The Effect of Deep Frying French Fries and Two Types of Iberian Pork on the Characteristics of Extra Virgin Olive Oil and the Fried Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Olive Oil Samples and Heating Process
2.2. The Deep Frying of French Fries and Iberian Pork Sirloin
2.3. Instrumental Color Measurement
2.4. Oil Quality Parameters and Anisidine Value
2.5. The α-Tocopherol Content of Oil
2.6. The Phenolic Compound Content in the Oil
2.7. Frying Losses and the Chemical Analyses of the Fried Products
2.8. The Instrumental Texture of the Fried Products
2.9. Statistical Analyses
3. Results and Discussion
3.1. The Characterization of the Raw and Heated Oils
3.2. The Effect of Deep Frying French Fries and Pork Sirloin on the Raw and Previously Heated Olive Oils
3.3. The Effect of Oil Damage on the Characteristics of the Fried Pork and French Fries
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allouche, Y.; Jimenez, A.; Gaforio, J.; Uceda, M.; Beltran, G. How heating affects extra virgin olive oil quality indexes and chemical composition. J. Agric. Food Chem. 2007, 55, 9646–9654. [Google Scholar] [CrossRef] [PubMed]
- Carrapiso, A.; Garcia, A.; Petron, M.; Martin, L. Effect of talc and water addition on olive oil quality and antioxidants. Eur. J. Lipid Sci. Technol. 2013, 115, 583–588. [Google Scholar] [CrossRef]
- Dyminska, L.; Albegar, A.M.M.; Sasiadek, W.; Kucharska, E.; Zajac, A.; Hanuza, J. Spectroscopic evidence of thermal changes in plant oils during deep-frying-chemical and infrared studies. Plants 2022, 11, 1813. [Google Scholar] [CrossRef]
- de Carvalho, A.G.A.; Olmo-Garcia, L.; Gaspar, B.R.A.; Carrasco-Pancorbo, A.; Castelo-Branco, V.N.; Torres, A.G. Evolution of the metabolic profile of virgin olive oil during deep-frying: Assessing the transfer of bioactive compounds to the fried food. Food Chem. 2022, 380, 132205. [Google Scholar] [CrossRef]
- Santos, C.S.P.; Cruz, R.; Cunha, S.C.; Casal, S. Effect of cooking on olive oil quality attributes. Food Res. Int. 2013, 54, 2016–2024. [Google Scholar] [CrossRef]
- Koh, E.; Surh, J. Food types and frying frequency affect the lipid oxidation of deep frying oil for the preparation of school meals in Korea. Food Chem. 2015, 174, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Yusta, A.; Guillen, M. Deep-frying food in extra virgin olive oil: A study by H-1 nuclear magnetic resonance of the influence of food nature on the evolving composition of the frying medium. Food Chem. 2014, 150, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Yusta, A.; Guillen, M.D. Deep-frying. A study of the influence of the frying medium and the food nature, on the lipidic composition of the fried food, using H-1 nuclear magnetic resonance. Food Res. Int. 2014, 62, 998–1007. [Google Scholar] [CrossRef]
- Kalogianni, E.; Karastogiannidou, C.; Karapantsios, T. Effect of potato presence on the degradation of extra virgin olive oil during frying. Int. J. Food Sci. Technol. 2010, 45, 765–775. [Google Scholar] [CrossRef]
- Ruiz-Mendez, M.V.; Marquez-Ruiz, G.; Holgado, F.; Velasco, J. Stability of bioactive compounds in olive-pomace oil at frying temperature and incorporation into fried foods. Foods 2021, 10, 2906. [Google Scholar] [CrossRef]
- Casal, S.; Malheiro, R.; Sendas, A.; Oliveira, B.P.P.; Pereira, J.A. Olive oil stability under deep-frying conditions. Food Chem. Toxicol. 2010, 48, 2972–2979. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, Y.; Choe, E. Temperature dependence of the autoxidation and antioxidants of soybean, sunflower, and olive oil. Eur. Food Res. Technol. 2007, 226, 239–246. [Google Scholar] [CrossRef]
- Ambra, R.; Lucchetti, S.; Pastore, G. A Review of the effects of olive oil-cooking on phenolic compounds. Molecules 2022, 27, 661. [Google Scholar] [CrossRef]
- Aniolowska, M.A.; Kita, A.M. The effect of raw materials on thermo-oxidative stability and glycidyl ester content of palm oil during frying. J. Sci. Food Agric. 2016, 96, 2257–2264. [Google Scholar] [CrossRef] [PubMed]
- Chiou, A.; Kalogeropoulos, N. Virgin Olive Oil as Frying Oil. Compr. Rev. Food Sci. Food Saf. 2017, 16, 632–646. [Google Scholar] [CrossRef] [Green Version]
- Kita, A. The effect of frying on fat uptake and texture of fried potato products. Eur. J. Lipid Sci. Technol. 2014, 116, 735–740. [Google Scholar] [CrossRef]
- Ananey-Obiri, D.; Matthews, L.; Tahergorabi, R. Chicken processing by-product: A source of protein for fat uptake reduction in deep-fried chicken. Food Hydrocoll. 2020, 101, 105500. [Google Scholar] [CrossRef]
- Amaro-Blanco, G.; Delgado-Adamez, J.; Martin, M.; Ramirez, R. Active packaging using an olive leaf extract and high pressure processing for the preservation of sliced dry-cured shoulders from Iberian pigs. Innov. Food Sci. Emerg. Technol. 2018, 45, 1–9. [Google Scholar] [CrossRef]
- Ordóñez, J.A.; López, M.O.; Hierro, E.; Cambero, M.I.; de la Hoz, L. Effect of diet on the fatty acid composition of adipose and muscular tissue in Iberian pigs. Food Sci. Technol. Int. 1996, 2, 383–390. [Google Scholar] [CrossRef]
- Carrapiso, A.; Noseda, B.; Garcia, C.; Reina, R.; del Pulgar, J.; Devlieghere, F. SIFT-MS analysis of Iberian hams from pigs reared under different conditions. Meat Sci. 2015, 104, 8–13. [Google Scholar] [CrossRef]
- Commission Regulation 2568/91 of 11 July 1991 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Official Journal of the European Communities, document 31991R2568, September 5, 1991. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991R2568&from=en (accessed on 2 October 2022).
- ISO 6885:2008; Aceites y Grasas de Origen Animal y Vegetal. Determinación del Índice de Anisidina. Animal and Vegetable Fats and Oils. UNE-EN: Madrid, Spain, 2006.
- Inarejos-Garcia, A.; Gomez-Rico, A.; Salvador, M.; Fregapane, G. Effect of preprocessing olive storage conditions on virgin olive oil quality and composition. J. Agric. Food Chem. 2010, 58, 4858–4865. [Google Scholar] [CrossRef]
- Gomez-Rico, A.; Salvador, M.D.; La Greca, M.; Fregapane, G. Phenolic and volatile compounds of extra virgin olive oil (Olea europaea L. cv. Cornicabra) with regard to fruit ripening and irrigation management. J. Agric. Food Chem. 2006, 54, 7130–7136. [Google Scholar] [CrossRef] [PubMed]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Sorensen, G.; Jorgensen, S.S. A critical examination of some experimental variables in the 2-thiobarbituric acid (TBA) test for lipid oxidation in meat products. Z. Lebensm. Unters. Forsch. 1996, 202, 205–210. [Google Scholar] [CrossRef]
- Guillen-Sans, R.; Perez, F.Y.; Mira, F.H.; Chozas, M.G. Chromatic parameters and oxidation indexes for edible vegetable-oils submitted to thermal-oxidation. J. Sci. Food Agric. 1991, 54, 619–633. [Google Scholar] [CrossRef]
- Ceballos, C.; Moyano, M.; Vicario, I.; Alba, J.; Heredia, F. Chromatic evolution of virgin olive oils submitted to an accelerated oxidation test. J. Am. Oil Chem. Soc. 2003, 80, 257–262. [Google Scholar] [CrossRef]
- Xu, X.Q. A chromametric method for the rapid assessment of deep frying oil quality. J. Sci. Food Agric. 2003, 83, 1293–1296. [Google Scholar] [CrossRef]
- Hornero-Mendez, D.; Gandul-Rojas, B.; Minguez-Mosquera, M.I. Routine and sensitive SPE-HPLC method for quantitative determination of pheophytin a and pyropheophytin a in olive oils. Food Res. Int. 2005, 38, 1067–1072. [Google Scholar] [CrossRef]
- Melton, S.L.; Jafar, S.; Sykes, D.; Trigiano, M.K. Review of stability measurements for frying oils and fried food flavor. J. Am. Oil Chem. Soc. 1994, 71, 1301–1308. [Google Scholar] [CrossRef]
- Ancín, M.C.; Martínez, M.T. Estudio de la degradación de los aceites de oliva sometidos a fritura. I. Determinación del parámetro que mejor cuantifica esta degradación. Grasas Aceites 1991, 1, 22–31. [Google Scholar] [CrossRef]
- Tena, N.; Garcia-Gonzalez, D.; Aparicio, R. Evaluation of virgin olive oil thermal deterioration by fluorescence spectroscopy. J. Agric. Food Chem. 2009, 57, 10505–10511. [Google Scholar] [CrossRef]
- Zhang, Q.; Saleh, A.S.M.; Shen, Q. Monitoring of changes in composition of soybean oil during deep-fat frying with different food types. J. Am. Oil Chem. Soc. 2016, 93, 69–81. [Google Scholar] [CrossRef]
- Ramirez, R.; Contador, R.; Ortiz, A.; Garcia-Torres, S.; Lopez-Parra, M.M.; Tejerina, D. Effect of breed purity and rearing systems on the stability of sliced Iberian dry-cured ham stored in modified atmosphere and vacuum packaging. Foods 2021, 10, 730. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.R.; Cava, R. Changes in colour, lipid oxidation and fatty acid composition of pork loin chops as affected by the type of culinary frying fat. Lwt Food Sci. Technol. 2005, 38, 726–734. [Google Scholar] [CrossRef]
- Dobarganes, C.; Marquez-Ruiz, G.; Velasco, J. Interactions between fat and food during deep-frying. Eur. J. Lipid Sci. Technol. 2000, 102, 521–528. [Google Scholar] [CrossRef]
- Flores-Alvarez, M.D.; Molina-Hernandez, E.F.; Hernandez-Raya, J.C.; Sosa-Morales, M.E. The Effect of food type (fish nuggets or French fries) on oil blend degradation during repeated frying. J. Food Sci. 2012, 77, C1136–C1143. [Google Scholar] [CrossRef] [PubMed]
- Kalogianni, E.P.; Smith, P.G. Effect of frying variables on French fry properties. Int. J. Food Sci. Technol. 2013, 48, 758–770. [Google Scholar] [CrossRef]
- Guillaumin, R. Kinetics of fat penetration in food. In Frying of Food. Principles, Changes, New Approaches; Varela, G., Bender, A.E., Morton, D.I., Eds.; Ellis Horwood: Chichester, UK, 1988; pp. 82–90. [Google Scholar]
- Kita, A.; Lisinska, G.; Powolny, M. The influence of frying medium degradation on fat uptake and texture of French fries. J. Sci. Food Agric. 2005, 85, 1113–1118. [Google Scholar] [CrossRef]
- Chiou, A.; Kalogeropoulos, N.; Salta, F.; Efstathiou, P.; Andrikopoulos, N. Pan-frying of French fries in three different edible oils enriched with olive leaf extract: Oxidative stability and fate of microconstituents. LWT-Food Sci. Technol. 2009, 42, 1090–1097. [Google Scholar] [CrossRef]
- Nieva-Echevarria, B.; Goicoechea, E.; Manzanos, M.J.; Guillen, M.D. The influence of frying technique, cooking oil and fish species on the changes occurring in fish lipids and oil during shallow-frying, studied by H-1 NMR. Food Res. Int. 2016, 84, 150–159. [Google Scholar] [CrossRef]
Raw Oil | Heated Oil | P | |
---|---|---|---|
L* | 19.4 ± 1.6 | 26.5 ± 3.4 | 0.010 |
a* | −1.6 ± 0.3 | 3.7 ± 1.7 | <0.001 |
b* | 13.8 ± 1.7 | 16.5 ± 2.6 | 0.143 |
h° | −1.4 ± 0.0 | 1.3 ± 0.1 | <0.001 |
C* | 13.9 ± 1.7 | 16.9 ± 2.7 | 0.114 |
Anisidine value (AV) | 3.2 ± 0.1 | 82.5 ± 7.8 | <0.001 |
Peroxide value (PV) (mEq O2 kg−1) | 6.4 ± 0.3 | 10.2 ± 0.5 | <0.001 |
K232 | 1.7 ± 0.0 | 10.9 ± 0.6 | <0.001 |
K268 | 0.11 ± 0.01 | 1.12 ± 0.09 | <0.001 |
α-tocopherol (mg kg−1) | 143.7 ± 12.3 | 4.6 ± 0.6 | <0.001 |
Hydroxytyrosol (mg kg−1) | 6.1 ± 0.7 | 0.7 ± 0.1 | <0.001 |
Tyrosol (mg kg−1) | 5.9 ± 0.7 | 5.3 ± 0.6 | 0.369 |
Luteoline (mg kg−1) | 3.3 ± 0.4 | 1.2 ± 0.0 | <0.001 |
Apigenine (mg kg−1) | 6.4 ± 0.4 | 3.8 ± 0.2 | <0.001 |
Oleuropein (mg kg−1) | 106.6 ± 3.7 | 13.5 ± 0.5 | <0.001 |
Raw Oil | Heated Oil | P | |||||||
---|---|---|---|---|---|---|---|---|---|
French Fries | Indoor Sirloin | Outdoor Sirloin | French Fries | Indoor Sirloin | Outdoor Sirloin | Product Type | Previous Heating | Int | |
L* | 24.1 ± 0.8 | 23.1 ± 1.1 | 22.9 ± 2.5 | 23.8 ± 2.7 | 21.2 ± 1.3 | 20.2 ± 3.5 | 0.134 | 0.127 | 0.593 |
a* | 3 −0.7 ± 0.2c | 2 0.2 ± 0.3 c | 1 0.8 ± 0.3 c | 1 6.2 ± 1.6 a | 1,2 3.8 ± 0.6 b | 2 3.0 ± 0.9 b | 0.105 | <0.001 | <0.001 |
b* | 19.8 ± 0.3 a | 17.5 ± 2.4 ab | 14.2 ± 3.1 abc | 19.0 ± 2.9 a | 12.7 ± 1.5 bc | 9.2 ± 1.6 c | <0.001 | 0.003 | 0.153 |
h° | 2 −1.54 ± 0.0 b | 2 0.8 ± 1.6 a | 1 1.5 ± 0.0 a | 1.3 ± 0.1 a | 1.3 ± 0.1 a | 1.2 ± 0.1 a | 0.001 | 0.004 | 0.001 |
C* | 19.8 ± 0.3 a | 17.5 ± 2.4 ab | 14.2 ± 3.1 bc | 20.1 ± 2.4 a | 13.3 ± 1.3 bc | 9.8 ± 1.3 c | <0.001 | 0.008 | 0.070 |
AV 1 | 6.5 ± 1.4 b | 6.0 ± 0.9 b | 5.2 ± 1.4 b | 92.8 ± 3.1 a | 80.5 ± 2.2 a | 86.0 ± 21.6 a | 0.376 | <0.001 | 0.444 |
PV 2 (mEq O2 kg−1) | 9.5 ± 0.8 bcd | 7.6 ± 1.4 cd | 7.0 ± 1.0 d | 14.9 ± 2.5 ab | 12.8 ± 1.1 ab | 17.0 ± 5.3 a | 0.272 | <0.001 | 0.141 |
K232 | 1.9 ± 0.1 b | 1.7 ± 0.0 b | 1.5 ± 0.3 b | 11.4 ± 1.1 a | 10.3 ± 1.7 a | 9.2 ± 3.0 a | 0.258 | <0.001 | 0.497 |
K268 | 0.19 ± 0.02 c | 0.17 ± 0.02 c | 0.16 ± 0.03 c | 1 1.23 ± 0.03 a | 1 1.13 ± 0.08 a | 2 0.89 ± 0.12 b | <0.001 | <0.001 | <0.001 |
α-tocopherol (mg kg−1) | 3 115.1 ± 5.3 c | 2 129.0 ± 2.1 b | 1 140.6 ± 7.4 a | 4.6 ± 0.6 d | 4.6 ± 0.5 d | 4.2 ± 0.6 d | <0.001 | <0.001 | <0.001 |
French Fries | Indoor Sirloin | Outdoor Sirloin | P | ||||||
---|---|---|---|---|---|---|---|---|---|
Fried in Raw Oil | Fried in Heated Oil | Fried in Raw Oil | Fried in Heated Oil | Fried in Raw Oil | Fried in Heated Oil | Product Type | Previous Heating | Int | |
L* | 48.2 ± 2.7 c | 53.0 ± 2.3 ab | 52.0 ± 1.3 abc | 55.1 ± 0.9 a | 50.8 ± 1.3 bc | 49.7 ± 1.9 bc | 0.004 | <0.001 | 0.150 |
a* | 0.3 ± 3.1 ab | −1.1 ± 3.7 b | 4.2 ± 0.3 a | 3.1 ± 0.7 ab | 3.8 ± 0.9 a | 3.9 ± 1.1 a | 0.001 | 0.324 | 0.805 |
b* | 28.4 ± 2.0 a | 28.9 ± 2.5 a | 18.0 ± 0.9 b | 15.5 ± 0.2 b | 14.9 ± 0.7 b | 16.3 ± 1.3 b | <0.001 | 0.082 | 0.146 |
h° | −0.8 ± 1.5 b | 0.0 ± 1.7 ab | 1.3 ± 0.0 a | 1.4 ± 0.0 a | 1.3 ± 0.1 a | 1.3 ± 0.1 a | 0.002 | 0.458 | 0.590 |
C* | 28.5 ± 2.0 a | 29.1 ± 2.3 a | 18.5 ± 0.8 b | 15.8 ± 0.3 b | 16.7 ± 1.5 b | 15.4 ± 0.7 b | <0.001 | 0.073 | 0.102 |
Frying losses (%) | 35.3 ± 3.1 | 34.8 ± 4.0 | 31.0 ± 1.9 | 31.8 ± 1.1 | 32.8 ± 1.2 | 34.9 ± 2.84 | 0.034 | 0.442 | 0.614 |
Fat (mg kg−1) | 56.9 ± 8.6 c | 67.9 ± 10.0 bc | 108.7 ± 13.2 a | 104.3 ± 6.6 a | 94.8 ± 7.8 a | 88.2 ± 14.3 ab | <0.001 | 0.991 | 0.213 |
Moisture (mg kg−1) | 1 721.3 ± 2.3 a | 2 683.4 ± 8.8 b | 594.8 ± 25.5 c | 592.9 ± 8.9 c | 577.0 ± 4.1 c | 566.1 ± 13.8 c | <0.001 | 0.005 | 0.033 |
MDA 1 (mg kg−1) | 0.71 ± 0.11 a | 0.69 ± 0.25 a | 1 0.19 + 0.03 b | 2 0.61 ± 0.08 a | 0.21 ± 0.02 b | 0.29 ± 0.07 b | < 0.001 | 0.005 | 0.004 |
Shear force (kg) | 0.4 ± 0.1 b | 0.4 ± 0.2 b | 2.7 ± 0.9 a | 2.5 ± 1.1 a | 3.0 ± 0.6 a | 2.6 ± 0.6 a | <0.000 | 0.624 | 0.562 |
Work of shear (kg s−1) | 2.1 ± 1.0 b | 1.5 ± 1.0 b | 5.5 ± 1.8 a | 5.9 ± 1.9 a | 7.1 ± 1.2 a | 6.4 ± 1.6 a | <0.001 | 0.810 | 0.497 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrapiso, A.I.; Otero-Bazago, E.M.; Gil-Amado, J.Á.; Martín, L. The Effect of Deep Frying French Fries and Two Types of Iberian Pork on the Characteristics of Extra Virgin Olive Oil and the Fried Products. Foods 2022, 11, 3394. https://doi.org/10.3390/foods11213394
Carrapiso AI, Otero-Bazago EM, Gil-Amado JÁ, Martín L. The Effect of Deep Frying French Fries and Two Types of Iberian Pork on the Characteristics of Extra Virgin Olive Oil and the Fried Products. Foods. 2022; 11(21):3394. https://doi.org/10.3390/foods11213394
Chicago/Turabian StyleCarrapiso, Ana Isabel, Eva María Otero-Bazago, José Ángel Gil-Amado, and Lourdes Martín. 2022. "The Effect of Deep Frying French Fries and Two Types of Iberian Pork on the Characteristics of Extra Virgin Olive Oil and the Fried Products" Foods 11, no. 21: 3394. https://doi.org/10.3390/foods11213394
APA StyleCarrapiso, A. I., Otero-Bazago, E. M., Gil-Amado, J. Á., & Martín, L. (2022). The Effect of Deep Frying French Fries and Two Types of Iberian Pork on the Characteristics of Extra Virgin Olive Oil and the Fried Products. Foods, 11(21), 3394. https://doi.org/10.3390/foods11213394