Development and Application of Dual-Sensors Label in Combination with Active Chitosan-Based Coating Incorporating Yarrow Essential Oil for Freshness Monitoring and Shelf-Life Extension of Chicken Fillet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Fabrication of Dual-Sensors Label by Adsorption Method
2.3. Essential Oil Extraction
2.4. Gas Chromatography (GC)–Mass Spectrometer Analysis
2.5. Preparation of Chicken Breast Fillets, Application of Active Coatings and Packaging
2.6. Measurement of TBARs, TVB-N, and pH
2.7. Microbiological Analysis
2.8. Determination of Color Parameters
2.9. Measurement of the Response of Dual-Sensors Label
2.10. Statistical Analysis
3. Results
3.1. Gas Chromatography-Mass Spectrometry Analysis
3.2. Effect of Coating Type and Storage Time on pH, Thiobarbituric Acid Reactive Substances (TBARs), Total Volatile Basic Nitrogen (TVB-N) Values of Chicken Breast Fillet
3.2.1. pH
3.2.2. TBARs
3.2.3. TVB-N
3.3. Microbiological Analysis of Chicken Samples
3.4. Chicken Meat Color
3.5. Response of Dual-Sensors in Relation to Different Stages of Chicken Meat Freshness
3.6. Response of Dual-Sensors to Variation of pH, TVB-N and TBARs
3.7. Response of Dual-Sensors to Total Aerobic Psycrotrophic Bacteria (APB) Enumeration
3.8. Response of Dual-Sensors to Visual Color of Chicken Meat
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Majdinasab, M.; Niakousari, M.; Shaghaghian, S.; Dehghani, H. Antimicrobial and Antioxidant Coating Based on Basil Seed Gum Incorporated with Shirazi Thyme and Summer Savory Essential Oils Emulsions for Shelf-Life Extension of Refrigerated Chicken Fillets. Food Hydrocoll. 2020, 108, 106011. [Google Scholar] [CrossRef]
- Panahirad, S.; Dadpour, M.; Peighambardoust, S.H.; Soltanzadeh, M.; Gullón, B.; Alirezalu, K.; Lorenzo, J.M. Applications of Carboxymethyl Cellulose- and Pectin-Based Active Edible Coatings in Preservation of Fruits and Vegetables: A Review. Trends Food Sci. Technol. 2021, 110, 663–673. [Google Scholar] [CrossRef]
- Nottagh, S.; Hesari, J.; Peighambardoust, S.H.; Rezaei-Mokarram, R.; Jafarizadeh-Malmiri, H. Effectiveness of Edible Coating Based on Chitosan and Natamycin on Biological, Physico-Chemical and Organoleptic Attributes of Iranian Ultra-Filtrated Cheese. Biologia 2020, 75, 605–611. [Google Scholar] [CrossRef]
- Soltanzadeh, M.; Peighambardoust, S.H.; Ghanbarzadeh, B.; Mohammadi, M.; Lorenzo, J.M. Chitosan Nanoparticles as a Promising Nanomaterial for Encapsulation of Pomegranate (Punica granatum L.) Peel Extract as a Natural Source of Antioxidants. Nanomaterials 2021, 11, 1439. [Google Scholar] [CrossRef] [PubMed]
- Karami, Z.; Peighambardoust, S.H.; Hesari, J.; Akbari-Adergani, B.; Andreu, D. Identification and Synthesis of Multifunctional Peptides from Wheat Germ Hydrolysate Fractions Obtained by Proteinase K Digestion. J. Food Biochem. 2019, 43, e12800. [Google Scholar] [CrossRef] [PubMed]
- Panda, P.K.; Sadeghi, K.; Seo, J. Recent Advances in Poly (Vinyl Alcohol)/Natural Polymer Based Films for Food Packaging Applications: A Review. Food Packag. Shelf Life 2022, 33, 100904. [Google Scholar] [CrossRef]
- Soltanzadeh, M.; Peighambardoust, S.H.; Ghanbarzadeh, B.; Mohammadi, M.; Lorenzo, J.M. Chitosan Nanoparticles Encapsulating Lemongrass (Cymbopogon Commutatus) Essential Oil: Physicochemical, Structural, Antimicrobial and in-Vitro Release Properties. Int. J. Biol. Macromol. 2021, 192, 1084–1097. [Google Scholar] [CrossRef]
- Aghamirzaei, M.; Peighambardoust, S.H.; Azadmard-Damirchi, S.; Majzoobi, M. Effects of Grape Seed Powder as a Functional Ingredient on Flour Physicochemical Characteristics and Dough Rheological Properties. J. Agric. Sci. Technol. 2015, 17, 365–373. [Google Scholar]
- Soltanzadeh, M.; Peighambardoust, S.H.; Ghanbarzadeh, B.; Amjadi, S.; Mohammadi, M.; Lorenzo, J.M.; Hamishehkar, H. Active Gelatin/Cress Seed Gum-Based Films Reinforced with Chitosan Nanoparticles Encapsulating Pomegranate Peel Extract: Preparation and Characterization. Food Hydrocoll. 2022, 129, 107620. [Google Scholar] [CrossRef]
- Khodaeimehr, R.; Peighambardoust, S.J.; Peighambardoust, S.H. Preparation and Characterization of Corn Starch/Clay Nanocomposite Films: Effect of Clay Content and Surface Modification. Starch-Stärke 2018, 70, 1700251. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, Y.; Li, X.; Kang, H. Effect of Chitosan-Gelatin Coating Containing Nano-Encapsulated Tarragon Essential Oil on the Preservation of Pork Slices. Meat Sci. 2020, 166, 108137. [Google Scholar] [CrossRef] [PubMed]
- Mehdizadeh, T.; Mojaddar Langroodi, A. Chitosan Coatings Incorporated with Propolis Extract and Zataria Multiflora Boiss Oil for Active Packaging of Chicken Breast Meat. Int. J. Biol. Macromol. 2019, 141, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, L.; Gong, X.; Chi, F.; Ma, Z. Fabrication and Comparison of Active Films from Chitosan Incorporating Different Spice Extracts for Shelf Life Extension of Refrigerated Pork. LWT 2021, 135, 110181. [Google Scholar] [CrossRef]
- Mehdizadeh, T.; Tajik, H.; Langroodi, A.M.; Molaei, R.; Mahmoudian, A. Chitosan-Starch Film Containing Pomegranate Peel Extract and Thymus Kotschyanus Essential Oil Can Prolong the Shelf Life of Beef. Meat Sci. 2020, 163, 108073. [Google Scholar] [CrossRef] [PubMed]
- Amin, G.; Sourmaghi, M.H.S.; Azizzadeh, M.; Yassa, N.; Asgari, T. Seasonal Variation of the Essential Oil Composition of Cultivated Yarrow in Tehran-Iran. J. Essent. Oil Bear. Plants 2008, 11, 628–633. [Google Scholar] [CrossRef]
- Verma, R.S.; Joshi, N.; Padalia, R.C.; Goswami, P.; Singh, V.R.; Chauhan, A.; Verma, S.K.; Iqbal, H.; Verma, R.K.; Chanda, D.; et al. Chemical Composition and Allelopathic, Antibacterial, Antifungal and in Vitro Acetylcholinesterase Inhibitory Activities of Yarrow (Achillea millefolium L.) Native to India. Ind. Crops Prod. 2017, 104, 144–155. [Google Scholar] [CrossRef]
- Nazir, I.; Gangoo, S.A.; Sofi, P.A.; Singh, A. GC-MS Analysis and Antioxidant Activity of the Essential Oil from Flowers of Achillea Millefolium L. Under Temperate Climatic Conditions of Kashmir. J. Essent. Oil Bear. Plants 2022, 25, 290–296. [Google Scholar] [CrossRef]
- Farhadi, N.; Babaei, K.; Farsaraei, S.; Moghaddam, M.; Ghasemi Pirbalouti, A. Changes in Essential Oil Compositions, Total Phenol, Flavonoids and Antioxidant Capacity of Achillea Millefolium at Different Growth Stages. Ind. Crops Prod. 2020, 152, 112570. [Google Scholar] [CrossRef]
- Sarabandi, K.; Peighambardoust, S.H.; Mahoonak, A.S.; Samaei, S.P. Effect of Carrier Types and Compositions on the Production Yield, Microstructure and Physical Characteristics of Spray Dried Sour Cherry Juice Concentrate. J. Food Meas. Charact. 2017, 11, 1602–1612. [Google Scholar] [CrossRef]
- Peighambardoust, S.H.; Hamer, R.J.; Boom, R.M.; van der Goot, A.J. Migration of Gluten under Shear Flow as a Novel Mechanism for Separating Wheat Flour into Gluten and Starch. J. Cereal Sci. 2008, 48, 327–338. [Google Scholar] [CrossRef]
- Sharma, R.; Ghoshal, G. Emerging Trends in Food Packaging. Nutr. Food Sci. 2018, 48, 764–779. [Google Scholar] [CrossRef]
- Kalpana, S.; Priyadarshini, S.R.; Maria Leena, M.; Moses, J.A.; Anandharamakrishnan, C. Intelligent Packaging: Trends and Applications in Food Systems. Trends Food Sci. Technol. 2019, 93, 145–157. [Google Scholar] [CrossRef]
- Kuswandi, B.; Oktaviana, R.; Abdullah, A.; Heng, L.Y. A Novel On-package Sticker Sensor Based on Methyl Red for Real-time Monitoring of Broiler Chicken Cut Freshness. Packag. Technol. Sci. 2014, 27, 69–81. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.-W. Anthocyanin Food Colorant and Its Application in PH-Responsive Color Change Indicator Films. Crit. Rev. Food Sci. Nutr. 2021, 61, 2297–2325. [Google Scholar] [CrossRef]
- Ezati, P.; Tajik, H.; Moradi, M.; Molaei, R. Intelligent PH-Sensitive Indicator Based on Starch-Cellulose and Alizarin Dye to Track Freshness of Rainbow Trout Fillet. Int. J. Biol. Macromol. 2019, 132, 157–165. [Google Scholar] [CrossRef]
- Kuswandi, B.; Nurfawaidi, A. On-Package Dual Sensors Label Based on PH Indicators for Real-Time Monitoring of Beef Freshness. Food Control 2017, 82, 91–100. [Google Scholar] [CrossRef]
- Ghadiri Alamdari, N.; Forghani, S.; Salmasi, S.; Almasi, H.; Moradi, M.; Molaei, R. Ixiolirion Tataricum Anthocyanins-Loaded Biocellulose Label: Characterization and Application for Food Freshness Monitoring. Int. J. Biol. Macromol. 2022, 200, 87–98. [Google Scholar] [CrossRef]
- Soltani Howyzeh, M.; Aslani, S.; Pooraskari, O. Essential Oil Profile of an Iranian Yarrow (Achillea millefolium). J. Essent. Oil Bear. Plants 2019, 22, 295–300. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; Volume 456. [Google Scholar]
- Sujiwo, J.; Kim, D.; Jang, A. Relation among Quality Traits of Chicken Breast Meat during Cold Storage: Correlations between Freshness Traits and Torrymeter Values. Poult. Sci. 2018, 97, 2887–2894. [Google Scholar] [CrossRef]
- Alirezalu, K.; Moazami-Goodarzi, A.H.; Roufegarinejad, L.; Yaghoubi, M.; Lorenzo, J.M. Combined Effects of Calcium-Alginate Coating and Artemisia Fragrance Essential Oil on Chicken Breast Meat Quality. Food Sci. Nutr. 2022, 10, 2505–2515. [Google Scholar] [CrossRef]
- Qiao, L.; Tang, X.; Dong, J. A Feasibility Quantification Study of Total Volatile Basic Nitrogen (TVB-N) Content in Duck Meat for Freshness Evaluation. Food Chem. 2017, 237, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Pan, I.; Carrión-Granda, X.; Maté, J.I. Antimicrobial Efficiency of Edible Coatings on the Preservation of Chicken Breast Fillets. Food Control 2014, 36, 69–75. [Google Scholar] [CrossRef]
- Golshan Tafti, A.; Peighambardoust, S.H.; Hesari, J.; Bahrami, A.; Shakuoie Bonab, E. Physico-Chemical and Functional Properties of Spray-Dried Sourdough in Breadmaking. Food Sci. Technol. Int. 2013, 19, 271–278. [Google Scholar] [CrossRef] [PubMed]
- León, K.; Mery, D.; Pedreschi, F.; León, J. Color Measurement in L∗a∗b∗ Units from RGB Digital Images. Food Res. Int. 2006, 39, 1084–1091. [Google Scholar] [CrossRef]
- Peighambardoust, S.H.; van der Goot, A.J.; Hamer, R.J.; Boom, R.M. A New Method to Study Simple Shear Processing of Wheat Gluten-Starch Mixtures. Cereal Chem. 2004, 81, 714–721. [Google Scholar] [CrossRef]
- van der Goot, A.J.J.; Peighambardoust, S.H.H.; Akkermans, C.; Van Oosten-Manski, J.M.M. Creating Novel Structures in Food Materials: The Role of Well-Defined Shear Flow. Food Biophys. 2008, 3, 120–125. [Google Scholar] [CrossRef] [Green Version]
- Sarabandi, K.; Peighambardoust, S.H.; Sadeghi Mahoonak, A.R.; Samaei, S.P. Effect of Different Carriers on Microstructure and Physical Characteristics of Spray Dried Apple Juice Concentrate. J. Food Sci. Technol. 2018, 55, 3098–3109. [Google Scholar] [CrossRef]
- Peighambardoust, S.H.; van Brenk, S.; van der Goot, A.J.; Hamer, R.J.; Boom, R.M. Dough Processing in a Couette-Type Device with Varying Eccentricity: Effect on Glutenin Macro-Polymer Properties and Dough Micro-Structure. J. Cereal Sci. 2007, 45, 34–48. [Google Scholar] [CrossRef]
- Peighambardoust, S.H.; van der Goot, A.J.; Boom, R.M.; Hamer, R.J. Mixing Behaviour of a Zero-Developed Dough Compared to a Flour–Water Mixture. J. Cereal Sci. 2006, 44, 12–20. [Google Scholar] [CrossRef]
- Aćimović, M.G.; Pezo, L.; Stanković-Jeremić, J.; Todosijević, M.; Rat, M.; Tešević, V.; Cvetković, M. The Quantitative Structure-Retention Relationship of the GC-MS Profile of Yarrow Essential Oil. Acta Period. Technol. 2021, 52, 123–132. [Google Scholar] [CrossRef]
- Almas, I.; Innocent, E.; Machumi, F.; Kisinza, W. Chemical Composition of Essential Oils from Eucalyptus Globulus and Eucalyptus Maculata Grown in Tanzania. Sci. Afr. 2021, 12, e00758. [Google Scholar] [CrossRef]
- Küpeli Akkol, E.; İlhan, M.; Ayşe Demirel, M.; Keleş, H.; Tümen, I.; Süntar, İ. Thuja Occidentalis L. and Its Active Compound, α-Thujone: Promising Effects in the Treatment of Polycystic Ovary Syndrome without Inducing Osteoporosis. J. Ethnopharmacol. 2015, 168, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Radha krishnan, K.; Babuskin, S.; Azhagu Saravana Babu, P.; Sasikala, M.; Sabina, K.; Archana, G.; Sivarajan, M.; Sukumar, M. Antimicrobial and Antioxidant Effects of Spice Extracts on the Shelf Life Extension of Raw Chicken Meat. Int. J. Food Microbiol. 2014, 171, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Alirezalu, K.; Movlan, H.S.; Yaghoubi, M.; Pateiro, M.; Lorenzo, J.M. ε-Polylysine Coating with Stinging Nettle Extract for Fresh Beef Preservation. Meat Sci. 2021, 176, 108474. [Google Scholar] [CrossRef] [PubMed]
- Yaghoubi, M.; Ayaseh, A.; Alirezalu, K.; Nemati, Z.; Pateiro, M.; Lorenzo, J.M. Effect of Chitosan Coating Incorporated with Artemisia Fragrans Essential Oil on Fresh Chicken Meat during Refrigerated Storage. Polymers 2021, 13, 716. [Google Scholar] [CrossRef] [PubMed]
- Jonaidi Jafari, N.; Kargozari, M.; Ranjbar, R.; Rostami, H.; Hamedi, H. The Effect of Chitosan Coating Incorporated with Ethanolic Extract of Propolis on the Quality of Refrigerated Chicken Fillet. J. Food Process. Preserv. 2018, 42, e13336. [Google Scholar] [CrossRef]
- Nouri Ala, M.A.; Shahbazi, Y. The Effects of Novel Bioactive Carboxymethyl Cellulose Coatings on Food-Borne Pathogenic Bacteria and Shelf Life Extension of Fresh and Sauced Chicken Breast Fillets. LWT 2019, 111, 602–611. [Google Scholar] [CrossRef]
- Moazami Goodarzi, M.; Moradi, M.; Tajik, H.; Forough, M.; Ezati, P.; Kuswandi, B. Development of an Easy-to-Use Colorimetric PH Label with Starch and Carrot Anthocyanins for Milk Shelf Life Assessment. Int. J. Biol. Macromol. 2020, 153, 240–247. [Google Scholar] [CrossRef]
- Mojaddar Langroodi, A.; Tajik, H.; Mehdizadeh, T.; Moradi, M.; Moghaddas Kia, E.; Mahmoudian, A. Effects of Sumac Extract Dipping and Chitosan Coating Enriched with Zataria Multiflora Boiss Oil on the Shelf-Life of Meat in Modified Atmosphere Packaging. LWT 2018, 98, 372–380. [Google Scholar] [CrossRef]
- Alirezalu, K.; Hesari, J.; Yaghoubi, M.; Khaneghah, A.M.; Alirezalu, A.; Pateiro, M.; Lorenzo, J.M. Combined Effects of ε-Polylysine and ε-Polylysine Nanoparticles with Plant Extracts on the Shelf Life and Quality Characteristics of Nitrite-Free Frankfurter-Type Sausages. Meat Sci. 2021, 172, 108318. [Google Scholar] [CrossRef]
- Bazargani-Gilani, B.; Aliakbarlu, J.; Tajik, H. Effect of Pomegranate Juice Dipping and Chitosan Coating Enriched with Zataria Multiflora Boiss Essential Oil on the Shelf-Life of Chicken Meat during Refrigerated Storage. Innov. Food Sci. Emerg. Technol. 2015, 29, 280–287. [Google Scholar] [CrossRef]
- Pabast, M.; Shariatifar, N.; Beikzadeh, S.; Jahed, G. Effects of Chitosan Coatings Incorporating with Free or Nano-Encapsulated Satureja Plant Essential Oil on Quality Characteristics of Lamb Meat. Food Control 2018, 91, 185–192. [Google Scholar] [CrossRef]
- Ravash, N.; Peighambardoust, S.H.; Soltanzadeh, M.; Pateiro, M.; Lorenzo, J.M. Impact of High-Pressure Treatment on Casein Micelles, Whey Proteins, Fat Globules and Enzymes Activity in Dairy Products: A Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 2888–2908. [Google Scholar] [CrossRef] [PubMed]
- Tomasevic, I.; Djekic, I.; Font-i-Furnols, M.; Terjung, N.; Lorenzo, J.M. Recent Advances in Meat Color Research. Curr. Opin. Food Sci. 2021, 41, 81–87. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Sineiro, J.; Amado, I.R.; Franco, D. Influence of Natural Extracts on the Shelf Life of Modified Atmosphere-Packaged Pork Patties. Meat Sci. 2014, 96, 526–534. [Google Scholar] [CrossRef]
Microorganism Type | Culture Media | Seeding Technique | Incubation Period |
---|---|---|---|
Total AMB (aerobic mesophilic bacteria) | Plate count agar (PCA) | In depth | 48 h/37 °C |
Total APB (aerobic psycrotrophic bacteria) | Plate count agar (PCA) | In depth | 7 days/7 °C |
Coliforms (Enterobacteriaceae) | Violet red bile glucose (VRBG) | In depth/double layer | 24 h/37 °C |
Yeasts and Molds | Potato dextrose agar (PDA) | Surface | 5 days/25 °C |
No | Retention Time (min) | KI a | KI b | Identified Compounds | Area c (%) |
---|---|---|---|---|---|
1 | 9.425 | 957 | 952 | α-Pinene | 1.49 |
2 | 9.746 | 963 | 953 | Camphene | 2.97 |
3 | 10.145 | 985 | 976 | Sabinene | 0.53 |
4 | 10.294 | 991 | 980 | β-Pinene | 0.97 |
5 | 11.117 | 1028 | 1026 | p-Cymene | 0.89 |
6 | 11.225 | 1033 | 1031 | β-Ocimene | 1.75 |
7 | 11.413 | 1042 | 1039 | Eucalyptol | 17.07 |
8 | 12.762 | 1102 | 1098 | Linalool | 3.57 |
9 | 12.904 | 1109 | 1110 | α-Thujone | 12.10 |
10 | 13.005 | 1114 | 1115 | Cyclooctanone | 1.60 |
11 | 13.078 | 1117 | 1115 | β-Thujone | 3.81 |
12 | 13.250 | 1126 | 1138 | cis-Limonene oxide | 1.44 |
13 | 13.779 | 1151 | 1143 | Camphor | 18.55 |
14 | 13.975 | 1160 | 1162 | Pinocarvone | 1.63 |
15 | 14.062 | 1164 | 1169 | Lavandulol | 1.14 |
16 | 14.249 | 1173 | 1165 | Borneol | 3.78 |
17 | 14.647 | 1192 | 1189 | α-Terpineol | 7.23 |
18 | 14.772 | 1198 | 1202 | Myrtenol | 0.51 |
19 | 15.471 | 1231 | 1242 | Carvone | 0.64 |
20 | 16.199 | 1269 | 1256 | Neral (β-citral) | 1.95 |
21 | 16.496 | 1284 | 1274 | Geranial (α-citral) | 2.51 |
22 | 16.755 | 1297 | 1294 | Limonene dioxide | 2.40 |
23 | 20.390 | 1493 | 1383 | Geranyl acetate | 1.65 |
24 | 22.069 | 1601 | 1583 | Caryophyllene oxide | 0.51 |
25 | 22.206 | 1609 | 1575 | Spathulenol | 0.79 |
26 | 22.814 | 1684 | 1525 | 1-Naphthalenol | 1.23 |
27 | 23.181 | 1734 | 1652 | α-Eudesmol | 0.82 |
Total identified compounds (%) | 94.65 |
Treatments | Storage Days | |||||||
---|---|---|---|---|---|---|---|---|
1 | 3 | 5 | 7 | 9 | 12 | 15 | ||
pH | Ch_0%—YEO_0% | 5.86 c,A | 6.00 c,A | 6.13 c,A | 6.19 c,A | 6.78 b,A | 6.96 b,A | 7.26 a,A |
(0.19) | (0.18) | (0.11) | (0.10) | (0.15) | (0.12) | (0.19) | ||
Ch_2%—YEO_0% | 5.33 d,B | 5.46 d,B | 5.55 d,B | 5.65 d,B | 6.17 c,B | 6.54 b,B | 6.89 a,B | |
(0.17) | (0.14) | (0.12) | (0.10) | (0.15) | (0.10) | (0.12) | ||
Ch_0%—YEO_0.3% | 5.94 c,A | 6.05 c,A | 6.10 c,A | 6.21 c,A | 6.75 b,A | 6.86 b,A | 7.15 a,A | |
(0.11) | (0.15) | (0.13) | (0.11) | (0.12) | (0.09) | (0.13) | ||
Ch_2%—YEO_0.3% | 5.42 b,C | 5.40 b,C | 5.51 ab,C | 5.43 a,C | 5.54 a,C | 5.65 a,C | 5.56 a,C | |
(0.12) | (0.15) | (0.13) | (0.18) | (0.12) | (0.15) | (0.17) | ||
TBARs (mg MDA/kg) | Ch_0%—YEO_0% | 0.34 d,A | 0.37 d,A | 0.41 d,A | 0.45 d,A | 0.62 c,A | 0.70 b,A | 0.94 a,A |
(0.04) | (0.04) | (0.03) | (0.04) | (0.03) | (0.03) | (0.06) | ||
Ch_2%—YEO_0% | 0.33 d,A | 0.36 d,A | 0.38 d,A | 0.42 d,A | 0.53 c,B | 0.60 b,B | 0.71 a,B | |
(0.03) | (0.03) | (0.04) | (0.03) | (0.04) | (0.03) | (0.06) | ||
Ch_0%—YEO_0.3% | 0.36 d,A | 0.37 d,A | 0.43 d,A | 0.45 d,A | 0.59 c,B | 0.69 b,A | 0.89 a,A | |
(0.02) | (0.04) | (0.03) | (0.06) | (0.03) | (0.03) | (0.06) | ||
Ch_2%—YEO_0.3% | 0.35 a,A | 0.34 a,A | 0.33 a,B | 0.37 a,B | 0.37 a,C | 0.37 a,C | 0.40 a,C | |
(0.06) | (0.03) | (0.02) | (0.04) | (0.03) | (0.04) | (0.04) | ||
TVB-N (mg/100 g) | Ch_0%—YEO_0% | 12.91 d,A | 14.06 d,A | 18.58 c,A | 19.82 c,A | 29.87 b,A | 31.12 b,A | 35.20 a,A |
(1.25) | (1.93) | (1.55) | (1.82) | (1.13) | (1.08) | (1.14) | ||
Ch_2%—YEO_0% | 11.89 d,A | 13.90 d,A | 17.52 c,A | 17.77 c,A | 27.50 b,A | 31.08 a,A | 33.51 a,B | |
(1.12) | (1.84) | (1.65) | (1.73) | (1.94) | (1.50) | (1.54) | ||
Ch_0%—YEO_0.3% | 12.12 d,A | 14.12 d,A | 17.93 c,A | 18.21 c,A | 28.80 b,A | 32.53 a,A | 33.52 a,B | |
(0.94) | (1.24) | (1.33) | (1.20) | (1.90) | (2.13) | (1.62) | ||
Ch_2%—YEO_0.3% | 12.55 a,A | 12.68 a,A | 13.40 a,B | 13.96 a,B | 14.15 a,B | 14.75 a,B | 15.36 a,C | |
(1.54) | (1.43) | (1.94) | (1.60) | (0.95) | (1.84) | (1.82) |
Treatments | Storage Days | |||||||
---|---|---|---|---|---|---|---|---|
1 | 3 | 5 | 7 | 9 | 12 | 15 | ||
AMB (log CFU/g) | Ch_0%—YEO_0% | 4.04 e,A | 4.35 e,A | 4.58 e,A | 5.05 d,A | 6.13 c,A | 7.10 b,A | 8.52 a,A |
(0.15) | (0.18) | (0.17) | (0.14) | (0.19) | (0.11) | (0.14) | ||
Ch_2%—YEO_0% | 3.91 d,A | 4.17 d,B | 4.32 d,B | 4.41 d,C | 5.49 c,C | 6.54 b,C | 7.65 a,C | |
(0.10) | (0.11) | (0.14) | (0.08) | (0.10) | (0.11) | (0.12) | ||
Ch_0%—YEO_0.3% | 4.10 e,A | 3.95 e,B | 4.18 e,B | 4.72 d,B | 6.25 c,B | 7.26 b,B | 8.36 a,B | |
(0.10) | (0.11) | (0.13) | (0.18) | (0.12) | (0.09) | (0.13) | ||
Ch_2%—YEO_0.3% | 3.92 a,A | 4.20 a,B | 4.34 a,B | 4.47 a,C | 4.54 a,D | 4.60 a,D | 4.74 a,D | |
(0.13) | (0.14) | (0.12) | (0.11) | (0.16) | (0.10) | (0.14) | ||
APB (log CFU/g) | Ch_0%—YEO_0% | 4.11 d,A | 4.25 d,A | 4.39 d,A | 5.12 c,A | 6.20 b,A | 7.22 a,A | 8.45 a,A |
(0.13) | (0.12) | (0.16) | (0.18) | (0.28) | (0.21) | (0.18) | ||
Ch_2%—YEO_0% | 3.99 d,A | 3.90 d,B | 4.15 e,C | 4.70 d,C | 5.55 c,C | 6.34 b,C | 7.21 a,C | |
(0.10) | (0.08) | (0.14) | (0.09) | (0.12) | (0.10) | (0.17) | ||
Ch_0%—YEO_0.3% | 4.05 e,A | 3.90 e,A | 3.96 e,B | 4.36 d,B | 6.00 c,B | 7.21 b,B | 7.98 a,B | |
(0.07) | (0.14) | (0.12) | (0.18) | (0.11) | (0.09) | (0.18) | ||
Ch_2%—YEO_0.3% | 3.97 a,A | 3.98 a,B | 4.18 a,C | 4.32 a,D | 4.45 a,D | 4.58 a,D | 4.65 a,D | |
(0.22) | (0.12) | (0.13) | (0.18) | (0.14) | (0.17) | (0.23) | ||
Coliforms (Enterobacteriaceae) (log CFU/g) | Ch_0%—YEO_0% | 3.89 e,A | 4.05 e,A | 4.29 d,A | 4.65 d,A | 6.21 c,A | 7.22 b,A | 7.95 a,A |
(0.18) | (0.19) | (0.21) | (0.18) | (0.18) | (0.15) | (0.13) | ||
Ch_2%—YEO_0% | 3.75 d,A | 3.89 d,B | 3.95 d,B | 4.26 d,B | 5.96 c,C | 7.12 b,C | 7.90 a,C | |
(0.10) | (0.14) | (0.19) | (0.15) | (0.11) | (0.12) | (0.15) | ||
Ch_0%—YEO_0.3% | 3.26 e,A | 3.35 e,B | 3.25 e,C | 3.76 d,A | 5.75 c,B | 7.43 b,B | 8.50 a,B | |
(0.17) | (0.13) | (0.11) | (0.17) | (0.10) | (0.10) | (0.16) | ||
Ch_2%—YEO_0.3% | 3.59 a,A | 3.68 a,B | 3.75 a,C | 3.82 a,C | 3.98 a,D | 4.15 a,D | 4.25 a,D | |
(0.10) | (0.14) | (0.10) | (0.20) | (0.14) | (0.16) | (0.15) | ||
Yeast and molds (log CFU/g) | Ch_0%—YEO_0% | 3.10 d,A | 3.24 d,A | 3.42 c,A | 3.65 c,A | 6.47 b,A | 7.12 b,A | 8.20 a,A |
(0.09) | (0.10) | (0.11) | (0.21) | (0.13) | (0.20) | (0.11) | ||
Ch_2%—YEO_0% | 2.94 e,A | 3.09 e,B | 3.29 e,B | 3.45 d,B | 5.94 c,B | 6.51 b,B | 7.11 a,B | |
(0.07) | (0.08) | (0.11) | (0.05) | (0.09) | (0.15) | (0.18) | ||
Ch_0%—YEO_0.3% | 3.00 e,A | 3.18 e,B | 3.25 e,B | 4.11 d,A | 6.50 c,A | 6.95 b,A | 7.70 a,A | |
(0.07) | (0.10) | (0.11) | (0.12) | (0.09) | (0.07) | (0.16) | ||
Ch_2%—YEO_0.3% | 3.00 a,A | 3.12 a,C | 3.20 a,C | 3.26 a,C | 3.35 a,C | 3.40 a,C | 3.66 a,C | |
(0.15) | (0.14) | (0.19) | (0.14) | (0.19) | (0.13) | (0.14) |
Treatments | Storage Days | |||||||
---|---|---|---|---|---|---|---|---|
1 | 3 | 5 | 7 | 9 | 12 | 15 | ||
Chroma (C*) | Ch_0%—YEO_0% | 28.80 a,A | 27.81 a,A | 25.98 a,A | 24.85 a,B | 16.98 b,C | 17.05 b,C | 15.71 b,C |
(0.55) | (0.62) | (1.07) | (0.82) | (0.97) | (1.23) | (1.27) | ||
Ch_2%—YEO_0% | 32.19 a,A | 31.33 a,A | 25.78 b,A | 25.31 b,B | 19.53 c,B | 19.63 c,B | 19.92 c,B | |
(2.32) | (0.95) | (2.75) | (1.86) | (1.13) | (0.43) | (1.42) | ||
Ch_0%—YEO_0.3% | 30.39 a,A | 30.38 a,A | 29.10 a,A | 25.31 b,B | 19.29 c,B | 16.63 d,C | 16.65 d,C | |
(1.12) | (0.69) | (1.23) | (1.00) | (0.58) | (0.43) | (1.96) | ||
Ch_2%—YEO_0.3% | 29.55 a,A | 29.74 a,A | 29.43 a,A | 28.63 a,A | 29.25 a,A | 29.49 a,A | 28.90 a,A | |
(0.99) | (0.68) | (0.93) | (1.11) | (1.76) | (1.10) | (1.65) | ||
Whiteness index (WI) | Ch_0%—YEO_0% | 39.90 b,A | 41.25 b,A | 43.47 b,A | 44.34 b,A | 54.22 a,A | 55.82 a,A | 58.17 a,A |
(1.10) | (0.98) | (1.2) | (1.28) | (1.95) | (1.71) | (1.04) | ||
Ch_2%—YEO_0% | 41.34 c,A | 43.71 b,A | 44.54 b,A | 49.21 a,A | 51.61 a,A | 51.81 a,A | 50.77 a,A | |
(0.82) | (0.40) | (0.95) | (1.11) | (2.66) | (2.06) | (2.08) | ||
Ch_0%—YEO_0.3% | 39.33 c,A | 41.05 c,A | 42.99 c,A | 46.61 c,A | 53.33 b,A | 53.19 b,A | 57.79 a,A | |
(3.46) | (1.57) | (1.26) | (1.63) | (1.39) | (0.57) | (1.72) | ||
Ch_2%—YEO_0.3% | 38.00 a,A | 38.57 a,A | 41.12 a,A | 41.29 a,A | 42.05 a,A | 42.16 a,A | 42.35 a,A | |
(1.07) | (1.25) | (0.99) | (0.91) | (1.24) | (1.13) | (1.59) | ||
Yellowness index (YI) | Ch_0%—YEO_0% | 80.14 a,A | 76.24 a,A | 69.99 b,B | 66.46 b,B | 40.99 c,C | 39.79 c,D | 36.14 c,C |
(2.33) | (1.43) | (2.65) | (2.42) | (2.26) | (3.22) | (2.73) | ||
Ch_2%—YEO_0% | 86.08 a,A | 80.48 a,A | 67.79 b,B | 61.21 b,B | 48.80 c,B | 49.18 c,B | 51.34 c,B | |
(5.42) | (2.74) | (4.21) | (4.08) | (4.26) | (2.86) | (4.13) | ||
Ch_0%—YEO_0.3% | 84.59 a,A | 80.89 a,A | 77.07 a,A | 64.09 b,B | 46.62 c,B | 41.28 c,C | 38.52 c,C | |
(7.23) | (3.23) | (3.75) | (4.10) | (2.13) | (1.44) | (4.78) | ||
Ch_2%—YEO_0.3% | 86.55 a,A | 86.50 a,A | 80.94 a,A | 79.11 a,A | 79.33 a,A | 79.65 a,A | 74.75 a,A | |
(7.05) | (2.70) | (3.56) | (2.98) | (5.45) | (3.73) | (8.28) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peighambardoust, S.H.; Yaghoubi, M.; Hosseinpour, A.; Alirezalu, K.; Soltanzadeh, M.; Dadpour, M. Development and Application of Dual-Sensors Label in Combination with Active Chitosan-Based Coating Incorporating Yarrow Essential Oil for Freshness Monitoring and Shelf-Life Extension of Chicken Fillet. Foods 2022, 11, 3533. https://doi.org/10.3390/foods11213533
Peighambardoust SH, Yaghoubi M, Hosseinpour A, Alirezalu K, Soltanzadeh M, Dadpour M. Development and Application of Dual-Sensors Label in Combination with Active Chitosan-Based Coating Incorporating Yarrow Essential Oil for Freshness Monitoring and Shelf-Life Extension of Chicken Fillet. Foods. 2022; 11(21):3533. https://doi.org/10.3390/foods11213533
Chicago/Turabian StylePeighambardoust, Seyed Hadi, Milad Yaghoubi, Azam Hosseinpour, Kazem Alirezalu, Maral Soltanzadeh, and Mohammadreza Dadpour. 2022. "Development and Application of Dual-Sensors Label in Combination with Active Chitosan-Based Coating Incorporating Yarrow Essential Oil for Freshness Monitoring and Shelf-Life Extension of Chicken Fillet" Foods 11, no. 21: 3533. https://doi.org/10.3390/foods11213533
APA StylePeighambardoust, S. H., Yaghoubi, M., Hosseinpour, A., Alirezalu, K., Soltanzadeh, M., & Dadpour, M. (2022). Development and Application of Dual-Sensors Label in Combination with Active Chitosan-Based Coating Incorporating Yarrow Essential Oil for Freshness Monitoring and Shelf-Life Extension of Chicken Fillet. Foods, 11(21), 3533. https://doi.org/10.3390/foods11213533