The Vapor Phase of Selected Essential Oils and Their Antifungal Activity In Vitro and In Situ against Penicillium commune, a Common Contaminant of Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oils Samples
2.1.1. Fungal Strains
2.1.2. In Vitro Antifungal Analysis
2.1.3. Cyclopiazonic Acid (CPA) Analysis
2.2. In Situ Antifungal Analysis on Cheese
2.2.1. Cheese Inoculation and Essential Oil Treatment
2.2.2. Essential Oil Effect on Lactic Acid Bacterial Vitality
2.2.3. Sensory Evaluation of Treated Cheese
2.3. Statistical Evaluation
3. Results and Discussion
3.1. In Vitro Inhibitory Effect of Essential Oils on P. commune Strain Growth and MID Evaluation
3.2. Analyses of the Essential Oils
3.3. In Vitro Inhibitory Effect of Tested Essential Oils on CPA Production
3.4. In Situ Antifungal Activity of Essential Oils on the Model Food (Cheese Samples)
3.4.1. Determination of MID Values in In Situ Condition
3.4.2. Vitality of Lactic Acid Bacteria after Application of EOs in In Situ Conditions
3.5. Sensory Analysis of Cheese Samples Treated with Selected EOs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taniwaki, M.H.; Pitt, J.I.; Magan, N. Aspergillus Species and Mycotoxins: Occurrence and Importance in Major Food Commodities. Curr. Opin. Food Sci. 2018, 23, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Garnier, L.; Valence, F.; Pawtowski, A.; Auhustsinava-Galerne, L.; Frotté, N.; Baroncelli, R.; Deniel, F.; Coton, E.; Mounier, J. Diversity of Spoilage Fungi Associated with Various French Dairy Products. Int. J. Food Microbiol. 2017, 241, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Kure, C.F.; Skaar, I. The Fungal Problem in Cheese Industry. Curr. Opin. Food Sci. 2019, 29, 14–19. [Google Scholar] [CrossRef]
- Garnier, L.; Valence, F.; Mounier, J. Diversity and Control of Spoilage Fungi in Dairy Products: An Update. Microorganisms 2017, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Fliszár-Nyúl, E.; Bock, I.; Csepregi, R.; Szente, L.; Szabó, I.; Csenki, Z.; Poór, M. Testing the Protective Effects of Cyclodextrins vs. Alternariol-Induced Acute Toxicity in HeLa Cells and in Zebrafish Embryos. Environ. Toxicol. Pharmacol. 2022, 95, 103965. [Google Scholar] [CrossRef]
- Mesías, F.J.; Martín, A.; Hernández, A. Consumers’ Growing Appetite for Natural Foods: Perceptions towards the Use of Natural Preservatives in Fresh Fruit. Food Res. Int. 2021, 150, 110749. [Google Scholar] [CrossRef]
- Dey, S.; Nagababu, B.H. Applications of Food Color and Bio-Preservatives in the Food and Its Effect on the Human Health. Food Chem. Adv. 2022, 1, 100019. [Google Scholar] [CrossRef]
- Valdivieso-Ugarte, M.; Gomez-Llorente, C.; Plaza-Díaz, J.; Gil, Á. Antimicrobial, Antioxidant, and Immunomodulatory Properties of Essential Oils: A Systematic Review. Nutrients 2019, 11, 2786. [Google Scholar] [CrossRef] [Green Version]
- Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M. Antimicrobial Activity of Eugenol and Essential Oils Containing Eugenol: A Mechanistic Viewpoint. Crit. Rev. Microbiol. 2017, 43, 668–689. [Google Scholar] [CrossRef]
- Císarová, M.; Hleba, L.; Medo, J.; Tančinová, D.; Mašková, Z.; Čuboň, J.; Kováčik, A.; Foltinová, D.; Božik, M.; Klouček, P. The in Vitro and in Situ Effect of Selected Essential Oils in Vapour Phase against Bread Spoilage Toxicogenic Aspergilli. Food Control 2020, 110, 107007. [Google Scholar] [CrossRef]
- Hlebová, M.; Hleba, L.; Medo, J.; Uzsakova, V.; Kloucek, P.; Bozik, M.; Haščík, P.; Čuboň, J. Antifungal and Antitoxigenic Effects of Selected Essential Oils in Vapors on Green Coffee Beans with Impact on Consumer Acceptability. Foods 2021, 10, 2993. [Google Scholar] [CrossRef] [PubMed]
- Laird, K.; Phillips, C. Vapour Phase: A Potential Future Use for Essential Oils as Antimicrobials? Lett. Appl. Microbiol. 2012, 54, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Inouye, S. Comparative Study of Antimicrobial and Cytotoxic Effects of Selected Essential Oils by Gaseous and Solution Contacts. Int. J. Aromather. 2003, 13, 33–41. [Google Scholar] [CrossRef]
- Khorshidian, N.; Yousefi, M.; Khanniri, E.; Mortazavian, A.M. Potential Application of Essential Oils as Antimicrobial Preservatives in Cheese. Innov. Food Sci. Emerg. Technol. 2018, 45, 62–72. [Google Scholar] [CrossRef]
- FDA CFR. Code of Federal Regulations Title 21—Part 182 Substances Generally Recognized as Safe (GRAS). Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.20 (accessed on 10 February 2022).
- Saraiva, C.; Silva, A.C.; García-Díez, J.; Cenci-Goga, B.; Grispoldi, L.; Silva, A.F.; Almeida, J.M. Antimicrobial Activity of Myrtus Communis l. And Rosmarinus Officinalis l. Essential Oils against Listeria Monocytogenes in Cheese. Foods 2021, 10, 1106. [Google Scholar] [CrossRef]
- Zantar, S.; Yedri, F.; Mrabet, R.; Laglaoui, A.; Bakkali, M.; Zerrouk, M.H. Effect of Thymus Vulgaris and Origanum Compactum Essential Oils on the Shelf Life of Fresh Goat Cheese. J. Essent. Oil Res. 2014, 26, 76–84. [Google Scholar] [CrossRef]
- Fernandes, R.V.B.; Botrel, D.A.; Monteiro, P.S.; Borges, S.V.; Souza, A.U.; Mendes, L.E.S. Microencapsulated Oregano Essential Oil in Grated Parmesan Cheese Conservation. Int. Food Res. J. 2018, 25, 661–669. [Google Scholar]
- Lazaridou, A.; Biliaderis, C.G. Edible Films and Coatings with Pectin. In Pectin: Technological and Physiological Properties; Springer Nature: Gewerbesrasse, Switzerland, 2020. [Google Scholar] [CrossRef]
- Císarová, M.; Tančinová, D.; Medo, J. Antifungal Activity of Lemon, Eucalyptus, Thyme, Oregano, Sage and Lavender Essential Oils against Aspergillus Niger and Aspergillus Tubingensis Isolated from Grapes. Potravinarstvo 2016, 10, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Císarová, M.; Tančinová, D.; Medo, J.; Kačániová, M. The in Vitro Effect of Selected Essential Oils on the Growth and Mycotoxin Production of Aspergillus Species. J. Environ. Sci. Health B 2016, 51, 668–674. [Google Scholar] [CrossRef]
- Císarová, M.; Tančinová, D.; Brodová, M. The inhibitory effect of essential oils on the growth of genus penicillium isolated from peanuts by contact vapor. J. Microbiol. Biotechnol. Food Sci. 2015, 4, 6–11. [Google Scholar] [CrossRef]
- Císarová, M.; Tančinová, D.; Brodová, M. Antifungal activity of volatile components generated by essential oils against the genus penicillium isolated from bakery products. J. Microbiol. Biotechnol. Food Sci. 2015, 4, 1–5. [Google Scholar] [CrossRef]
- Božik, M.; Císarová, M.; Tančinová, D.; Kouřimská, L.; Hleba, L.; Klouček, P. Selected Essential Oil Vapours Inhibit Growth of Aspergillus Spp. in Oats with Improved Consumer Acceptability. Ind. Crops Prod. 2017, 98, 146–152. [Google Scholar] [CrossRef]
- ISO 4120:2004. Sensory Analysis-Methodology-Triangle Test; International Organization for Standardization: Geneva, Switzerland, 2004. [Google Scholar]
- Team, R.C. R: A Language and Environment for Statistical Computing v. 3.6.1.; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Hayaloglu, A.A.; Kirbag, S. Microbial Quality and Presence of Moulds in Kuflu Cheese. Int. J. Food Microbiol. 2007, 115, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Min, S.; Harris, L.J.; Krochta, J.M. Antimicrobial Effects of Lactoferrin, Lysozyme, and the Lactoperoxidase System and Edible Whey Protein Films Incorporating the Lactoperoxidase System against Salmonella Enterica and Escherichia Coli O157:H7. J. Food Sci. 2005, 70, m332–m338. [Google Scholar] [CrossRef]
- Hlebová, M.; Hleba, L.; Medo, J.; Kováčik, A.; Čuboň, J.; Ivana, C.; Uzsáková, V.; Božik, M.; Klouček, P. Antifungal and Synergistic Activities of Some Selected Essential Oils on the Growth of Significant Indoor Fungi of the Genus Aspergillus. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng. 2021, 56, 1335–1346. [Google Scholar] [CrossRef]
- Foltinova, D.; Tancinova, D.; Císarova, M. Inhibitory effect of essential oils from some lauraceae species on the growth of penicilium commune. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 385–389. [Google Scholar] [CrossRef]
- Kedia, A.; Prakash, B.; Mishra, P.K.; Dubey, N.K. Antifungal and Antiaflatoxigenic Properties of Cuminum Cyminum (L.) Seed Essential Oil and Its Efficacy as a Preservative in Stored Commodities. Int. J. Food Microbiol. 2014, 168–169, 1–7. [Google Scholar] [CrossRef]
- Zhaveh, S.; Mohsenifar, A.; Beiki, M.; Khalili, S.T.; Abdollahi, A.; Rahmani-Cherati, T.; Tabatabaei, M. Encapsulation of Cuminum Cyminum Essential Oils in Chitosan-Caffeic Acid Nanogel with Enhanced Antimicrobial Activity against Aspergillus Flavus. Ind. Crops Prod. 2015, 69, 251–256. [Google Scholar] [CrossRef]
- Felšöciová, S.; Vukovic, N.; JeAowski, P.; Kačániová, M. Antifungal Activity of Selected Volatile Essential Oils against Penicillium Sp. Open Life Sci. 2020, 15, 511–521. [Google Scholar] [CrossRef]
- Kaskatepe, B.; Erdem, S.A.; Ozturk, S.; Oz, Z.S.; Subasi, E.; Koyuncu, M.; Vlainić, J.; Kosalec, I. Antifungal and Anti-Virulent Activity of Origanum Majorana L. Essential Oil on Candida Albicans and In Vivo Toxicity in the Galleria Mellonella Larval Model. Molecules 2022, 27, 663. [Google Scholar] [CrossRef]
- Droby, S.; Eick, A.; Macarisin, D.; Cohen, L.; Rafael, G.; Stange, R.; McColum, G.; Dudai, N.; Nasser, A.; Wisniewski, M.; et al. Role of Citrus Volatiles in Host Recognition, Germination and Growth of Penicillium Digitatum and Penicillium Italicum. Postharvest. Biol. Technol. 2008, 49, 386–396. [Google Scholar] [CrossRef]
- Trabelsi, D.; Hamdane, A.M.; ben Said, M.; Abdrrabba, M. Chemical Composition and Antifungal Activity of Essential Oils from Flowers, Leaves and Peels of Tunisian Citrus Aurantium Against Penicillium Digitatum and Penicillium Italicum. J. Essent. Oil-Bear. Plants 2016, 19, 1660–1674. [Google Scholar] [CrossRef]
- Jakowienko, P.; Wójcik-Stopczyńska, B. Influence of Essential Oils from Different Varieties of Peppermint (Mentha x Piperita L.) on Growth of Some Filamentous Fungi. Herba Polonica 2010, 56, 4. [Google Scholar]
- Fazal, H.; Akram, M.; Ahmad, N.; Qaisar, M.; Kanwal, F.; Rehman, G.; Ullah, I. Nutritionally Rich Biochemical Profile in Essential Oil of Various Mentha Species and Their Antimicrobial Activities. Protoplasma 2022. [Google Scholar] [CrossRef] [PubMed]
- Davari, M.; Ezazi, R. Chemical Composition and Antifungal Activity of the Essential Oil of Zhumeria Majdae, Heracleum Persicum and Eucalyptus sp. against Some Important Phytopathogenic Fungi. J. Mycol. Med. 2017, 27, 463–468. [Google Scholar] [CrossRef]
- Schroder, T.; Gaskin, S.; Ross, K.; Whiley, H. Antifungal Activity of Essential Oils against Fungi Isolated from Air. Int. J. Occup. Environ. Health 2017, 23, 181–186. [Google Scholar] [CrossRef]
- Umereweneza, D.; Muhizi, T.; Kamizikunze, T.; Nkurunziza, J.P. Chemical Composition and Antifungal Activity of Essential Oils Extracted from Leaves of Eucalyptus Melliodora and Eucalyptus Anceps Grown in Rwanda. J. Essent. Oil-Bear. Plants 2019, 22, 151–158. [Google Scholar] [CrossRef]
- Suhem, K.; Matan, N.; Matan, N.; Danworaphong, S.; Aewsiri, T. Improvement of the Antifungal Activity of Litsea Cubeba Vapor by Using a Helium-Neon (He-Ne) Laser against Aspergillus Flavus on Brown Rice Snack Bars. Int. J. Food Microbiol. 2015, 215, 157–160. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Zhang, R.; Yao, W. Major Components in Lilac and Litsea Cubeba Essential Oils Kill Penicillium Roqueforti through Mitochondrial Apoptosis Pathway. Ind. Crops Prod. 2020, 149, 112349. [Google Scholar] [CrossRef]
- Yazdani, D.; Rezazadeh, S.; Amin, G.; Zainal Abidin, M.A.; Shahnazi, S.; Jamalifar, H. Antifungal Activity of Dried Extracts of Anise (Pimpinella anisum L.) and Star Anise (Illicium Verum Hook, f.) against Dermatophyte and Saprophyte Fungi. J. Med. Plants 2009, 8, 24–29. [Google Scholar]
- Romagnoli, C.; Andreotti, E.; Maietti, S.; Mahendra, R.; Mares, D. Antifungal Activity of Essential Oil from Fruits of Indian Cuminum Cyminum. Pharm. Biol. 2010, 48, 834–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitoratos, A.; Bilalis, D.; Karkanis, A.; Efthimiadou, A. Antifungal Activity of Plant Essential Oils Against Botrytis Cinerea, Penicillium Italicum and Penicillium Digitatum. Not. Bot. Horti. Agrobot. Cluj Napoca 2013, 41, 86–92. [Google Scholar] [CrossRef]
- Semeniuc, C.A.; Socaciu, M.I.; Socaci, S.A.; Muresan, V.; Fogarasi, M.; Rotar, A.M. Chemometric Comparison and Classification of Some Essential Oils Extracted from Plants Belonging to Apiaceae and Lamiaceae Families Based on Their Chemical Composition and Biological Activities. Molecules 2018, 23, 2261. [Google Scholar] [CrossRef] [Green Version]
- da Silva Bomfim, N.; Nakassugi, L.P.; Faggion Pinheiro Oliveira, J.; Kohiyama, C.Y.; Mossini, S.A.G.; Grespan, R.; Nerilo, S.B.; Mallmann, C.A.; Alves Abreu Filho, B.; Machinski, M. Antifungal Activity and Inhibition of Fumonisin Production by Rosmarinus Officinalis L. Essential Oil in Fusarium Verticillioides (Sacc.) Nirenberg. Food Chem. 2015, 166, 330–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, X.; Shao, Y.L.; Tang, Y.J.; Zhou, W.W. Antifungal Activity of Essential Oil Compounds (Geraniol and Citral) and Inhibitory Mechanisms on Grain Pathogens (Aspergillus Flavus and Aspergillus Ochraceus). Molecules 2018, 23, 2108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira Pereira, F.; Mendes, J.M.; Lima, I.O.; de Lira Mota, K.S.; de Oliveira, W.A.; de Oliveira Lima, E. Antifungal Activity of Geraniol and Citronellol, Two Monoterpenes Alcohols, against Trichophyton Rubrum Involves Inhibition of Ergosterol Biosynthesis. Pharm. Biol. 2015, 53, 228–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moleyar, V.; Narasimham, P. Antifungal Activity of Some Essential Oil Components. Food Microbiol. 1986, 3, 331–336. [Google Scholar] [CrossRef]
- Mulla, M.; Ahmed, J.; Al-Attar, H.; Castro-Aguirre, E.; Arfat, Y.A.; Auras, R. Antimicrobial Efficacy of Clove Essential Oil Infused into Chemically Modified LLDPE Film for Chicken Meat Packaging. Food Control 2017, 73, 663–671. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Zhao, L.; Huo, S.; Liu, S.; Zhang, H.; Tani, A.; Lv, H. The Antifungal Activity of Cinnamon-Litsea Combined Essential Oil against Dominant Fungal Strains of Moldy Peanut Kernels. Foods 2022, 11, 1586. [Google Scholar] [CrossRef]
- Embaby, E.M.; Awni, N.M.; Abdel-galil, M.M.; El-gendy, H.I. Distribution of Fungi and Mycotoxins Associated Some Foods. Middle East J. Appl. Sci. 2015, 5, 734–741. [Google Scholar]
- Izzo, L.; Mikušová, P.; Lombardi, S.; Sulyok, M.; Ritieni, A. Analysis of Mycotoxin and Secondary Metabolites in Commercial and Traditional Slovak Cheese Samples. Toxins 2022, 14, 134. [Google Scholar] [CrossRef] [PubMed]
- Foltinová, D.; Tancinová, D.; Císarová, M. Influence of Essential Oils on the Growth of Aspergillus Flavus. Potravin. Slovak J. Food Sci. 2017, 11, 322–331. [Google Scholar] [CrossRef] [Green Version]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; Feo, V. de Essential Oils and Antifungal Activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Aly, S.E.; Sabry, B.A.; Shaheen, M.S.; Hathout, A.S. Assessment of Antimycotoxigenic and Antioxidant Activity of Star Anise (Illicium Verum) In Vitro. J. Saudi Soc. Agric. Sci. 2016, 15, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Prakash, B.; Shukla, R.; Singh, P.; Kumar, A.; Mishra, P.K.; Dubey, N.K. Efficacy of Chemically Characterized Piper Betle L. Essential Oil against Fungal and Aflatoxin Contamination of Some Edible Commodities and Its Antioxidant Activity. Int. J. Food Microbiol. 2010, 142, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Razzaghi-Abyaneh, M.; Shams-Ghahfarokhi, M.; Rezaee, M.B.; Jaimand, K.; Alinezhad, S.; Saberi, R.; Yoshinari, T. Chemical Composition and Antiaflatoxigenic Activity of Carum Carvi L., Thymus Vulgaris and Citrus Aurantifolia Essential Oils. Food Control 2009, 20, 1018–1024. [Google Scholar] [CrossRef]
- Massoud, M.A.; Saad, A.S.A.; Soliman, E.A. Antifungal Activity of Some Essential Oils Applied as Fumigants against Two Stored Grains Fungi. J. Adv. Agric. Res. (Fac. Ag. Saba Basha) 2012, 17, 296–306. [Google Scholar]
- Nedorostova, L.; Kloucek, P.; Kokoska, L.; Stolcova, M.; Pulkrabek, J. Antimicrobial Properties of Selected Essential Oils in Vapour Phase against Foodborne Bacteria. Food Control 2009, 20, 157–160. [Google Scholar] [CrossRef]
- Gutierrez, J.; Barry-Ryan, C.; Bourke, P. Antimicrobial Activity of Plant Essential Oils Using Food Model Media: Efficacy, Synergistic Potential and Interactions with Food Components. Food Microbiol. 2009, 26, 142–150. [Google Scholar] [CrossRef]
- Mohamed, S.H.S.; Zaky, W.M.; Kassem, J.M.; Abbas, H.M.; Salem, M.M.E.; Said-Al Ahl, H.A.H. Impact of Antimicrobial Properties of Some Essential Oils on Cheese Yoghurt Quality. World Appl. Sci. J. 2013, 27, 497–507. [Google Scholar] [CrossRef]
- Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—A Review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Marcial, G.E.; Gerez, C.L.; de Kairuz, M.N.; Araoz, V.C.; Schuff, C.; de Valdez, G.F. Influence of Oregano Essential Oil on Traditional Argentinean Cheese Elaboration: Effect on Lactic Starter Cultures. Rev. Argent. Microbiol. 2016, 48, 229–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghi, E.; Akhondzadeh Basti, A.; Noori, N.; Khanjari, A.; Partovi, R. Effect of Cuminum Cyminum l. Essential Oil and Lactobacillus Acidophilus (a Probiotic) on Staphylococcus Aureus during the Manufacture, Ripening and Storage of White Brined Cheese. J. Food Process. Preserv. 2013, 37, 449–455. [Google Scholar] [CrossRef]
- Conte, A.; Sinigaglia, M.; del Nobile, M.A. Use of Lemon Extract to Inhibit the Growth of Malolactic Bacteria. J. Food Prot. 2007, 70, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Cheong, E.Y.L.; Sandhu, A.; Jayabalan, J.; Kieu Le, T.T.; Nhiep, N.T.; My Ho, H.T.; Zwielehner, J.; Bansal, N.; Turner, M.S. Isolation of Lactic Acid Bacteria with Antifungal Activity against the Common Cheese Spoilage Mould Penicillium Commune and Their Potential as Biopreservatives in Cheese. Food Control 2014, 46, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, R. The Trade in Commercially Important Cymbopogon Oils. In Essential Oil-Bearing Grasses: The Genus Cymbopogon; CRC-Press: Boca Raton, CA, USA, 2009; pp. 151–166. [Google Scholar]
- EL Kholy, W.; Aamer, R.A.M. Effect of Some Essential Oils on the Quality of UF-Soft Cheese During Storage. Alexandria J. Food Sci. Technol. 2017, 14, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Olmedo, R.H.; Nepote, V.; Grosso, N.R. Preservation of Sensory and Chemical Properties in Flavoured Cheese Prepared with Cream Cheese Base Using Oregano and Rosemary Essential Oils. LWT 2013, 53, 409–417. [Google Scholar] [CrossRef]
- Pettersen, M.K.; Eie, T.; Nilsson, A. Oxidative Stability of Cream Cheese Stored in Thermoformed Trays as Affected by Packaging Material, Drawing Depth and Light. Int. Dairy J. 2005, 15, 355–362. [Google Scholar] [CrossRef]
Tested Essential Oils | P. commune (KMi–183) * | P. commune KMi–402 | ||||||
---|---|---|---|---|---|---|---|---|
Days of Cultivation | ||||||||
14 Days | 35 Days | MGI (%) | 14 Days | 35 Days | MGI (%) | |||
Mean Colony Diameter in cm ± SD | 14th Days | 35th Days | Mean Colony Diameter in cm ± SD | 14th Days | 35th Days | |||
C/T/RT/L | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 100.00 | 100.00 | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 100.00 | 100.00 |
Eucalyptus | 4.16 ± 1.07 ef | 1.65 ± 0.05 de | 2.80 | 16.08 | 3.40 ± 0.13 h | 0.95 ± 0.51 cd | 20.39 | 36.34 |
Niaouli | 2.71 ± 1.06 cde | 0.60 ± 0.10 bc | 33.79 | 69.48 | 1.63 ± 0.16 cd | 0.53 ± 0.04 b | 61.83 | 64.57 |
Fennel | 2.58 ± 0.21 cd | 0.38 ± 0.20 b | 37.02 | 80.54 | 1.79 ± 0.11 de | 0.00 ± 0.00 a | 57.97 | 100.00 |
Anise | 3.06 ± 1.03 cdef | 0.00 ± 0.00 a | 25.17 | 100.00 | 1.22 ± 0.06 b | 0.00 ± 0.00 a | 71.37 | 100.00 |
Cumin | 0.51 ± 0.78 ab | 0.00 ± 0.00 a | 87.46 | 100.00 | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 100.00 | 100.00 |
Basil | 2.73 ± 1.05 cde | 0.82 ± 0.12 c | 33.36 | 58.29 | 2.16 ± 0.16 f | 0.42 ± 0.13 b | 49.27 | 71.92 |
Rosemary | 3.44 ± 1.56 def | 1.34 ± 0.45 d | 16.07 | 32.10 | 1.93 ± 0.18 e | 0.56 ± 0.31 bc | 54.83 | 62.57 |
Sage | 1.77 ± 0.83 bc | 0.64 ± 0.03 bc | 56.75 | 67.70 | 1.57 ± 0.09 c | 0.00 ± 0.00 a | 63.18 | 100.00 |
BM | 3.39 ± 0.02 def | 1.87 ± 0.31 e | 17.30 | 4.51 | 2.83 ± 0.09 g | 1.32 ± 0.45 de | 33.67 | 11.77 |
Marjoram | 0.75 ± 0.27 ab | 0.00 ± 0.00 a | 81.71 | 100.00 | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 100.00 | 100.00 |
Control | 4.31 ± 0.71 f | 1.97 ± 0.05 f | - | - | 4.26 ± 0.03 ch | 1.50 ± 0.04 e | - | - |
Tested Essential Oils | MIDs (µL/L of Air) of EOs | |
---|---|---|
Penicillium commune (KMi–183) * | Penicillium commune (KMi–402) | |
Clove | 31.25 | <15.625 |
Thyme | 62.5 | 15.625 |
Red thyme | 125 | 62.5 |
Litsea | 15.625 | <15.625 |
Cumin | 250 | 62.5 |
Marjoram | 250 | 125 |
RI b | Component | C c | T | RT | L | E | N | F | A | Cu. | B | R | S | BM | M | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
932 | α-Thujene | 6.50 | 0.40 | |||||||||||||
938 | a | α-Pinene | 0.15 | 2.50 | 1.00 | 1.56 | 2.70 | 9.80 | 2.11 | 0.70 | 2.40 | 0.26 | 8.57 | 5.10 | 1.50 | |
953 | a | Camphene | 1.52 | 1.21 | 0.10 | 4.08 | 6.09 | |||||||||
980 | a | β-Pinene | 0.12 | 1.50 | 1.12 | 0.40 | 2.30 | 0.23 | 0.30 | 8.19 | 3.00 | 5.40 | ||||
993 | β-Myrcene | 1.36 | 1.00 | |||||||||||||
1006 | a | α-Phellandrene | 0.50 | |||||||||||||
1019 | a | α-Terpinene | 0.80 | 0.10 | 8.00 | |||||||||||
1029 | a | p-Cymene | 39.10 | 16.51 | 6.30 | 1.99 | 22.70 | 3.00 | 1.80 | 0.30 | 4.60 | |||||
1031 | a | D-Limonene | 0.86 | 13.66 | 6.90 | 6.80 | 5.11 | 9.70 | 0.25 | 2.60 | 1.98 | 1.13 | 3.40 | |||
1032 | β-Phellandrene | 2.60 | ||||||||||||||
1034 | a | Eucalyptol | 0.30 | 1.47 | 1.30 | 3.60 | 79.30 | 54.30 | 0.10 | 3.98 | 42.90 | 11.00 | 0.50 | |||
1062 | a | γ-Terpinene | 4.60 | 2.71 | 0.10 | 1.00 | 0.77 | 1.10 | 13.10 | |||||||
1071 | 5-Isopropyl-2-methylbicyclo[3.1.0]hexan-2-ol | 4.60 | ||||||||||||||
1090 | a | Terpinolene | 0.12 | 4.52 | 2.22 | 0.55 | 3.60 | |||||||||
1101 | a | Linalool | 5.10 | 5.20 | 1.13 | 0.86 | 0.50 | 1.53 | 0.53 | 0.39 | 37.20 | 14.20 | ||||
1108 | α-Thujone | 23.00 | ||||||||||||||
1119 | β-Thujone | 6.46 | ||||||||||||||
1122 | β-Terpinene | 1.76 | ||||||||||||||
1147 | a | (-)-Isopulegol | 1.70 | 0.11 | 0.33 | 13.10 | 20.11 | 1.00 | ||||||||
1158 | a | (+/−)-citronellal | 0.77 | |||||||||||||
1168 | a | Borneol | 1.85 | 1.66 | 0.89 | 3.80 | 4.20 | |||||||||
1179 | a | 4-Terpineol | 0.46 | 0.50 | ||||||||||||
1181 | a | (+/−)-Menthol | 1.60 | 0.50 | 2.80 | 30.70 | ||||||||||
1186 | cis-Verbenol | 1.00 | ||||||||||||||
1192 | α-Terpineol | 1.10 | 9.21 | 0.20 | 2.27 | 1.30 | 3.60 | |||||||||
1199 | 4-Allylanisole | 4.40 | 2.75 | 0.30 | ||||||||||||
1202 | a | Estragol | 88.60 | |||||||||||||
1238 | Thymol methyl ether | 0.50 | ||||||||||||||
1245 | a | β-Citral | 32.70 | |||||||||||||
1247 | a | (-)-carvone | 1.87 | 55.06 | ||||||||||||
1259 | a | Geraniol | 0.96 | 1.15 | 1.45 | 42.10 | 2.10 | |||||||||
1275 | α-Citral | 40.00 | ||||||||||||||
1287 | Bornyl acetate | 0.16 | 1.31 | 3.37 | ||||||||||||
1289 | Anethole | 79.92 | 93.30 | |||||||||||||
1296 | a | Thymol | 43.10 | 51.51 | ||||||||||||
1306 | a | Carvacrol | 0.70 | 3.00 | 0.66 | |||||||||||
1352 | α-Terpineol acetate | 1.00 | ||||||||||||||
1360 | a | Eugenol | 82.30 | |||||||||||||
1368 | Neryl acetate | 2.30 | ||||||||||||||
1386 | a | Geranyl acetate | 1.26 | 0.30 | 7.20 | |||||||||||
1403 | (+)-Longifolene | 0.22 | ||||||||||||||
1407 | Eugenol methyl ether | 0.30 | ||||||||||||||
1420 | a | Caryophyllene | 6.00 | 0.90 | 5.10 | 1.40 | 0.14 | 3.60 | 7.38 | 2.35 | 2.40 | |||||
1435 | α-Bergamotene | 2.28 | ||||||||||||||
1452 | a | α-Caryophyllene | 2.60 | 0.33 | 4.30 | |||||||||||
1478 | Germacrene D | 0.73 | ||||||||||||||
1481 | α-Curcumene | 0.14 | ||||||||||||||
1496 | Elixene | 0.80 | ||||||||||||||
1510 | γ-Cadinene | 0.45 | ||||||||||||||
1531 | Eugenol acetate | 7.85 | ||||||||||||||
1567 | .±-trans-Nerolidol | 2.30 | ||||||||||||||
1574 | a | Caryophyllene oxide | 0.19 | 0.50 | 0.30 | |||||||||||
1592 | Viridiflorol | 10.50 | ||||||||||||||
total | 99.20 | 99.87 | 99.56 | 99.99 | 99.89 | 99.60 | 99.11 | 99.00 | 99.85 | 99.65 | 99.05 | 99.73 | 99.18 | 99.00 |
Essential Oils | Tested Temp./Cult. Days | Penicillium commune (KMi–183) * | Penicillium commune (KMi–402) | ||
---|---|---|---|---|---|
Production of CPA (%) | Inhibition of CPA (%) | Production of CPA (%) | Inhibition of CPA (%) | ||
Eucalyptus | 5 ± 1 °C/35 d | 0 | 100 | NA | NA |
25 ± 1 °C/14 d | 0 | 100 | 0 | 100 | |
Niaouli | 5 ± 1 °C/35 d | NA | NA | NA | NA |
25 ± 1 °C/14 d | 0 | 100 | 0 | 100 | |
Fennel | 5 ± 1 °C/35 d | NA | NA | NA | NA |
25 ± 1 °C/14 d | 66.67 | 33.33 | 50.00 | 50.00 | |
Anise | 5 ± 1 °C/35 d | NA | NA | NA | NA |
25 ± 1 °C/14 d | 50.00 | 50.00 | 50.00 | 50.00 | |
Basil | 5 ± 1 °C/35 d | NA | NA | NA | NA |
25 ± 1 °C/14 d | 0 | 100 | 0 | 100 | |
Rosemary | 5 ± 1 °C/35 d | 16.67 | 83.33 | NA | NA |
25 ± 1 °C/14 d | 33.33 | 66.67 | 33.33 | 66.67 | |
Sage | 5 ± 1 °C/35 d | NA | NA | NA | NA |
25 ± 1 °C/14 d | 0 | 100 | 0 | 100 | |
Bergamot mint | 5 ± 1 °C/35 d | 33.33 | 66.67 | 16.67 | 83.33 |
25 ± 1 °C/14 d | 16.67 | 83.33 | 0 | 100 | |
Control | 5 ± 1 °C/35 d | 100 | 0 | 100 | 0 |
25 ± 1 °C/14 d | 100 | 0 | 100 | 0 |
Essential Oils | MID (μL/L of Air) | Tested Strains | |||
---|---|---|---|---|---|
Penicillium commune (KMi–183) * | Penicillium commune (KMi–402) | ||||
14th Days | 35th Days | 14th Days | 35th Days | ||
Clove | MID50 | 56.84 | 74.56 | 54.30 | 66.01 |
MID90 | 98.91 | 86.06 | 94.63 | 76.06 | |
Thyme | MID50 | 103.27 | 133.95 | 72.45 | 120.23 |
MID90 | 140.36 | 151.75 | 107.72 | 134.75 | |
Red thyme | MID50 | 125.00 | 142.86 | 74.71 | 88.51 |
MID90 | 140.64 | 162.38 | 107.44 | 126.17 | |
Litsea | MID50 | 35.26 | 54.20 | 27.68 | 45.74 |
MID90 | 43.49 | 79.37 | 38.17 | 74.71 | |
Cumin | MID50 | 237.10 | 261.15 | 185.76 | 250.00 |
MID90 | 371.25 | 295.12 | 306.53 | 281.26 | |
Marjoram | MID50 | 292.36 | >250 | 285.50 | >250 |
MID90 | 332.79 | >250 | 324.21 | >250 |
Tested EOs | Tested Concentrations (μL/L) | log CFU/g | |
---|---|---|---|
Streptococcus spp. | |||
14 Days | 35 Days | ||
Clove | 250 | 8.40 | 9.26 |
125 | 8.30 | 9.23 | |
62.5 | 8.11 | 9.18 | |
Thyme | 250 | 8.42 | 9.69 |
125 | 8.38 | 9.46 | |
62.5 | 8.30 | 9.27 | |
Red thyme | 250 | 8.44 | 9.30 |
125 | 8.37 | 8.46 | |
62.5 | 8.34 | 8.30 | |
Litsea | 250 | 8.41 | 9.26 |
125 | 8.36 | 9.20 | |
62.5 | 8.35 | 9.00 | |
Control * | 8.16 | 8.46 |
Essential Oils | Conc. µL/L | 14th Day | 35th Day | ||
---|---|---|---|---|---|
Correct Replies (%) | p-Value | Correct Replies (%) | p-Value | ||
Clove | 62.5 | 9 (20.00%) ns | 0.058 | 9 (20.00%) ns | 0.058 |
125 | 10 (22.22%) ns | 0.153 | 12 (26.66%) ns | 0.429 | |
250 | 33 (73.33%) | 0.001 | 28 (62.22%) | 0.001 | |
Thyme | 62.5 | 29 (64.44%) | 0.001 | 15 (33.33%) ns | 1 |
125 | 30 (71.11%) | 0.001 | 12 (26.66%) ns | 0.429 | |
250 | 33 (73.33%) | 0.001 | 30 (71.11%) | 0.001 | |
Red thyme | 62.5 | 24 (53.34%) | 0.001 | 12 (26.66%) ns | 0.429 |
125 | 30 (66.67%) | 0.001 | 15 (33.33%) ns | 1 | |
250 | 33 (73.33%) | 0.001 | 29 (64.44%) | 0.001 | |
Litsea | 62.5 | 11 (24.45%) ns | 0.268 | 12 (26.66%) ns | 0.429 |
125 | 14 (31.12%) ns | 0.874 | 13 (28.88%) ns | 0.635 | |
250 | 27 (60.00%) | 0.001 | 33 (73.33%) | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hlebová, M.; Foltinová, D.; Vešelényiová, D.; Medo, J.; Šramková, Z.; Tančinová, D.; Mrkvová, M.; Hleba, L. The Vapor Phase of Selected Essential Oils and Their Antifungal Activity In Vitro and In Situ against Penicillium commune, a Common Contaminant of Cheese. Foods 2022, 11, 3517. https://doi.org/10.3390/foods11213517
Hlebová M, Foltinová D, Vešelényiová D, Medo J, Šramková Z, Tančinová D, Mrkvová M, Hleba L. The Vapor Phase of Selected Essential Oils and Their Antifungal Activity In Vitro and In Situ against Penicillium commune, a Common Contaminant of Cheese. Foods. 2022; 11(21):3517. https://doi.org/10.3390/foods11213517
Chicago/Turabian StyleHlebová, Miroslava, Denisa Foltinová, Dominika Vešelényiová, Juraj Medo, Zuzana Šramková, Dana Tančinová, Michaela Mrkvová, and Lukáš Hleba. 2022. "The Vapor Phase of Selected Essential Oils and Their Antifungal Activity In Vitro and In Situ against Penicillium commune, a Common Contaminant of Cheese" Foods 11, no. 21: 3517. https://doi.org/10.3390/foods11213517
APA StyleHlebová, M., Foltinová, D., Vešelényiová, D., Medo, J., Šramková, Z., Tančinová, D., Mrkvová, M., & Hleba, L. (2022). The Vapor Phase of Selected Essential Oils and Their Antifungal Activity In Vitro and In Situ against Penicillium commune, a Common Contaminant of Cheese. Foods, 11(21), 3517. https://doi.org/10.3390/foods11213517