE (Val-Ser-Glu-Glu) Regulates Bone and Lipid Metabolisms by Wnt/beta-Catenin Signaling Pathway and Intestinal Microbiota. Mol. Nutr. Food Res. 2019, 63, e1900525. [Google Scholar] [CrossRef] [PubMed]
- Cui, P.; Lin, S.; Han, W.; Jiang, P.; Zhu, B.; Sun, N. Calcium Delivery System Assembled by a Nanostructured Peptide Derived from the Sea Cucumber Ovum. J. Agric. Food Chem. 2019, 67, 12283–12292. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Yuan, X.; Feng, G.; Zhang, M.; Ma, S. Structural characterization of calcium-binding sunflower seed and peanut peptides and enhanced calcium transport by calcium complexes in Caco-2 cells. J. Sci. Food Agric. 2021, 101, 794–804. [Google Scholar] [CrossRef]
- Malison, A.; Arpanutud, P.; Keeratipibul, S. Chicken foot broth byproduct: A new source for highly effective peptide-calcium chelate. Food Chem. 2021, 345, 128713. [Google Scholar] [CrossRef]
- Lv, Y.; Bao, X.; Liu, H.; Ren, J.; Guo, S. Purification and characterization of calcium-binding soybean protein hydrolysates by Ca2+/Fe3+ immobilized metal affinity chromatography (IMAC). Food Chem. 2013, 141, 1645–1650. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, Q.; Li, M.; Liu, H.; Wang, Q.; Wu, Y.; Niu, L.; Liu, Z. Isolation of a novel calcium-binding peptide from phosvitin hydrolysates and the study of its calcium chelation mechanism. Food Res. Int. 2021, 141, 110169. [Google Scholar] [CrossRef]
- Ferraretto, A.; Gravaghi, C.; Fiorilli, A.; Tettamanti, G. Casein-derived bioactive phosphopeptides: Role of phosphorylation and primary structure in promoting calcium uptake by HT-29 tumor cells. FEBS Lett. 2003, 551, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.R.; Wang, L.; Wang, R.; Chen, Z.X. Calcium-binding capacity of wheat germ protein hydrolysate and characterization of Peptide-calcium complex. J. Agric. Food Chem. 2013, 61, 7537–7544. [Google Scholar] [CrossRef]
- Bao, X.L.; Lv, Y.; Yang, B.C.; Ren, C.G.; Guo, S.T. A study of the soluble complexes formed during calcium binding by soybean protein hydrolysates. J. Food Sci. 2008, 73, C117–C121. [Google Scholar] [CrossRef]
- Li, F.; Fitz, D.; Fraser, D.G.; Rode, B.M. Catalytic effects of histidine enantiomers and glycine on the formation of dileucine and dimethionine in the salt-induced peptide formation reaction. Amino Acids 2010, 38, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Jackson, W.G.; Mckeon, J.A.; Cortez, S. Alfred Werner’s Inorganic Counterparts of Racemic and Mesomeric Tartaric Acid: A Milestone Revisited. Inorg. Chem. 2004, 43, 6249–6254. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.S.; Sastry, G.N. Cation [M = H+, Li+, Na+, K+, Ca2+, Mg2+, NH4+, and NMe4+] Interactions with the Aromatic Motifs of Naturally Occurring Amino Acids: A Theoretical Study. J. Phys. Chem. A 2005, 109, 8893–8903. [Google Scholar] [CrossRef]
- Liao, S.M.; Du, Q.S.; Meng, J.Z.; Pang, Z.W.; Huang, R.B. The multiple roles of histidine in protein interactions. Chem. Cent. J. 2013, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sargolzaei, M.; Afshar, M.; Sadeghi, M.S.; Hamidian, H. First principles study on proton transfer between amino acid side chains of histidine and aspartic acid in β-structure. J. Struct. Chem. 2015, 55, 1627–1634. [Google Scholar] [CrossRef]
- Huang, G.; Ren, L.; Jiang, J. Purification of a histidine-containing peptide with calcium binding activity from shrimp processing byproducts hydrolysate. Eur. Food Res. Technol. 2010, 232, 281–287. [Google Scholar] [CrossRef]
- Wang, K.; Kong, X.; Du, M.; Yu, W.; Wang, Z.; Xu, B.; Yang, J.; Xu, J.; Liu, Z.; Cheng, Y.; et al. Novel Soy Peptide CBP: Stimulation of Osteoblast Differentiation via TbetaRI-p38-MAPK-Depending RUNX2 Activation. Nutrients 2022, 14, 1940. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Li, C.; Wang, H.; Geng, X.; Hu, B.; Wen, R.; Wang, J.; Zhang, F. Structural basis for tailor-made selective PI3K α/β inhibitors: A computational perspective. New J. Chem. 2021, 45, 373–382. [Google Scholar] [CrossRef]
- Sun, N.; Jin, Z.; Li, D.; Yin, H.; Lin, S. An Exploration of the Calcium-Binding Mode of Egg White Peptide, Asp-His-Thr-Lys-Glu, and In Vitro Calcium Absorption Studies of Peptide-Calcium Complex. J. Agric. Food Chem. 2017, 65, 9782–9789. [Google Scholar] [CrossRef]
- Yan, C.; Zhang, S.; Wang, C.; Zhang, Q. A fructooligosaccharide from Achyranthes bidentata inhibits osteoporosis by stimulating bone formation. Carbohydr. Polym. 2019, 210, 110–118. [Google Scholar] [CrossRef]
- Hou, H.; Wang, S.; Zhu, X.; Li, Q.; Fan, Y.; Cheng, D.; Li, B. A novel calcium-binding peptide from Antarctic krill protein hydrolysates and identification of binding sites of calcium-peptide complex. Food Chem. 2018, 243, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, B. Effect of molecular weight on the transepithelial transport and peptidase degradation of casein-derived peptides by using Caco-2 cell model. Food Chem. 2017, 218, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Chen, H.; Wang, Z.; Fan, F.; Shi, P.; Tu, M.; Du, M. Isolation and Characterization of Peptides from Mytilus edulis with Osteogenic Activity in Mouse MC3T3-E1 Preosteoblast Cells. J. Agric. Food Chem. 2019, 67, 1572–1584. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Feng, Q.; Zhao, F.; Sun, C.; Zhou, T.; Yang, J.; Zhan, X. Puerarin inhibits TRPM3/miR-204 to promote MC3T3-E1 cells proliferation, differentiation and mineralization. Phytother. Res. 2018, 32, 996–1003. [Google Scholar] [CrossRef]
- Zhang, X.; Geng, F.; Huang, X.; Ma, M. Calcium binding characteristics and structural changes of phosvitin. J. Inorg. Biochem. 2016, 159, 76–81. [Google Scholar] [CrossRef]
- Hou, T.; Wang, C.; Ma, Z.; Shi, W.; Weiwei, L.; He, H. Desalted Duck Egg White Peptides: Promotion of Calcium Uptake and Structure Characterization. J. Agric. Food Chem. 2015, 63, 8170–8176. [Google Scholar] [CrossRef]
- Cui, P.; Lin, S.; Han, W.; Jiang, P.; Zhu, B.; Sun, N. The formation mechanism of a sea cucumber ovum derived heptapeptide-calcium nanocomposite and its digestion/absorption behavior. Food Funct. 2019, 10, 8240–8249. [Google Scholar] [CrossRef]
- Bush, M.F.; Oomens, J.; Saykally, R.J.; Williams, E.R. Effects of alkaline earth metal ion complexation on amino acid zwitterion stability: Results from infrared action spectroscopy. J. Am. Chem. Soc. 2008, 130, 6463–6471. [Google Scholar] [CrossRef]
- Crampon, K.; Giorkallos, A.; Deldossi, M.; Baud, S.; Steffenel, L.A. Machine-learning methods for ligand-protein molecular docking. Drug Discov. Today 2022, 27, 151–164. [Google Scholar] [CrossRef]
- Guo, D.; He, H.; Hou, T. Purification and characterization of positive allosteric regulatory peptides of calcium sensing receptor (CaSR) from desalted duck egg white—ScienceDirect. Food Chem. 2020, 325, 126919. [Google Scholar] [CrossRef]
- Battistoni, A.; Pacello, F.; Mazzetti, A.P.; Capo, C.; Kroll, J.S.; Langford, P.R.; Sansone, A.; Donnarumma, G.; Valenti, P.; Rotilio, G. A histidine-rich metal binding domain at the N terminus of Cu,Zn-superoxide dismutases from pathogenic bacteria: A novel strategy for metal chaperoning. J. Biol. Chem. 2001, 276, 30315–30325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Angelo, P.; Pacello, F.; Mancini, G.; Proux, O.; Battistoni, A. X-ray absorption investigation of a unique protein domain able to bind both copper(I) and copper (II) at adjacent sites of the N-terminus of Haemophilus ducreyi Cu,Zn superoxide dismutase. Biochemistry 2005, 44, 13144–13150. [Google Scholar] [CrossRef]
- Jung, W.-K.; Kim, S.-K. Calcium-binding peptide derived from pepsinolytic hydrolysates of hoki (Johnius belengerii) frame. Eur. Food Res. Technol. 2006, 224, 763–767. [Google Scholar] [CrossRef]
- Schmiedekamp, A.; Nanda, V. Metal-activated histidine carbon donor hydrogen bonds contribute to metalloprotein folding and function. J. Inorg. Biochem. 2009, 103, 1054–1060. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.A.; Peloquin, J.M.; Diner, B.A.; Tang, X.S.; Chisholm, D.A.; Britt, R.D. The τ-Nitrogen of D2 Histidine 189 is the Hydrogen Bond Donor to the Tyrosine Radical YD of Photosystem II. J. Am. Chem. Soc. 1997, 119, 169–197. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, J.; Kong, X.; Xiao, Z.; Chen, Y.; Du, M.; Wang, Y.; Wang, Z.; Cheng, Y.; Xu, B. Calcium Binding Mechanism of Soybean Peptide with Histidine Alteration by Molecular Docking Analysis and Spectroscopic Methods. Foods 2022, 11, 3290. https://doi.org/10.3390/foods11203290
Gan J, Kong X, Xiao Z, Chen Y, Du M, Wang Y, Wang Z, Cheng Y, Xu B. Calcium Binding Mechanism of Soybean Peptide with Histidine Alteration by Molecular Docking Analysis and Spectroscopic Methods. Foods. 2022; 11(20):3290. https://doi.org/10.3390/foods11203290
Chicago/Turabian StyleGan, Jing, Xiao Kong, Ziqun Xiao, Yuhang Chen, Mengdi Du, Yan Wang, Zhenhua Wang, Yongqiang Cheng, and Bo Xu. 2022. "Calcium Binding Mechanism of Soybean Peptide with Histidine Alteration by Molecular Docking Analysis and Spectroscopic Methods" Foods 11, no. 20: 3290. https://doi.org/10.3390/foods11203290
APA StyleGan, J., Kong, X., Xiao, Z., Chen, Y., Du, M., Wang, Y., Wang, Z., Cheng, Y., & Xu, B. (2022). Calcium Binding Mechanism of Soybean Peptide with Histidine Alteration by Molecular Docking Analysis and Spectroscopic Methods. Foods, 11(20), 3290. https://doi.org/10.3390/foods11203290