The Effects of Ethanol and Rutin on the Structure and Gel Properties of Whey Protein Isolate and Related Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.2.1. Preparation of Mixed Solutions of WPI and Rutin-Ethanol
2.2.2. Preparation of Heat-Induced Gels
2.3. Total Thiol Content and Surface Hydrophobicity
2.4. Secondary Structure
2.5. Particle Size and Viscosity
2.6. Zeta Potential
2.7. Gel Strength, Water Holding Capacity (WHC) and Dynamic Rheology
2.8. Statistical Analysis
3. Results and Discussion
3.1. Photographs of WPI-Based Gels
3.2. Changes in WPI Structure
3.2.1. Total Thiol Content
3.2.2. Surface Hydrophobicity
3.2.3. Secondary Structure
3.3. Crosslinking of WPI
3.3.1. Particle Size
3.3.2. Viscosity
3.4. Zeta Potential of WPI
3.5. Gel Strength, WHC and Dynamic Rheology
3.5.1. Gel Strength and WHC
3.5.2. Dynamic Rheology
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wagner, J.; Biliaderis, C.G.; Moschakis, T. Whey proteins: Musings on denaturation, aggregate formation and gelation. Crit. Rev. Food Sci. Nutr. 2020, 60, 3793–3806. [Google Scholar] [CrossRef] [PubMed]
- Verheul, M.; Roefs, S. Structure of particulate whey protein gels: Effect of NaCl concentration, pH, heating temperature, and protein composition. J. Agric. Food Chem. 1998, 46, 4909–4916. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Ma, X.L.; Kong, B.H.; Chen, Q.; Liu, Q. Ethanol induced changes in structural, morphological, and functional properties of whey proteins isolates: Influence of ethanol concentration. Food Hydrocoll. 2020, 111, 106379. [Google Scholar] [CrossRef]
- Meng, Y.; Li, C. Conformational changes and functional properties of whey protein isolate-polyphenol complexes formed by non-covalent interaction. Food Chem. 2021, 364, 129622. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Ren, Y.; Shen, M.; Zhang, J.; Yu, Q.; Chen, Y.; Zhang, H.; Xie, J. Effect of acid/alkali shifting on function, gelation properties, and microstructure of mesona chinensis polysaccharide-whey protein isolate gels. Food Hydrocoll. 2021, 117, 106699. [Google Scholar] [CrossRef]
- Uzun, S.; Kim, H.; Leal, C.; Padua, G.W. Ethanol-induced whey protein gels as carriers for lutein droplets. Food Hydrocoll. 2016, 61, 426–432. [Google Scholar] [CrossRef]
- Nikolaidis, A.; Moschakis, T. On the reversibility of ethanol-induced whey protein denaturation. Food Hydrocoll. 2018, 84, 389–395. [Google Scholar] [CrossRef]
- Ming, Y.; Chen, L.; Khan, A.; Wang, H.; Wang, C. Effects of tea polyphenols on physicochemical and antioxidative properties of whey protein coating. Food Sci. Biotechnol. 2020, 29, 1655–1663. [Google Scholar] [CrossRef]
- Jakobek, L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef]
- Cui, Q.; Dong, Y.Y.; Zhang, A.Q.; Wang, X.B.; Zhao, X.H. Multiple spectra analysis and calculation of the interaction between anthocyanins and whey protein isolate. Food Biosci. 2021, 44, 101353. [Google Scholar] [CrossRef]
- Zang, Z.; Chou, S.; Geng, L.; Si, X.; Ding, Y.; Lang, Y.; Cui, H.; Gao, N.; Chen, Y.; Wang, M.; et al. Interactions of blueberry anthocyanins with whey protein isolate and bovine serum protein: Color stability, antioxidant activity, in vitro simulation, and protein functionality. LWT 2021, 152, 112269. [Google Scholar] [CrossRef]
- Zhong, Y.J.; Zhao, J.C.; Dai, T.T.; McClements, D.J.; Liu, C.M. The effect of whey protein-puerarin interactions on the formation and performance of protein hydrogels. Food Hydrocoll. 2021, 113, 106444. [Google Scholar] [CrossRef]
- Huang, A.; McClements, D.J.; Luo, S.; Chen, T.; Ye, J.; Liu, C. Fabrication of rutin-protein complexes to form and stabilize bilayer emulsions: Impact of concentration and pretreatment. Food Hydrocoll. 2021, 122, 107056. [Google Scholar] [CrossRef]
- Jia, N.; Zhang, F.; Liu, Q.; Wang, L.; Lin, S.; Liu, D. The beneficial effects of rutin on myofibrillar protein gel properties and related changes in protein conformation. Food Chem. 2019, 301, 125206. [Google Scholar] [CrossRef]
- Yan, M.; Li, B.; Zhao, X.; Yi, J. Physicochemical properties of gelatin gels from walleye pollock (Theragra chalcogramma) skin cross-linked by gallic acid and rutin. Food Hydrocoll. 2011, 25, 907–914. [Google Scholar] [CrossRef]
- Simplicio, P.D.; Cheeseman, K.H.; Slater, T.F. The reactivity of the sh group of bovine serum albumin with free radicals. Free Radic. Res. Commun. 1991, 14, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, P.N.; Li, C.E. Comparison of protein surface hydrophobicity measured at various pH values using three different fluorescent probes. J. Agric. Food Chem. 2000, 48, 328–334. [Google Scholar] [CrossRef]
- Salvador, P.; Toldrà, M.; Saguer, E.; Carretero, C.; Parés, D. Microstructure–function relationships of heat-induced gels of porcine haemoglobin. Food Hydrocoll. 2009, 23, 1654–1659. [Google Scholar] [CrossRef]
- Cao, Y.; Xiong, Y.L. Interaction of whey proteins with phenolic derivatives under neutral and acidic pH conditions. J. Food Sci. 2017, 82, 409–419. [Google Scholar] [CrossRef]
- Yu, L.; Xiong, C.; Li, J.; Luo, W.; Xue, H.; Li, R.; Tu, Y.; Zhao, Y. Ethanol induced the gelation behavior of duck egg whites. Food Hydrocoll. 2020, 105, 105765. [Google Scholar] [CrossRef]
- Lambrecht, M.A.; Rombouts, I.; Delcour, J.A. Denaturation and covalent network formation of wheat gluten, globular proteins and mixtures thereof in aqueous ethanol and water. Food Hydrocoll. 2016, 57, 122–131. [Google Scholar] [CrossRef]
- Wei, Z.; Yang, W.; Fan, R.; Yuan, F.; Gao, Y. Evaluation of structural and functional properties of protein–EGCG complexes and their ability of stabilizing a model β-carotene emulsion. Food Hydrocoll. 2015, 45, 337–350. [Google Scholar] [CrossRef]
- Ozdal, T.; Capanoglu, E.; Altay, F. A review on protein–phenolic interactions and associated changes. Food Res. Int. 2013, 51, 954–970. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Z.; Zhao, J.; Liu, Y. The effect of non-covalent interaction of chlorogenic acid with whey protein and casein on physicochemical and radical-scavenging activity of in vitro protein digests. Food Chem. 2018, 268, 334–341. [Google Scholar] [CrossRef]
- Qie, X.; Chen, Y.; Quan, W.; Wang, Z.; Zeng, M.; Qin, F.; Chen, J.; He, Z. Analysis of β-lactoglobulin–epigallocatechin gallate interactions: The antioxidant capacity and effects of polyphenols under different heating conditions in polyphenolic–protein interactions. Food Funct. 2020, 11, 3867–3878. [Google Scholar] [CrossRef]
- Jia, J.J.; Gao, X.; Hao, M.H.; Tang, L. Comparison of binding interaction between beta-lactoglobulin and three common polyphenols using multi-spectroscopy and modeling methods. Food Chem. 2017, 228, 143–151. [Google Scholar] [CrossRef]
- Rawel, H.M.; Czajka, D.; Rohn, S.; Kroll, J. Interactions of different phenolic acids and flavonoids with soy proteins. Int. J. Biol. Macromol. 2002, 30, 137–150. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Y.; Yang, Y.; Li, S.; Wang, C.; Wang, C.; Zhang, T. Comparison of non-covalent binding interactions between three whey proteins and chlorogenic acid: Spectroscopic analysis and molecular docking. Food Biosci. 2021, 41, 101035. [Google Scholar] [CrossRef]
- Elgamouz, A.; Alsaidi, R.; Alsaidi, A.; Zahri, M.; Almehdi, A.; Bajou, K. Dataset in the characterization of black spot Ehrenberg snapper and its proteins’ denaturation inhibition by natural antioxidants. Data Brief 2019, 28, 104927. [Google Scholar] [CrossRef]
- Sano, T.; Ohno, T.; Otsuka-Fuchino, H.; Matsumoto, J.J.; Tsuchiya, T. Carp natural actomyosin: Thermal denaturation mechanism. J. Food Sci. 2010, 59, 1002–1008. [Google Scholar] [CrossRef]
- Xu, X.L.; Han, M.Y.; Fei, Y.; Zhou, G.H. Raman spectroscopic study of heat-induced gelation of pork myofibrillar proteins and its relationship with textural characteristic. Meat Sci. 2011, 87, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Wu, J.; Li-Chan, E.C.; Zhu, L.; Zhang, F.; Xu, X.; Fan, G.; Wang, L.; Huang, X.; Pan, S. Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocoll. 2013, 30, 647–655. [Google Scholar] [CrossRef]
- Abd El-Maksoud, A.A.; Abd El-Ghany, I.H.; El-Beltagi, H.S.; Anankanbil, S.; Banerjee, C.; Petersen, S.V.; Pérez, B.; Guo, Z. Adding functionality to milk-based protein: Preparation, and physico-chemical characterization of β-lactoglobulin-phenolic conjugates. Food Chem. 2018, 241, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Kanakis, C.D.; Hasni, I.; Bourassa, P.; Tarantilis, P.A.; Polissiou, M.G.; Tajmir-Riahi, H.-A. Milk β-lactoglobulin complexes with tea polyphenols. Food Chem. 2011, 127, 1046–1055. [Google Scholar] [CrossRef] [PubMed]
- von Staszewski, M.; Jara, F.L.; Ruiz, A.L.T.G.; Jagus, R.J.; Carvalho, J.E.; Pilosof, A.M. Nanocomplex formation between β-lactoglobulin or caseinomacropeptide and, green tea polyphenols: Impact on protein gelation and polyphenols antiproliferative activity. J. Funct. Foods 2012, 4, 800–809. [Google Scholar] [CrossRef]
- Chen, W.; Li, T.; Yu, H.; Ma, C.; Wang, X.; Qayum, A.; Hou, J.; Jiang, Z. Structure and emulsifying properties of whey protein isolate: Effect of safflower yellow concentration. LWT 2020, 123, 109079. [Google Scholar] [CrossRef]
- Dissanayake, M.; Liyanaarachchi, S.; Vasiljevic, T. Functional properties of whey proteins microparticulated at low pH. J. Dairy Sci. 2012, 95, 1667–1679. [Google Scholar] [CrossRef]
- Coskun, A.E.; Ozdestan-Ocak, O. Effects of salt ions and heating on the behaviour of whey protein particle dispersions. Food Hydrocoll. 2020, 101, 105433. [Google Scholar] [CrossRef]
- Pan, X.; Fang, Y.; Wang, L.; Shi, Y.; Xie, M.; Xia, J.; Pei, F.; Li, P.; Xiong, W.; Shen, X.; et al. Covalent interaction between rice protein hydrolysates and chlorogenic acid: Improving the stability of oil-in-water emulsions. J. Agric. Food Chem. 2019, 67, 4023–4030. [Google Scholar] [CrossRef]
- Ma, S.; Yang, X.; Zhao, C.; Guo, M. Ultrasound-induced changes in structural and physicochemical properties of β-lactoglobulin. Food Sci. Nutr. 2018, 6, 1053–1064. [Google Scholar] [CrossRef]
- Xu, M.; Lian, Z.; Chen, X.; Yao, X.; Lu, C.; Niu, X.; Xu, M.; Zhu, Q. Effects of resveratrol on lipid and protein co-oxidation in fish oil-enriched whey protein isolate emulsions. Food Chem. 2021, 365, 130525. [Google Scholar] [CrossRef] [PubMed]
- Thongkaew, C.; Gibis, M.; Hinrichs, J.; Weiss, J. Polyphenol interactions with whey protein isolate and whey protein isolate–pectin coacervates. Food Hydrocoll. 2014, 41, 103–112. [Google Scholar] [CrossRef]
- Charlton, A.J.; Baxter, N.J.; Khan, M.L.; Moir, A.J.G.; Haslam, E.; Davies, A.P.; Williamson, M.P. Polyphenol/peptide binding and precipitation. J. Agric. Food Chem. 2002, 50, 1593–1601. [Google Scholar] [CrossRef] [PubMed]
- Kleemann, C.; Zink, J.; Selmer, I.; Smirnova, I.; Kulozik, U. Effect of ethanol on the textural properties of whey protein and egg white protein hydrogels during water-ethanol solvent exchange. Molecules 2020, 25, 4417. [Google Scholar] [CrossRef] [PubMed]
- Zirbel, F.; Kinsella, J.E. Effects of thiol reagents and ethanol on strength of whey protein gels. Food Hydrocoll. 1988, 2, 467–475. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Y.; Tang, X.; Chen, Y.; You, Y. Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure. Food Chem. 2015, 188, 111–118. [Google Scholar] [CrossRef]
- Zheng, J.; Xiao, N.; Li, Y.; Xie, X.; Li, L. Free radical grafting of whey protein isolate with tea polyphenol: Synthesis and changes in structural and functional properties. LWT 2022, 153, 112438. [Google Scholar] [CrossRef]
- Harbourne, N.; Jacquier, J.C.; O’Riordan, D. Effects of addition of phenolic compounds on the acid gelation of milk. Int. Dairy J. 2011, 21, 185–191. [Google Scholar] [CrossRef]
Secondary Structure (%) | WPI | WPI + Ethanol | WPI + Ethanol + Rutin (%) | |||
---|---|---|---|---|---|---|
0.05 | 0.1 | 0.2 | 0.3 | |||
α-helix | 25.06 ± 0.02 c | 19.79 ± 0.35 cd | 14.51 ± 0.46 d | 35.96 ± 0.01 b | 41.24 ± 0.01 b | 57.42 ± 0.45 a |
β-Folding | 42.83 ± 0.00 b | 46.94 ± 0.27 ab | 51.05 ± 1.92 a | 34.34 ± 0.00 c | 30.23 ± 0.00 c | 17.63 ± 0.25 d |
β-turning | 19.97 ± 0.01 a | 20.81 ± 0.05 a | 21.65 ± 0.40 a | 18.24 ± 0.02 b | 17.40 ± 0.00 b | 14.82 ± 0.87 c |
Irregular curl | 12.14 ± 0.02 b | 12.46 ± 0.02 ab | 12.79 ± 0.16 a | 11.46 ± 0.00 c | 11.13 ± 0.00 c | 10.13 ± 0.34 d |
Particle Size Parameters (μm) | WPI | WPI + Ethanol | WPI + Ethanol + Rutin (%) | |||
---|---|---|---|---|---|---|
0.05 | 0.1 | 0.2 | 0.3 | |||
D4,3 | 2.01 ± 0.00 c | 1.97 ± 0.01 c | 2.11 ± 0.00 c | 2.16 ± 0.06 c | 24.08 ± 0.22 b | 31.45 ± 0.12 a |
D3,2 | 1.58 ± 0.04 c | 1.55 ± 0.00 c | 1.59 ± 0.00 c | 1.64 ± 0.00 c | 4.17 ± 0.04 b | 5.57 ± 0.24 a |
D10 | 0.88 ± 0.01 d | 0.89 ± 0.00 cd | 0.86 ± 0.00 d | 0.94 ± 0.00 c | 1.52 ± 0.01 b | 2.27 ± 0.06 a |
D50 | 1.87 ± 0.05 c | 1.82 ± 0.00 c | 1.93 ± 0.00 c | 1.97 ± 0.00 c | 20.56 ± 0.22 b | 22.27 ± 0.39 a |
D90 | 3.34 ± 0.14 c | 3.29 ± 0.00 c | 3.65 ± 0.01 c | 3.74 ± 0.00 c | 53.38 ± 0.85 b | 62.14 ± 0.58 a |
Span | 1.32 ± 0.03 d | 1.32 ± 0.00 d | 1.45 ± 0.00 c | 1.42 ± 0.00 c | 2.52 ± 0.07 b | 2.69 ± 0.08 a |
Mode Peak1 | 2.15 ± 0.00 | 2.15 ± 0.00 | 2.15 ± 0.00 | 2.15 ± 0.00 | 2.15 ± 0.00 | 2.15 ± 0.00 |
Peak2 | — | — | — | — | 30.39 ± 0.00 | 30.39 ± 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, N.; Lin, S.; Yu, Y.; Zhang, G.; Li, L.; Zheng, D.; Liu, D. The Effects of Ethanol and Rutin on the Structure and Gel Properties of Whey Protein Isolate and Related Mechanisms. Foods 2022, 11, 3480. https://doi.org/10.3390/foods11213480
Jia N, Lin S, Yu Y, Zhang G, Li L, Zheng D, Liu D. The Effects of Ethanol and Rutin on the Structure and Gel Properties of Whey Protein Isolate and Related Mechanisms. Foods. 2022; 11(21):3480. https://doi.org/10.3390/foods11213480
Chicago/Turabian StyleJia, Na, Shiwen Lin, Yuzhen Yu, Guangyao Zhang, Lingli Li, Duoduo Zheng, and Dengyong Liu. 2022. "The Effects of Ethanol and Rutin on the Structure and Gel Properties of Whey Protein Isolate and Related Mechanisms" Foods 11, no. 21: 3480. https://doi.org/10.3390/foods11213480
APA StyleJia, N., Lin, S., Yu, Y., Zhang, G., Li, L., Zheng, D., & Liu, D. (2022). The Effects of Ethanol and Rutin on the Structure and Gel Properties of Whey Protein Isolate and Related Mechanisms. Foods, 11(21), 3480. https://doi.org/10.3390/foods11213480