Preventive Effects of Different Black and Dark Teas on Obesity and Non-Alcoholic Fatty Liver Disease and Modulate Gut Microbiota in High-Fat Diet Fed Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Tea Extracts and Determination of Bioactive Compounds in Teas
2.2. Animal and Experimental Study
2.3. Measurement of Serum Biochemical Variables
2.4. Biochemical Assessment of Liver Tissue
2.5. Histopathological Examination
2.6. Bioinformatics Analysis of Intestinal Microbiota
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effects of Tea Extracts on Obesity
3.2. Observation of Histopathological Changes in Adipose Tissues
3.3. Effects of Tea Extracts on Features Related to NAFLD
3.4. Histopathological Evaluation for Hepatic Tissues
3.5. Effects of Tea Extracts on Liver Oxidative Damage
3.6. Effects of Tea Extracts on the Diversity and Structure of Gut Microbiota
3.7. Effects of Tea Extracts on the Composition of Gut Microbiota
3.8. The Correlation Analysis between Gut Microbiota and NAFLD Phenotypes
3.9. Main Phytochemical Compounds in Different Black and Dark Tea Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.J.; Malhi, H. Nonalcoholic fatty liver disease. Ann. Intern. Med. 2018, 169, ITC65–ITC80. [Google Scholar] [CrossRef] [PubMed]
- Neuschwander-Tetri, B.A. Non-alcoholic fatty liver disease. BMC Med. 2017, 15, 45. [Google Scholar] [CrossRef] [Green Version]
- Polyzos, S.A.; Kountouras, J.; Mantzoros, C.S. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism 2019, 92, 82–97. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.T.; Kleiner, D.E. Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Metabolism 2016, 65, 1080–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahady, S.E.; George, J. Exercise and diet in the management of nonalcoholic fatty liver disease. Metabolism 2016, 65, 1172–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremaroli, V.; Backhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 2012, 489, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P.; et al. A core gut microbiome in obese and lean twins. Nature 2009, 457, 480–484. [Google Scholar] [CrossRef] [Green Version]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef]
- Tsai, H.Y.; Shih, Y.Y.; Yeh, Y.T.; Huang, C.H.; Liao, C.A.; Hu, C.Y.; Nagabhushanam, K.; Ho, C.T.; Chen, Y.K. Pterostilbene and its derivative 3’-hydroxypterostilbene ameliorated nonalcoholic fatty liver disease through synergistic modulation of the gut microbiota and SIRT1/AMPK signaling pathway. J. Agric. Food Chem. 2022, 70, 4966–4980. [Google Scholar] [CrossRef]
- Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007, 56, 1761–1772. [Google Scholar] [CrossRef]
- Wang, P.; Gao, J.; Ke, W.; Wang, J.; Li, D.; Liu, R.; Jia, Y.; Wang, X.; Chen, X.; Chen, F.; et al. Resveratrol reduces obesity in high-fat diet-fed mice via modulating the composition and metabolic function of the gut microbiota. Free Radic. Biol. Med. 2020, 156, 83–98. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Li, Y.; Han, H.; Chen, S.; Gao, J.; Liu, G.; Wu, X.; Deng, J.; Yu, Q.; Huang, X.; et al. Melatonin reprogramming of gut microbiota improves lipid dysmetabolism in high-fat diet-fed mice. J. Pineal. Res. 2018, 65, e12524. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.; Rivera, L.; Furness, J.B.; Angus, P.W. The role of the gut microbiota in NAFLD. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 412–425. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zhou, X.; Chu, X.; Wang, J.; Xie, B.; Ge, J.; Guo, Y.; Li, X.; Yang, G. Allicin improves metabolism in high-fat diet-induced obese mice by modulating the gut microbiota. Nutrients 2019, 11, 2909. [Google Scholar] [CrossRef] [Green Version]
- Dao, M.C.; Everard, A.; Aron-Wisnewsky, J.; Sokolovska, N.; Prifti, E.; Verger, E.O.; Kayser, B.D.; Levenez, F.; Chilloux, J.; Hoyles, L.; et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut 2016, 65, 426–436. [Google Scholar] [CrossRef] [Green Version]
- Martel, J.; Ojcius, D.M.; Chang, C.J.; Lin, C.S.; Lu, C.C.; Ko, Y.F.; Tseng, S.F.; Lai, H.C.; Young, J.D. Anti-obesogenic and antidiabetic effects of plants and mushrooms. Nat. Rev. Endocrinol. 2017, 13, 149–160. [Google Scholar] [CrossRef]
- Brody, H. Tea. Nature 2019, 566, S1. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Yuan, Q.; Saeeduddin, M.; Ou, S.; Zeng, X.; Ye, H. Recent advances in tea polysaccharides: Extraction, purification, physicochemical characterization and bioactivities. Carbohydr. Polym. 2016, 153, 663–678. [Google Scholar] [CrossRef]
- Yang, C.S.; Zhang, J.; Zhang, L.; Huang, J.; Wang, Y. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Mol. Nutr. Food Res. 2016, 60, 160–174. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Sang, S. Biotransformation of tea polyphenols by gut microbiota. J. Funct. Foods 2014, 7, 26–42. [Google Scholar] [CrossRef]
- Fan, J.; Wu, Z.; Zhao, T.; Sun, Y.; Ye, H.; Xu, R.; Zeng, X. Characterization, antioxidant and hepatoprotective activities of polysaccharides from Ilex latifolia Thunb. Carbohydr. Polym. 2014, 101, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Guo, Y.; Sun, L.; Lai, X.; Li, Q.; Zhang, W.; Xiang, L.; Sun, S.; Cao, F. Six types of tea reduce high-fat-diet-induced fat accumulation in mice by increasing lipid metabolism and suppressing inflammation. Food Funct. 2019, 10, 2061–2074. [Google Scholar] [CrossRef]
- Ding, Q.; Zhang, B.; Zheng, W.; Chen, X.; Zhang, J.; Yan, R.; Zhang, T.; Yu, L.; Dong, Y.; Ma, B. Liupao tea extract alleviates diabetes mellitus and modulates gut microbiota in rats induced by streptozotocin and high-fat, high-sugar diet. Biomed. Pharm. 2019, 118, 109262. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Huang, J.; Luo, Y.; Wen, B.; Wu, W.; Zeng, H.; Zhonghua, L. Fuzhuan brick tea attenuates high-fat diet-induced obesity and associated metabolic disorders by shaping gut microbiota. J. Agric. Food Chem. 2019, 67, 13589–13604. [Google Scholar] [CrossRef]
- Chen, G.; Xie, M.; Dai, Z.; Wan, P.; Ye, H.; Zeng, X.; Sun, Y. Kudingcha and fuzhuan brick tea prevent obesity and modulate gut microbiota in high-fat diet fed mice. Mol. Nutr. Food Res. 2018, 62, e1700485. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hu, G.; Wang, A.; Long, G.; Yang, Y.; Wang, D.; Zhong, N.; Jia, J. Black tea reduces diet-induced obesity in mice via modulation of gut microbiota and gene expression in host tissues. Nutrients 2022, 14, 1635. [Google Scholar] [CrossRef]
- Cao, S.Y.; Li, B.Y.; Gan, R.Y.; Mao, Q.Q.; Wang, Y.F.; Shang, A.; Meng, J.M.; Xu, X.Y.; Wei, X.L.; Li, H.B. The in vivo antioxidant and hepatoprotective actions of selected chinese teas. Foods 2020, 9, 262. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.N.; Tang, G.Y.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Liu, Q.; Mao, Q.Q.; Shang, A.; Li, H.B. Phenolic profiles and antioxidant activities of 30 tea infusions from green, black, oolong, white, yellow and dark teas. Antioxidants 2019, 8, 215. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Dai, W.; Zhang, C.; Chen, H.; Chen, Z.; Chen, Y.; Pan, Q.; Zhou, Y. Shen-Ling-Bai-Zhu-San ameliorates inflammation and lung injury by increasing the gut microbiota in the murine model of streptococcus pneumonia-induced pneumonia. BMC Complement Med. Ther. 2020, 20, 159. [Google Scholar] [CrossRef]
- Li, X.; Huang, Y.; Song, L.; Xiao, Y.; Lu, S.; Xu, J.; Li, J.; Ren, Z. Lactobacillus plantarum prevents obesity via modulation of gut microbiota and metabolites in high-fat feeding mice. J. Funct. Foods 2020, 73, 104103. [Google Scholar] [CrossRef]
- Munnelly, P.; Feehan, S. An obesity clinic model. Proc. Nutr. Soc. 2002, 61, 9–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, S.; Gill, H.; Feltis, B.; Hung, A.; Nguyen, L.T.; Lenon, G.B. The effects of a weight-loss herbal formula RCM-107 and its eight individual ingredients on Glucagon-Like Peptide-1 secretion-an in vitro and in silico study. Int. J. Mol. Sci. 2020, 21, 2854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Chen, Z.; Guo, H.; He, D.; Zhao, H.; Wang, Z.; Zhang, W.; Liao, L.; Zhang, C.; Ni, L. The modulatory effect of infusions of green tea, oolong tea, and black tea on gut microbiota in high-fat-induced obese mice. Food Funct. 2016, 7, 4869–4879. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, M.; Wu, T.; Dai, S.; Xu, J.; Zhou, Z. The anti-obesity effect of green tea polysaccharides, polyphenols and caffeine in rats fed with a high-fat diet. Food Funct. 2015, 6, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Vongsuvanh, R.; George, J.; McLeod, D.; van der Poorten, D. Visceral adiposity index is not a predictor of liver histology in patients with non-alcoholic fatty liver disease. J. Hepatol. 2012, 57, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Ismaiel, A.; Jaaouani, A.; Leucuta, D.C.; Popa, S.L.; Dumitrascu, D.L. The visceral adiposity index in non-alcoholic fatty liver disease and liver fibrosis-systematic review and meta-analysis. Biomedicines 2021, 9, 1890. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, J.; Sang, S.; Ao, X.; Su, M.; Hu, B.; Li, H. Effects of tea treatments against high-fat diet-induced disorder by regulating lipid metabolism and the gut microbiota. Comput. Math Methods Med. 2022, 2022, 9336080. [Google Scholar] [CrossRef]
- Lu, X.; Liu, J.; Zhang, N.; Fu, Y.; Zhang, Z.; Li, Y.; Wang, W.; Li, Y.; Shen, P.; Cao, Y. Ripened pu-erh tea extract protects mice from obesity by modulating gut microbiota composition. J. Agric. Food Chem. 2019, 67, 6978–6994. [Google Scholar] [CrossRef]
- Du, T.; Sun, X.; Yuan, G.; Zhou, X.; Lu, H.; Lin, X.; Yu, X. Lipid phenotypes in patients with nonalcoholic fatty liver disease. Metabolism 2016, 65, 1391–1398. [Google Scholar] [CrossRef]
- Dalia, A.M.; Loh, T.C.; Sazili, A.Q.; Jahromi, M.F.; Samsudin, A.A. The effect of dietary bacterial organic selenium on growth performance, antioxidant capacity, and Selenoproteins gene expression in broiler chickens. BMC Vet. Res. 2017, 13, 254. [Google Scholar] [CrossRef]
- Polce, S.A.; Burke, C.; Franca, L.M.; Kramer, B.; de Andrade Paes, A.M.; Carrillo-Sepulveda, M.A. Ellagic acid alleviates hepatic oxidative stress and insulin resistance in diabetic female rats. Nutrients 2018, 10, 531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, J.; Nunez-Garcia, M.; Fernandez-Tussy, P.; Barbier-Torres, L.; Fernandez-Ramos, D.; Gomez-Santos, B.; Buque, X.; Lopitz-Otsoa, F.; Goikoetxea-Usandizaga, N.; Serrano-Macia, M.; et al. Targeting hepatic glutaminase 1 ameliorates non-alcoholic steatohepatitis by restoring very-low-density lipoprotein triglyceride assembly. Cell Metab. 2020, 31, 605–622. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.Y.; Park, H.J.; Manautou, J.E.; Koo, S.I.; Bruno, R.S. Green tea extract protects against nonalcoholic steatohepatitis in ob/ob mice by decreasing oxidative and nitrative stress responses induced by proinflammatory enzymes. J. Nutr. Biochem. 2012, 23, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Albillos, A.; de Gottardi, A.; Rescigno, M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J. Hepatol. 2020, 72, 558–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Coker, O.O.; Chu, E.S.; Fu, K.; Lau, H.C.H.; Wang, Y.X.; Chan, A.W.H.; Wei, H.; Yang, X.; Sung, J.J.Y.; et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut 2021, 70, 761–774. [Google Scholar] [CrossRef]
- Ziętak, M.; Kovatcheva-Datchary, P.; Markiewicz, L.H.; Ståhlman, M.; Kozak, L.P.; Bäckhed, F. Altered microbiota contributes to reduced diet-induced obesity upon cold exposure. Cell Metab. 2016, 23, 1216–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaumont, M.; Goodrich, J.K.; Jackson, M.A.; Yet, I.; Davenport, E.R.; Vieira-Silva, S.; Debelius, J.; Pallister, T.; Mangino, M.; Raes, J.; et al. Heritable components of the human fecal microbiome are associated with visceral fat. Genome Biol. 2016, 17, 189. [Google Scholar] [CrossRef] [Green Version]
- Roopchand, D.E.; Carmody, R.N.; Kuhn, P.; Moskal, K.; Rojas-Silva, P.; Turnbaugh, P.J.; Raskin, I. Dietary polyphenols promote growth of the gut bacterium akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes 2015, 64, 2847–2858. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.S.; Teng, C.Y.; Kalyanam, N.; Ho, C.T.; Pan, M.H. Garcinol reduces obesity in high-fat-diet-fed mice by modulating gut microbiota composition. Mol. Nutr. Food Res. 2019, 63, e1800390. [Google Scholar] [CrossRef]
- Nguyen, S.G.; Kim, J.; Guevarra, R.B.; Lee, J.H.; Kim, E.; Kim, S.I.; Unno, T. Laminarin favorably modulates gut microbiota in mice fed a high-fat diet. Food Funct. 2016, 7, 4193–4201. [Google Scholar] [CrossRef]
- Feng, W.; Wang, H.; Zhang, P.; Gao, C.; Tao, J.; Ge, Z.; Zhu, D.; Bi, Y. Modulation of gut microbiota contributes to curcumin-mediated attenuation of hepatic steatosis in rats. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 1801–1812. [Google Scholar] [CrossRef] [PubMed]
- Duparc, T.; Plovier, H.; Marrachelli, V.G.; Van Hul, M.; Essaghir, A.; Ståhlman, M.; Matamoros, S.; Geurts, L.; Pardo-Tendero, M.M.; Druart, C.; et al. Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism. Gut 2017, 66, 620–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutlu, E.A.; Gillevet, P.M.; Rangwala, H.; Sikaroodi, M.; Naqvi, A.; Engen, P.A.; Kwasny, M.; Lau, C.K.; Keshavarzian, A. Colonic microbiome is altered in alcoholism. Am. J. Physiol. Gastrointest Liver Physiol. 2012, 302, G966–G978. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhao, L. Strain-level dissection of the contribution of the gut microbiome to human metabolic disease. Genome Med. 2016, 8, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Tang, H.; Zhang, C.; Zhao, Y.; Derrien, M.; Rocher, E.; van-Hylckama Vlieg, J.E.; Strissel, K.; Zhao, L.; Obin, M.; et al. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J. 2015, 9, 1–15. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, M.; Wang, S.; Han, R.; Cao, Y.; Hua, W.; Mao, Y.; Zhang, X.; Pang, X.; Wei, C.; et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 2010, 4, 232–241. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.; Kim, I.; Mannaa, M.; Kim, J.; Wang, S.; Park, I.; Kim, J.; Seo, Y.S. Effect of Kombucha on gut-microbiota in mouse having non-alcoholic fatty liver disease. Food Sci. Biotechnol. 2019, 28, 261–267. [Google Scholar] [CrossRef]
- Chetwin, E.; Manhanzva, M.T.; Abrahams, A.G.; Froissart, R.; Gamieldien, H.; Jaspan, H.; Jaumdally, S.Z.; Barnabas, S.L.; Dabee, S.; Happel, A.U.; et al. Antimicrobial and inflammatory properties of south african clinical lactobacillus isolates and vaginal probiotics. Sci. Rep. 2019, 9, 1917. [Google Scholar] [CrossRef] [Green Version]
- Rocha-Ramírez, L.M.; Pérez-Solano, R.A.; Castañón-Alonso, S.L.; Moreno Guerrero, S.S.; Ramírez Pacheco, A.; García Garibay, M.; Eslava, C. Probiotic lactobacillus strains stimulate the inflammatory response and activate human macrophages. J. Immunol. Res. 2017, 2017, 4607491. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.; Bosco, N.; Perruisseau, G.; Nicolas, J.; Segura-Roggero, I.; Duboux, S.; Briand, M.; Blum, S.; Benyacoub, J. Lactobacillus paracasei reduces intestinal inflammation in adoptive transfer mouse model of experimental colitis. Clin. Dev. Immunol. 2011, 2011, 807483. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, S.; Lee, J.H.; Kim, J.H.; Che, X.; Ma, H.W.; Seo, D.H.; Kim, T.I.; Kim, W.H.; Kim, S.W.; et al. Lactobacillus acidophilus suppresses intestinal inflammation by inhibiting endoplasmic reticulum stress. J. Gastroenterol. Hepatol. 2019, 34, 178–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Choi, S.; Dutta, M.; Asubonteng, J.O.; Polunas, M.; Goedken, M.; Gonzalez, F.J.; Cui, J.Y.; Gyamfi, M.A. Pregnane X receptor exacerbates nonalcoholic fatty liver disease accompanied by obesity- and inflammation-prone gut microbiome signature. Biochem. Pharmacol. 2021, 193, 114698. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Yu, F.; Qin, L.; Zhang, N.; Cao, Q.; Schwab, W.; Li, D.; Song, C. Dynamic change in amino acids, catechins, alkaloids, and gallic acid in six types of tea processed from the same batch of fresh tea (Camellia sinensis L.) leaves. J. Food Compos. Anal. 2019, 77, 28–38. [Google Scholar] [CrossRef]
- O’Keefe, J.H.; DiNicolantonio, J.J.; Lavie, C.J. Coffee for cardioprotection and longevity. Prog. Cardiovasc. Dis. 2018, 61, 38–42. [Google Scholar] [CrossRef] [PubMed]
Number | Name | Category | Fermentation Degree | Production Place |
---|---|---|---|---|
BTea1 | Selenium-Enriched Black Tea | Black Tea | Deep-fermented | Enshi, Hubei |
BTea2 | Dianhong Tea | Black Tea | Deep-fermented | Xishuangbanna, Yunnan |
BTea3 | Yingde Black Tea | Black Tea | Deep-fermented | Yingde, Guangdong |
DTea1 | Fu Brick tea | Dark Tea | Postfermented | Changsha, Hunan |
DTea2 | Liupao Tea | Dark Tea | Postfermented | Wuzhou, Guangxi |
DTea3 | Selenium-Enriched Dark Tea | Dark Tea | Postfermented | Enshi, Hubei |
Groups | Chao1 | Shannon_2 | Simpson |
---|---|---|---|
ND | 528.2 ± 86.0 | 4.80 ± 0.50 | 0.092 ± 0.043 |
HFD | 519.1 ± 88.7 | 4.60 ± 0.59 | 0.111 ± 0.044 |
BTea1 | 650.5 ± 27.0 ** | 5.13 ± 0.24 | 0.105 ± 0.021 |
BTea2 | 436.5 ± 94.2 aa | 4.03 ± 0.70 aa | 0.168 ± 0.100 |
BTea3 | 583.1 ± 80.5 bb | 4.91 ± 0.62 b | 0.089 ± 0.026 b |
DTea1 | 582.0 ± 52.6 aaa,bb | 4.63 ± 0.59 | 0.108 ± 0.044 |
DTea2 | 477.6 ± 108.3 aa | 4.26 ± 0.65 a | 0.149 ± 0.056 |
DTea3 | 570.4 ± 80.9 b | 4.84 ± 0.67 b | 0.108 ± 0.057 |
Group1 vs. Group2 | Df | Sums of Sqs | MeanSqs | F.Model | R2 | Pr(>F) |
---|---|---|---|---|---|---|
BTea1 vs. BTea2 | 1 | 0.595 | 0.595 | 8.93 | 0.527 | 0.012 |
BTea1 vs. BTea3 | 1 | 0.264 | 0.264 | 7.37 | 0.48 | 0.006 |
BTea1 vs. DTea1 | 1 | 0.145 | 0.145 | 3.63 | 0.312 | 0.015 |
BTea1 vs. DTea2 | 1 | 0.643 | 0.643 | 14.8 | 0.65 | 0.014 |
BTea1 vs. DTea3 | 1 | 0.425 | 0.425 | 6.94 | 0.464 | 0.004 |
BTea1 vs. HFD | 1 | 0.682 | 0.682 | 16.0 | 0.616 | 0.003 |
BTea1 vs. ND | 1 | 1.87 | 1.870 | 65.0 | 0.867 | 0.004 |
BTea2 vs. BTea3 | 1 | 0.318 | 0.318 | 3.66 | 0.314 | 0.017 |
BTea2 vs. DTea1 | 1 | 0.302 | 0.302 | 3.33 | 0.294 | 0.035 |
BTea2 vs. DTea2 | 1 | 0.0644 | 0.0644 | 0.683 | 0.0786 | 0.698 |
BTea2 vs. DTea3 | 1 | 0.0928 | 0.0928 | 0.826 | 0.0936 | 0.568 |
BTea2 vs. HFD | 1 | 0.122 | 0.122 | 1.46 | 0.128 | 0.162 |
BTea2 vs. ND | 1 | 0.836 | 0.836 | 12.0 | 0.546 | 0.002 |
BTea3 vs. DTea1 | 1 | 0.0914 | 0.0914 | 1.52 | 0.160 | 0.151 |
BTea3 vs. DTea2 | 1 | 0.243 | 0.243 | 3.82 | 0.323 | 0.006 |
BTea3 vs. DTea3 | 1 | 0.155 | 0.155 | 1.91 | 0.192 | 0.081 |
BTea3 vs. HFD | 1 | 0.215 | 0.215 | 3.66 | 0.268 | 0.014 |
BTea3 vs. ND | 1 | 1.38 | 1.38 | 30.7 | 0.754 | 0.006 |
DTea1 vs. DTea2 | 1 | 0.317 | 0.317 | 4.68 | 0.369 | 0.007 |
DTea1 vs. DTea3 | 1 | 0.215 | 0.215 | 2.51 | 0.239 | 0.036 |
DTea1 vs. HFD | 1 | 0.326 | 0.326 | 5.26 | 0.345 | 0.002 |
DTea1 vs. ND | 1 | 1.48 | 1.48 | 30.7 | 0.754 | 0.001 |
DTea2 vs. DTea3 | 1 | 0.0634 | 0.0634 | 0.712 | 0.0818 | 0.611 |
DTea2 vs. HFD | 1 | 0.0734 | 0.0734 | 1.13 | 0.102 | 0.371 |
DTea2 vs. ND | 1 | 0.871 | 0.871 | 17.1 | 0.631 | 0.002 |
DTea3 vs. HFD | 1 | 0.0961 | 0.0961 | 1.22 | 0.108 | 0.294 |
DTea3 vs. ND | 1 | 0.875 | 0.875 | 13.4 | 0.573 | 0.005 |
HFD vs. ND | 1 | 1.13 | 1.13 | 23.0 | 0.657 | 0.001 |
All Groups | 7 | 3.66 | 0.523 | 8.14 | 0.613 | 0.001 |
Main Phytochemicals | Selenium-Enriched Black Tea | Dianhong Tea | Yingde Black Tea | Fu Brick Tea | Liupao Tea | Selenium-Enriched Dark Tea |
---|---|---|---|---|---|---|
gallic acid | 33.28 ± 0.57 | 23.33 ± 0.92 | 15.57 ± 0.42 | 21.75 ± 0.47 | 8.92 ± 0.33 | 77.17 ± 0.94 |
gallocatechin | - | - | - | 9.44 ± 0.29 | 3.33 ± 0.14 | 21.18 ± 1.74 |
epigallocatechin | - | - | - | 14.49 ± 0.61 | 5.75 ± 0.07 | 37.75 ± 0.38 |
catechin | - | - | 11.04 ± 0.24 | 10.85 ± 0.34 | 12.30 ± 0.28 | 8.27 ± 0.03 |
chlorogenic acid | - | - | 2.19 ± 0.03 | 3.30 ± 0.05 | - | - |
caffeine | 96.63 ± 0.58 | 95.25 ± 0.90 | 60.85 ± 0.96 | 72.92 ± 0.57 | 92.64 ± 1.07 | 67.55 ± 0.62 |
epigallocatechin gallate | 9.30 ± 0.55 | - | - | 59.56 ± 1.94 | - | 42.85 ± 3.10 |
epicatechin | 5.10 ± 0.07 | 6.44 ± 0.21 | 7.39 ± 0.22 | 8.27 ± 0.28 | 7.04 ± 0.22 | 11.87 ± 0.21 |
gallocatechin gallate | - | - | - | 23.55 ± 1.09 | 19.40 ± 0.73 | 13.81 ± 0.40 |
epicatechin gallate | - | 5.90 ± 0.14 | 5.92 ± 0.28 | 6.86 ± 0.26 | - | 4.51 ± 0.26 |
catechin gallate | - | - | - | 4.15 ± 0.47 | - | |
ellagic acid | 2.76 ± 0.13 | 3.59 ± 0.21 | - | 1.68 ± 0.08 | 3.16 ± 0.10 | - |
myricetin | - | - | - | - | - | |
quercetin | - | - | - | - | - | |
astragalin | 7.32 ± 0.41 | 3.95 ± 0.38 | - | 1.86 ± 0.01 | - | 2.27 ± 0.29 |
quercitrin | - | - | - | - | - | - |
theaflavin | - | - | - | - | - | - |
kaempferol | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Mao, Q.; Xiong, R.; Zhou, D.; Huang, S.; Saimaiti, A.; Shang, A.; Luo, M.; Li, H.; Li, H.; et al. Preventive Effects of Different Black and Dark Teas on Obesity and Non-Alcoholic Fatty Liver Disease and Modulate Gut Microbiota in High-Fat Diet Fed Mice. Foods 2022, 11, 3457. https://doi.org/10.3390/foods11213457
Li B, Mao Q, Xiong R, Zhou D, Huang S, Saimaiti A, Shang A, Luo M, Li H, Li H, et al. Preventive Effects of Different Black and Dark Teas on Obesity and Non-Alcoholic Fatty Liver Disease and Modulate Gut Microbiota in High-Fat Diet Fed Mice. Foods. 2022; 11(21):3457. https://doi.org/10.3390/foods11213457
Chicago/Turabian StyleLi, Bangyan, Qianqian Mao, Ruogu Xiong, Dandan Zhou, Siyu Huang, Adila Saimaiti, Ao Shang, Min Luo, Hangyu Li, Huabin Li, and et al. 2022. "Preventive Effects of Different Black and Dark Teas on Obesity and Non-Alcoholic Fatty Liver Disease and Modulate Gut Microbiota in High-Fat Diet Fed Mice" Foods 11, no. 21: 3457. https://doi.org/10.3390/foods11213457
APA StyleLi, B., Mao, Q., Xiong, R., Zhou, D., Huang, S., Saimaiti, A., Shang, A., Luo, M., Li, H., Li, H., & Li, S. (2022). Preventive Effects of Different Black and Dark Teas on Obesity and Non-Alcoholic Fatty Liver Disease and Modulate Gut Microbiota in High-Fat Diet Fed Mice. Foods, 11(21), 3457. https://doi.org/10.3390/foods11213457