Effect of a Novel Sugar Blend on Weight and Cardiometabolic Health among Healthy Indian Adults: A Randomized, Open-Label Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Study Population
- Group A: Sugar group (n = 30), who consumed ordinary table sugar (sucrose) (Active, control group), and
- Group B: Sugar blend group (n = 30), who substituted ordinary table sugar with half the quantity of sugar blend in their diet (Test group).
- Normal to preobese participants (BMI = 23 kg/m2 to 26 kg/m2).
- Subjects who are willing to provide written informed consent.
- Those who agree to follow the general dietary, sugar intake, and exercise guidelines.
- Subjects who have not taken part in a comparable study in the previous four weeks.
- Subjects who have hypertension, renal, hepatic, or cardiac failure.
- Endocrine diseases, such as hypothyroidism (if already on treatment).
- Subjects with dyslipidemia or fat metabolic inborn errors.
- Subjects who have postprandial glucose of more than 150 mg/dL in two tests and are considered early diabetics.
- Any history of medication hypersensitivity or an adverse reaction that might affect the study.
- Antidiabetic medicines such as metformin and statins, as well as nutritional supplements that may affect body weight, body fat, or blood cholesterol levels.
- Women who are pregnant or lactating.
- Refusal to sign an informed consent form.
2.3. Study Protocol
2.3.1. Exception
2.3.2. Primary Outcomes
2.3.3. Secondary Outcomes
2.3.4. Safety Evaluation
2.4. Statistical Analysis
3. Results
3.1. Weight
3.2. Waist Circumference
3.3. Hip Circumference
3.4. Waist/Hip Ratio
3.5. Body Mass Index (BMI)
3.6. Secondary Outcomes
3.7. Safety Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight. 9 June 2021, pp. 1–6. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 3 November 2021).
- Gulati, S.; Misra, A. Sugar Intake, Obesity, and Diabetes in India. Nutrients 2014, 6, 5955–5974. [Google Scholar] [CrossRef] [PubMed]
- Gulati, S.; Misra, A. Abdominal obesity and type 2 diabetes in Asian Indians: Dietary strategies including edible oils, cooking practices and sugar intake. Eur. J. Clin. Nutr. 2017, 71, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Shah, P.; Goel, K.; Misra, A.; Rastogi, K.; Vikram, N.K.; Kumari, V.; Pandey, R.M.; Kondal, D.; Wasir, J.S.; et al. Imbalanced dietary profile, anthropometry, and lipids in urban Asian Indian adolescents and young adults. J. Am. Coll. Nutr. 2010, 29, 81–91. [Google Scholar] [CrossRef]
- Mathur, P.; Pillai, R. Overnutrition: Current scenario & combat strategies. Indian J. Med. Res. 2019, 149, 695–705. [Google Scholar] [CrossRef]
- Dietary Guidelines for Indians—A Manual; National Institute of Nutrition: Hyderabad, India, 2011; pp. 18–20. Available online: https://www.nin.res.in/downloads/DietaryGuidelinesforNINwebsite.pdf (accessed on 3 November 2021).
- Dhawan, D.; Sharma, S. Abdominal Obesity, Adipokines and Non-communicable Diseases. J. Steroid Biochem. Mol. Biol. 2020, 203, 105737. [Google Scholar] [CrossRef] [PubMed]
- Kesztyüs, D.; Erhardt, J.; Schönsteiner, D.; Kesztyüs, T. Therapeutic Treatment for Abdominal Obesity in Adults. Dtsch. Ärzteblatt Int. 2018, 115, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, Z.; Donato, R. The dramatic rise in the prevalence of overweight and obesity in India: Obesity transition and the looming health care crisis. World Dev. 2020, 134, 105050. [Google Scholar] [CrossRef]
- National Nutrition Monitoring Bureau. Diet and Nutritional Status of Urban Population in India and Prevalence of Obesity, Hypertension, Diabetes and Hyperlipidemia in Urban Men and Women; National Institute of Nutrition: Hyderabad, India, 2017; pp. 13–19. Available online: https://www.nin.res.in/downloads/NNMB%20Urban%20Nutrition%20Report%20-Brief%20%20%20report.pdf (accessed on 22 September 2021).
- Anjana, R.M.; Deepa, M.; Pradeepa, R.; Mahanta, J.; Narain, K.; Das, H.K.; Adhikari, P.; Rao, P.V.; Saboo, B.; Kumar, A.; et al. ICMR–INDIAB Collaborative Study Group. Prevalence of diabetes and prediabetes in 15 states of India: Results from the ICMR-INDIAB population-based cross-sectional study. Lancet Diabetes Endocrinol. 2017, 5, 585–596. [Google Scholar] [CrossRef]
- World Health Organization. Information Note about Intake of Sugars Recommended in the WHO Guideline for Adults and Children; World Health Organization: Geneva, Switzerland, 2015; Available online: https://apps.who.int/iris/rest/bitstreams/1234140/retrieve (accessed on 3 November 2021).
- Sugar Reduction: Report on Progress between 2015 and 2019. October 2020. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/984282/Sugar_reduction_progress_report_2015_to_2019-1.pdf (accessed on 3 November 2021).
- Low Calorie Sweeteners: Role and Benefits a Guide to the Science of Low Calorie Sweeteners. September 2018. Available online: https://www.sweeteners.org/wp-content/uploads/2020/09/isa_booklet_september_2018.pdf (accessed on 3 November 2021).
- Stelmach-Mardas, M.; Rodacki, T.; Dobrowolska-Iwanek, J.; Brzozowska, A.; Walkowiak, J.; Wojtanowska-Krosniak, A.; Zagrodzki, P.; Bechthold, A.; Mardas, M.; Boeing, H. Link between Food Energy Density and Body Weight Changes in Obese Adults. Nutrients 2016, 8, 229. [Google Scholar] [CrossRef] [PubMed]
- Evert, A.B.; Dennison, M.; Gardner, C.D.; Garvey, W.T.; Lau, K.H.K.; MacLeod, J.; Mitri, J.; Pereira, R.F.; Rawlings, K.; Robinson, S.; et al. Nutrition Therapy for Adults with Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019, 42, 731–754. [Google Scholar] [CrossRef] [PubMed]
- Fry, J.C. Natural low-calorie sweeteners. In Natural Food Additives, Ingredients and Flavourings; Baines, D., Seal, R., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2012; pp. 41–75. Available online: http://www.gbv.de/dms/tib-ub-hannover/730478742.pdf (accessed on 3 November 2021).
- Asrani, U.; Thakur, D.A. A Comprehensive Review on Uses of Stevia Rebaudiana Plant. Eur. J. Mol. Clin. Med. 2020, 7, 4478–4483. [Google Scholar]
- Bundgaard Anker, C.C.; Rafiq, S.; Jeppesen, P.B. Effect of Steviol Glycosides on Human Health with Emphasis on Type 2 Diabetic Biomarkers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2019, 11, 1965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tandel, K.R. Sugar substitutes: Health controversy over perceived benefits. J. Pharmacol. Pharmacother. 2011, 2, 236–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, M.D.; Goossens, G.H.; Blaak, E.E. The Impact of Artificial Sweeteners on Body Weight Control and Glucose Homeostasis. Front. Nutr. 2021, 7, 598340. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. Additional Information about High-Intensity Sweeteners Permitted for Use in Food in the United States. 20 February 2020; p. 3. Available online: https://www.fda.gov/food/food-additives-petitions/additional-information-about-high-intensity-sweeteners-permitted-use-food-united-states (accessed on 24 November 2021).
- World Health Organization. Evaluation of Certain Food Additives—Eighty-Second Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2016; p. 152. Available online: https://apps.who.int/iris/bitstream/handle/10665/250277/9789241210003-eng.pdf?sequence=1&isAllowed=y (accessed on 24 November 2021).
- Wells, J.C.K.; Pomeroy, E.; Walimbe, S.R.; Popkin, B.M.; Yajnik, C.S. The Elevated Susceptibility to Diabetes in India: An Evolutionary Perspective. Front. Public Health 2016, 4, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuel, P.; Ayoob, K.T.; Magnuson, B.A.; Wölwer-Rieck, U.; Jeppesen, P.B.; Rogers, P.J.; Rowland, I.; Mathews, R. Stevia Leaf to Stevia Sweetener: Exploring Its Science, Benefits, and Future Potential. J. Nutr. 2018, 148, 1186S–1205S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Incentives and Disincentives for Reducing Sugar in Manufactured Foods: An Exploratory Supply Chain Analysis; World Health Organization: Geneva, Switzerland, 2017; Available online: https://www.euro.who.int/__data/assets/pdf_file/0004/355972/Sugar-report_WHO_107773_updated-and-revised-Dec-2017.pdf (accessed on 8 November 2021).
- Food Safety and Standards (Food Products Standards and Food Additives) Regulations. 2011; p. 455. Available online: https://www.fssai.gov.in/upload/uploadfiles/files/Compendium_Food_Additives_Regulations_08_09_2020-compressed.pdf (accessed on 24 June 2022).
- GOV.UK. SACN Carbohydrates and Health Report—The Scientific Advisory Committee on Nutrition Recommendations on Carbohydrates, Including Sugars and Fibre. 17 July 2015; p. 2. Available online: https://www.gov.uk/government/publications/sacn-carbohydrates-and-health-report (accessed on 8 November 2021).
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.-P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef] [PubMed]
- Gardner, C.; Wylie-Rosett, J.; Gidding, S.S.; Steffen, L.M.; Johnson, R.K.; Reader, D.; Lichtenstein, A.H. Nonnutritive sweeteners: Current use and health perspectives: A scientific statement from the American Heart Association and the American Diabetes Association. Circulation 2012, 126, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Guth, E. Healthy weight loss. JAMA 2014, 312, 974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barriocanal, L.A.; Palacios, M.; Benitez, G.; Benitez, S.; Jimenez, J.T.; Jimenez, N.; Rojas, V. Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. A pilot study of repeated exposures in some normotensive and hypotensive individuals and in Type 1 and Type 2 diabetics. Regul. Toxicol. Pharmacol. 2008, 51, 37–41. [Google Scholar] [CrossRef] [PubMed]
Group A | Group B | p Value * | |
---|---|---|---|
Total subjects (n) | 30 | 30 | |
Male | 18 | 17 | |
Female | 12 | 13 | |
Aged 30 years or below | 13 | 15 | |
Aged between 31 and 39 years | 11 | 6 | |
Aged 40 years and above | 6 | 9 | |
Weight (kg) † | 64.963 ± 9.861 | 66.993 ± 8.308 | 0.392 |
Waist (cm) † | 88.533 ± 7.637 | 88.567 ± 6.755 | 0.986 |
Hip (cm) † | 97.333 ± 7.373 | 99.867 ± 5.07 | 0.126 |
Waist/hip ratio † | 0.905 ± 0.058 | 0.882 ± 0.052 | 0.118 |
BMI (kg/m2) † | 24.01 ± 2.271 | 24.673 ± 2.023 | 0.204 |
Total cholesterol (mg/dL) † | 176.3 ± 23.476 | 187.80 ± 32.964 | 0.125 |
Triglyceride (mg/dL) † | 159.167 ± 70.445 | 177.733 ± 84.736 | 0.360 |
HDL cholesterol (mg/dL) † | 36.667 ± 5.862 | 38.567 ± 5.952 | 0.218 |
LDL cholesterol (mg/dL) † | 107.867 ± 17.795 | 113.64 ± 31.73 | 0.388 |
VLDL cholesterol (mg/dL) † | 31.833 ± 14.089 | 35.58 ± 16.929 | 0.355 |
RBS (mg/dL) † | 95.567 ± 17.561 | 93.10 ± 14.456 | 0.555 |
HbA1c % † | 5.53 ± 0.447 | 5.57 ± 0.462 | 0.735 |
Group A | Group B | |||||
---|---|---|---|---|---|---|
Baseline | Day 90 | p Value | Baseline | Day 90 | p Value | |
Weight in kg (mean ± SD) | 64.963 ± 9.861 | 63.067 ± 9.791 | <0.0001 * | 66.993 ± 8.308 | 63.600 ± 8.071 | <0.0001 * |
Mean reduction in kg (%) | −1.897 (2.936) | −3.393 (5.037) | ||||
Waist Circumference in cm (mean ± SD) | 88.533 ± 7.637 | 84.633 ± 9.779 | 0.001 * | 88.567 ± 6.755 | 84.167 ± 6.385 | <0.0001 * |
Mean reduction in cm (%) | −3.90 (4.462) | −4.40 (4.931) | ||||
Hip circumference in cm (mean ± SD) | 97.333 ± 7.373 | 94.900 ± 6.599 | <0.0001 * | 99.867 ± 5.070 | 97.133 ± 4.897 | <0.0001 * |
Mean reduction in cm (%) | −2.433 (2.441) | - | −2.733 (2.703) | |||
Waist/hip ratio (mean ± SD) | 0.905 ± 0.058 | 0.900 ± 0.05 | 0.495 | 0.882 ± 0.052 | 0.862 ± 0.045 | <0.0001 * |
Mean reduction (%) | −0.005 (0.389) | −0.02 (2.24) | ||||
BMI in kg/m2 (mean ± SD) | 24.01 ± 2.271 | 23.323 ± 2.461 | <0.0001 * | 24.673 ± 2.023 | 23.447 ± 2.301 | <0.0001 * |
Parameters | Baseline | Day 30 | Day 60 | Day 90 | ||||
---|---|---|---|---|---|---|---|---|
Group A | Group B | Group A | Group B | Group A | Group B | Group A | Group B | |
Weight (kg) † | 64.963 ± 9.861 | 66.993 ± 8.308 | 64.250 ± 9.669 | 66.160 ± 8.460 | 63.807 ± 9.838 | 64.583 ± 8.267 | 63.067 ± 9.791 | 63.600 ± 8.071 |
p value (between groups) p value (within group) | 0.392 | 0.419 | 0.742 0.0004 ** | 0.819 | ||||
Weight difference (kg) from baseline † | 0.713 ± 0.606 | 0.833 ± 1.475 | 1.157 ± 0.716 | 2.410 ± 3.313 | 1.897 ± 1.739 | 3.393 ± 2.688 | ||
p value (between groups) | 0.682 | 0.047 * | 0.013 * | |||||
Weight difference % † | 1.081 ± 0.922 | 1.276 ± 2.393 | 1.824 ± 1.297 | 3.540 ± 4.427 | 2.936 ± 2.771 | 5.037 ± 3.650 | ||
p value (between groups) | 0.679 | 0.046 * | 0.015 * | |||||
Waist circumference (cm) † | 88.533 ± 7.637 | 88.567 ± 6.755 | 87.000 ± 7.579 | 86.833 ± 6.721 | 86.200 ± 7.595 | 85.967 ± 6.392 | 84.633 ± 9.779 | 84.167 ± 6.385 |
p value (between groups) p value (within group) | 0.986 | 0.929 | 0.898 <0.0001 ** | 0.828 | ||||
Waist circumference difference (cm) from baseline † | 1.533 ± 1.358 | 1.733 ± 1.946 | 2.333 ± 1.882 | 2.600 ± 2.824 | 3.900 ± 5.744 | 4.400 ± 2.283 | ||
p value (between groups) | 0.646 | 0.668 | 0.659 | |||||
Waist circumference difference % † | 1.724 ± 1.519 | 1.941 ± 2.150 | 2.626 ± 2.060 | 2.870 ± 3.197 | 4.462 ± 7.042 | 4.931 ± 2.432 | ||
p value (between groups) | 0.654 | 0.727 | 0.731 | |||||
Hip circumference (cm) † | 97.333 ± 7.373 | 99.867 ± 5.070 | 96.167 ± 6.859 | 98.567 ± 4.876 | 95.700 ± 6.737 | 97.167 ± 4.800 | 94.900 ± 6.599 | 97.133 ± 4.897 |
p value (between group) p value (within group) | 0.126 | 0.124 | 0.336 <0.0001 ** | 0.142 | ||||
Hip circumference difference (cm) from baseline † | 1.167 ± 1.642 | 1.300 ± 2.020 | 1.633 ± 2.748 | 2.700 ± 2.351 | 2.433 ± 1.995 | 2.733 ± 2.703 | ||
p value (between groups) | 0.780 | 0.112 | 0.627 | |||||
Hip circumference difference % † | 1.156 ± 1.617 | 1.277 ± 1.983 | 1.608 ± 2.729 | 2.672 ± 2.237 | 2.441 ± 1.887 | 2.703 ± 2.588 | ||
p value (between groups) | 0.797 | 0.104 | 0.656 | |||||
Waist/hip ratio † | 0.905 ± 0.058 * | 0.882 ± 0.052 | 0.899 ± 0.046 | 0.878 ± 0.050 | 0.896 ± 0.053 | 0.880 ± 0.048 | 0.900 ± 0.050 | 0.862 ± 0.045 |
p value (between groups) | 0.118 | 0.098 | 0.244 | 0.003* | ||||
Waist/hip ratio difference from baseline † | 0.005 ± 0.034 | 0.004 ± 0.016 | 0.009 ± 0.037 | 0.002 ± 0.027 | 0.005 ± 0.037 | 0.020 ± 0.023 | ||
p value (between groups) | 0.809 | 0.387 | 0.052 | |||||
Waist/hip ratio difference % † | 0.456 ± 3.648 | 0.388 ± 1.785 | 0.885 ± 3.972 | 0.119 ± 3.105 | 0.389 ± 4.049 | 2.240 ± 2.524 | ||
p value (between groups) | 0.927 | 0.409 | 0.038 * | |||||
BMI (kg/m2) † | 24.01 ± 2.271 | 24.674 ± 2.023 | 23.751 ± 2.259 | 24.376 ± 2.283 | 23.578 ± 2.311 | 23.822 ± 2.476 | 23.323 ± 2.461 | 23.447 ± 2.301 |
p value (between groups) | 0.24 | 0.29 | 0.69 | 0.84 |
Parameters | Baseline | Day 30 | Day 60 | Day 90 | ||||
---|---|---|---|---|---|---|---|---|
Group A | Group B | Group A | Group B | Group A | Group B | Group A | Group B | |
Total cholesterol (mg/dL) † | 176.300 ± 23.476 | 187.800 ± 32.964 | 179.900 ± 25.841 | 182.367 ± 28.695 | 175.533 ± 24.274 | 171.333 ± 35.856 | 179.667 ± 22.225 | 175.333 ± 28.585 |
p value (between groups) p value (within group) | 0.125 | 0.728 | 0.597 | 0.515 <0.0001 * | ||||
Triglyceride (mg/dL) † | 159.167 ± 70.445 | 177.733 ± 84.736 | 157.100 ± 68.364 | 154.667 ± 52.341 | 150.000 ± 61.630 | 151.167 ± 48.471 | 149.533 ± 58.819 | 150.500 ± 43.793 |
p value (between groups) p value (within group) | 0.360 | 0.878 | 0.935 | 0.943 0.006 * | ||||
HDL (mg/dL) † | 36.667 ± 5.862 | 38.567 ± 5.952 | 38.067 ± 5.271 | 39.267 ± 5.375 | 37.767 ± 4.439 | 39.300 ± 5.522 | 38.633 ± 4.745 | 38.300 ± 4.801 |
p value (between groups) | 0.218 | 0.386 | 0.241 | 0.788 | ||||
LDL (mg/dL) † | 107.867 ± 17.795 | 113.640 ± 31.730 | 110.500 ± 18.877 | 112.167 ± 26.019 | 107.633 ± 18.669 | 104.613 ± 26.833 | 110.633 ± 17.616 | 106.933 ± 25.377 |
p value (between groups) p value (within group) | 0.388 | 0.777 | 0.615 | 0.514 0.0490 * | ||||
VLDL (mg/dL) † | 31.833 ± 14.089 | 35.580 ± 16.929 | 31.467 ± 13.673 | 30.933 ± 10.468 | 29.333 ± 12.337 | 31.967 ± 13.895 | 30.373 ± 11.746 | 30.167 ± 8.789 |
p value (between groups) p value (within group) | 0.355 | 0.866 | 0.551 | 0.939 0.006 * | ||||
RBS (mg/dL) † | 95.567 ± 17.561 | 93.100 ± 14.456 | 90.467 ± 12.252 | 93.200 ± 16.606 | 89.333 ± 9.925 | 84.962 ± 19.622 | 89.967 ± 8.002 | 86.767 ± 16.400 |
p value (between groups) p value (within group) | 0.555 | 0.471 | 0.281 | 0.341 0.028 * | ||||
HbA1c % † | 5.530 ± 0.447 | 5.570 ± 0.462 | 5.527 ± 0.376 | 5.483 ± 0.424 | 5.537 ± 0.334 | 5.377 ± 0.387 | 5.520 ± 0.350 | 5.437 ± 0.420 |
p value (between groups) p value (within group) | 0.735 | 0.677 | 0.092 | 0.407 <0.0001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aswathiah, S.; Prabhu, S.K.; Lingaiah, R.; Ramanna, A.; Prabhu, J.S.; Pankaj, S.K.; Mehta, A.; Bapna, A.; Raghavan, G. Effect of a Novel Sugar Blend on Weight and Cardiometabolic Health among Healthy Indian Adults: A Randomized, Open-Label Study. Foods 2022, 11, 3545. https://doi.org/10.3390/foods11223545
Aswathiah S, Prabhu SK, Lingaiah R, Ramanna A, Prabhu JS, Pankaj SK, Mehta A, Bapna A, Raghavan G. Effect of a Novel Sugar Blend on Weight and Cardiometabolic Health among Healthy Indian Adults: A Randomized, Open-Label Study. Foods. 2022; 11(22):3545. https://doi.org/10.3390/foods11223545
Chicago/Turabian StyleAswathiah, Srinath, Sunil Kumar Prabhu, Ramanna Lingaiah, Anusha Ramanna, Jyothi S. Prabhu, Shashi Kishor Pankaj, Arti Mehta, Arohi Bapna, and Govindarajan Raghavan. 2022. "Effect of a Novel Sugar Blend on Weight and Cardiometabolic Health among Healthy Indian Adults: A Randomized, Open-Label Study" Foods 11, no. 22: 3545. https://doi.org/10.3390/foods11223545
APA StyleAswathiah, S., Prabhu, S. K., Lingaiah, R., Ramanna, A., Prabhu, J. S., Pankaj, S. K., Mehta, A., Bapna, A., & Raghavan, G. (2022). Effect of a Novel Sugar Blend on Weight and Cardiometabolic Health among Healthy Indian Adults: A Randomized, Open-Label Study. Foods, 11(22), 3545. https://doi.org/10.3390/foods11223545