Effect of Narrowband UV-B Irradiation on the Growth Performance of House Crickets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Organisms and Rearing Conditions
2.2. Rearing Box Light Transparency
2.3. LED Rearing Experiment and Narrowband UV-B Exposure
2.4. Growth and Survival Parameters
2.5. Mathematical Modeling of Cricket Growth and Survival
2.6. L Composition Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Rearing of Crickets under Different Light Regimes
3.2. Mathematical Modeling
3.3. Composition Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The future of food and agriculture–trends and challenges. Annu. Rep. 2017, 296, 1–80. [Google Scholar]
- Faostat, F. Food and Agriculture Organization of the United nations-Statistic Division. 2019. Available online: https://www.fao.org/faostat/en/#data/FS (accessed on 1 October 2022).
- Schmidt, J.H.; Merciai, S. Life cycle assessment of the global food consumption. In Proceedings of the 9th International Conference LCA of Food, San Francisco, CA, USA, 8–10 October 2014; pp. 8–10. [Google Scholar]
- D’Ambrosio, E.; De Girolamo, A.M.; Rulli, M.C. Assessing sustainability of agriculture through water footprint analysis and in-stream monitoring activities. J. Clean. Prod. 2018, 200, 454–470. [Google Scholar] [CrossRef]
- Gomiero, T. Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef] [Green Version]
- Constas, M.; d’Errico, M.; Hoddinott, J.; Pietrelli, R. Resilient Food Systems—A Proposed Analytical Strategy for Empirical Applications: Background Paper for the State of Food and Agriculture 2021. Fao Agricultural Development Economics Working Paper 21–10; Food and Agriculture Organization: Quebec City, QC, Canada, 2021. [Google Scholar]
- Moreau, T.; Adams, T.; Mullinix, K.; Fallick, A.; Condon, P. Recommended practices for climate-smart urban and peri-urban agriculture. In Sustainable Food Planning: Evolving Theory and Practice; Wageningen Academic Publishers: Wageningen, The Netherlands, 2012; pp. 295–306. [Google Scholar]
- Weindl, I.; Ost, M.; Wiedmer, P.; Schreiner, M.; Neugart, S.; Klopsch, R.; Kühnhold, H.; Kloas, W.; Henkel, I.M.; Schlüter, O. Sustainable food protein supply reconciling human and ecosystem health: A leibniz position. Glob. Food Secur. 2020, 25, 100367. [Google Scholar] [CrossRef]
- Reddy, P.P. Integrated crop–livestock farming systems. In Sustainable Intensification of Crop Production; Springer: Berlin/Heidelberg, Germany, 2016; pp. 357–370. [Google Scholar]
- Fitzner, M.; Fricke, A.; Schreiner, M.; Baldermann, S. Utilization of regional natural brines for the indoor cultivation of salicornia europaea. Sustainability 2021, 13, 12105. [Google Scholar] [CrossRef]
- Pennisi, G.; Pistillo, A.; Orsini, F.; Cellini, A.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Crepaldi, A.; Gianquinto, G.; Marcelis, L.F. Optimal light intensity for sustainable water and energy use in indoor cultivation of lettuce and basil under red and blue leds. Sci. Hortic. 2020, 272, 109508. [Google Scholar] [CrossRef]
- Schreiner, M.; Mewis, I.; Huyskens-Keil, S.; Jansen, M.; Zrenner, R.; Winkler, J.; O’brien, N.; Krumbein, A. Uv-b-induced secondary plant metabolites-potential benefits for plant and human health. Crit. Rev. Plant Sci. 2012, 31, 229–240. [Google Scholar] [CrossRef]
- Duval, B.; Shetty, K.; Thomas, W.H. Phenolic compounds and antioxidant properties in the snow alga chlamydomonas nivalis after exposure to uv light. J. Appl. Phycol. 1999, 11, 559–566. [Google Scholar] [CrossRef]
- Tendall, D.M.; Joerin, J.; Kopainsky, B.; Edwards, P.; Shreck, A.; Le, Q.B.; Krütli, P.; Grant, M.; Six, J. Food system resilience: Defining the concept. Glob. Food Secur. 2015, 6, 17–23. [Google Scholar] [CrossRef]
- Queiroz, C.; Norström, A.V.; Downing, A.; Harmáčková, Z.V.; De Coning, C.; Adams, V.; Bakarr, M.; Baedeker, T.; Chitate, A.; Gaffney, O. Investment in resilient food systems in the most vulnerable and fragile regions is critical. Nat. Food 2021, 2, 546–551. [Google Scholar] [CrossRef]
- Halloran, A.; Hanboonsong, Y.; Roos, N.; Bruun, S. Life cycle assessment of cricket farming in north-eastern thailand. J. Clean. Prod. 2017, 156, 83–94. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef] [PubMed]
- Rumpold, B.A.; Schlüter, O.K. Potential and challenges of insects as an innovative source for food and feed production. Innov. Food Sci. Emerg. Technol. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Caparros Megido, R.; Haubruge, E.; Francis, F. Small-scale production of crickets and impact on rural livelihoods. In Insects as Food and Feed: From Production to Consumption; Wageningen Academics: Wageningen, The Netherlands, 2017. [Google Scholar]
- Gillott, C. Entomology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of frozen and dried formulations from whole house crickets (Acheta domesticus) as a novel food pursuant to regulation (eu) 2015/2283. EFSA J. 2021, 19, e06779. [Google Scholar]
- Bawa, M.; Songsermpong, S.; Kaewtapee, C.; Chanput, W. Effect of diet on the growth performance, feed conversion, and nutrient content of the house cricket. J. Insect Sci. 2020, 20, 10. [Google Scholar] [CrossRef]
- Sorjonen, J.; Karhapää, M.; Holm, S.; Valtonen, A.; Roininen, H. Performance of the house cricket (Acheta domesticus) on by-product diets in small-scale production. J. Insects Food Feed 2022, 8, 289–294. [Google Scholar] [CrossRef]
- Veenenbos, M.; Oonincx, D. Carrot supplementation does not affect house cricket performance (Acheta domesticus). J. Insects Food Feed 2017, 3, 217–221. [Google Scholar] [CrossRef]
- Nino, M.C.; Reddivari, L.; Ferruzzi, M.G.; Liceaga, A.M. Targeted phenolic characterization and antioxidant bioactivity of extracts from edible Acheta domesticus. Foods 2021, 10, 2295. [Google Scholar] [CrossRef]
- Oonincx, D.; Finke, M. Nutritional value of insects and ways to manipulate their composition. J. Insects Food Feed 2021, 7, 639–659. [Google Scholar] [CrossRef]
- Helfrich-Förster, C. Light input pathways to the circadian clock of insects with an emphasis on the fruit fly drosophila melanogaster. J. Comp. Physiol. A 2020, 206, 259–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oonincx, D.; Van Keulen, P.; Finke, M.; Baines, F.; Vermeulen, M.; Bosch, G. Evidence of vitamin d synthesis in insects exposed to uvb light. Sci. Rep. 2018, 8, 10807. [Google Scholar] [PubMed]
- Fernandez-Cassi, X.; Supeanu, A.; Vaga, M.; Jansson, A.; Boqvist, S.; Vagsholm, I. The house cricket (Acheta domesticus) as a novel food: A risk profile. J. Insects Food Feed 2019, 5, 137–157. [Google Scholar] [CrossRef]
- Iba, M.; Nagao, T.; Urano, A. Effects of population density on growth, behavior and levels of biogenic amines in the cricket, gryllus bimaculatus. Zool. Sci. 1995, 12, 695–702. [Google Scholar] [CrossRef] [Green Version]
- Shimoda, M.; Honda, K.-i. Insect reactions to light and its applications to pest management. Appl. Entomol. Zool. 2013, 48, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Sequeida, Á.; Tapia, E.; Ortega, M.; Zamora, P.; Castro, Á.; Montes, C.; Zúñiga, G.E.; Prieto, H. Production of phenolic metabolites by deschampsia antarctica shoots using uv-b treatments during cultivation in a photobioreactor. Electron. J. Biotechnol. 2012, 15, 8. [Google Scholar]
- Mole, S.; Zera, A.J. Differential allocation of resources underlies the dispersal-reproduction trade-off in the wing-dimorphic cricket, gryllus rubens. Oecologia 1993, 93, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, G.; Tsantes, M.; Taoukis, P. Effect of high pressure homogenization on the production of yeast extract via autolysis and beta-glucan recovery. Innov. Food Sci. Emerg. Technol. 2020, 62, 102340. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G. A simple method for total lipid extraction and purification. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Zamani, A.; Jeihanipour, A.; Edebo, L.; Niklasson, C.; Taherzadeh, M.J. Determination of glucosamine and n-acetyl glucosamine in fungal cell walls. J. Agric. Food Chem. 2008, 56, 8314–8318. [Google Scholar] [CrossRef]
- Botella-Martínez, C.; Lucas-González, R.; Pérez-Álvarez, J.A.; Fernández-López, J.; Viuda-Martos, M. Assessment of chemical composition and antioxidant properties of defatted flours obtained from several edible insects. Food Sci. Technol. Int. 2021, 27, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Clifford, C.W.; Woodring, J. Methods for rearing the house cricket, Acheta domesticus (L.), along with baseline values for feeding rates, growth rates, development times, and blood composition. J. Appl. Entomol. 1990, 109, 1–14. [Google Scholar] [CrossRef]
- Collavo, A.; Glew, R.H.; Huang, Y.-S.; Chuang, L.-T.; Bosse, R.; Paoletti, M.G. House cricket small-scale farming. Ecol. Implic. Minilivestock Potential Insects Rodents Frogs Snails 2005, 27, 515–540. [Google Scholar]
- Oonincx, D.G.; Van Broekhoven, S.; Van Huis, A.; van Loon, J.J. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef]
wf (g/Cricket) | k (1/s) | t0 (s) | R2 | |
---|---|---|---|---|
Crickets exposed to LED light | 0.398 ± 0.007 a | 0.192 ± 0.011 a | 32.960 ± 0.342 a | 0.995 |
Crickets exposed to LED/narrowband UV-B light at 285 nm | 0.365 ± 0.005 a | 0.217 ± 0.011 a | 31.854 ± 0.273 a | 0.996 |
a | k (1/s) | SPf (%) | R2 | |
---|---|---|---|---|
Crickets exposed to LED light | 150.603 ± 19.754 a | 0.055 ± 0.009 a | 53.111 ± 3.371 b | 0.986 |
Crickets exposed to LED/narrowband UV-B light at 285 nm | 138.525 ± 16.189 a | 0.070 ± 0.007 a | 66.895 ± 1.203 a | 0.993 |
Crickets Exposed to LED Light | Crickets Exposed to LED/Narrowband UV-B Light at 285 nm | |
---|---|---|
Dry matter (%) | 95.25 ± 0.39 a | 95.69 ± 0.13 a |
Ash (%) | 4.74 ± 0.08 a | 4.69 ± 0.25 a |
Fat (%) | 22.38 ± 2.12 a | 25.08 ± 2.23 a |
Proteins (%) | 60.03 ± 10.41 a | 65.59 ± 5.38 a |
Chitin (%) | 9.33 ± 1.21 a | 10.19 ± 2.05 a |
TPC (mg GAE/100 g) | 161.22 ± 10.26 a | 175.88 ± 37.84 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Psarianos, M.; Fricke, A.; Ojha, S.; Baldermann, S.; Schreiner, M.; Schlüter, O.K. Effect of Narrowband UV-B Irradiation on the Growth Performance of House Crickets. Foods 2022, 11, 3487. https://doi.org/10.3390/foods11213487
Psarianos M, Fricke A, Ojha S, Baldermann S, Schreiner M, Schlüter OK. Effect of Narrowband UV-B Irradiation on the Growth Performance of House Crickets. Foods. 2022; 11(21):3487. https://doi.org/10.3390/foods11213487
Chicago/Turabian StylePsarianos, Marios, Anna Fricke, Shikha Ojha, Susanne Baldermann, Monika Schreiner, and Oliver K. Schlüter. 2022. "Effect of Narrowband UV-B Irradiation on the Growth Performance of House Crickets" Foods 11, no. 21: 3487. https://doi.org/10.3390/foods11213487
APA StylePsarianos, M., Fricke, A., Ojha, S., Baldermann, S., Schreiner, M., & Schlüter, O. K. (2022). Effect of Narrowband UV-B Irradiation on the Growth Performance of House Crickets. Foods, 11(21), 3487. https://doi.org/10.3390/foods11213487