Physical Properties, α-Glucosidase Inhibitory Activity, and Digestive Stability of Four Purple Corn Cob Anthocyanin Complexes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of PCCA
2.2. Preparation of PCCA Complex
2.3. Encapsulation Efficiency (EE)
2.4. Physical Properties of the PCCA Complexes
2.4.1. Determination of Solubility
2.4.2. Determination of Hygroscopicity
2.4.3. Determination of Zeta Potential
2.5. Structural Characterization of the PCCA Complexes
2.5.1. Scanning Electron Microscopy (SEM)
2.5.2. FTIR Analysis
2.5.3. XRD Analysis
2.6. α-Glucosidase Inhibitory Ability
2.7. Simulated In Vitro Digestion of PCCA Complexes
2.8. Determination of PCCA during Digestion Using High Performance Liquid Chromatography-Quadrupole Time of Flight Mass Spectrometer (HPLC-Q-TOF-MS)
2.9. Statistical Analysis
3. Results and Discussion
3.1. Encapsulation Efficiency and Physical Properties of the PCCA Complexes
3.2. Structural Characterization of the Steady-State PCCA Complex
3.2.1. SEM Analysis
3.2.2. FTIR Analysis
3.2.3. XRD Analysis
3.3. α-Glucosidase Inhibition Ability
3.4. Simulated In Vitro Digestion
3.4.1. Stability of Total Anthocyanins Content (TAC) during Digestion of PCCA and Its Complexes
3.4.2. Stability of Individual Anthocyanins during Digestion of PCCA and Its Complexes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tarone, A.G.; Cazarin, C.B.B.; Marostica, M.R., Jr. Anthocyanins: New Techniques and Challenges in Microencapsulation. Food Res. Int. 2020, 133, 109092. [Google Scholar] [CrossRef] [PubMed]
- Díaz-García, A.; Salvá-Ruíz, B.; Bautista-Cruz, N.; Condezo-Hoyos, L. Optimization of a Natural Low-Calorie Antioxidant Tea Prepared from Purple Corn (Zea mays L.) Cobs and Stevia (Stevia Rebaudiana bert.). LWT Food Sci. Technol. 2021, 150, 111952. [Google Scholar] [CrossRef]
- Xu, H.Y.; Liu, M.H.; Liu, H.M.; Zhao, B.L.; Zheng, M.Z.; Liu, J.S. Anthocyanins from Purple Corn Ameliorated Obesity in High Fat Diet-Induced Obese Mice Through Activating Hepatic AMPK. J. Funct. Foods 2021, 84, 104582. [Google Scholar] [CrossRef]
- Moreira, V.; Stanquevis, R.; Amaral, E.P.; Lajolo, F.M.; Hassimotto, N.M.A. Anthocyanins from Purple Maize (Zea mays L.) Downregulate Lipopolysaccharide-Induced Peritonitis in Mice by Modulating the MyD88 Signaling Pathway. PharmaNutrition 2021, 16, 100625. [Google Scholar] [CrossRef]
- Bao, C.; Jiang, P.; Chai, J.; Jiang, Y.; Li, D.; Bao, W.; Liu, B.; Liu, B.; Norde, W.; Li, Y. The Delivery of Sensitive Food Bioactive Ingredients: Absorption Mechanisms, Influencing Factors, Encapsulation Techniques and Evaluation Models. Food Res. Int. 2019, 120, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Rehman, R.N.U.; You, Y.; Zhang, L.; Goudia, B.D.; Khan, A.R.; Li, P.; Ma, F. High Temperature Induced Anthocyanin Inhibition and Active Degradation in Malus Profusion. Front. Plant Sci. 2017, 8, 1401. [Google Scholar] [CrossRef]
- Cui, H.J.; Si, X.; Tian, J.L.; Lang, Y.X.; Gao, N.X.; Tan, H.; Bian, Y.; Zang, Z.; Jiang, Q.; Bao, Y.; et al. Anthocyanins-Loaded Nanocomplexes Comprising Casein and Carboxymethyl Cellulose: Stability, Antioxidant Capacity, and Bioaccessibility. Food Hydrocoll. 2022, 122, 107073. [Google Scholar] [CrossRef]
- Zang, Z.H.; Chou, S.R.; Geng, L.J.; Si, X.; Ding, Y.M.; Lang, Y.X.; Cui, H.; Gao, N.; Chen, Y.; Wang, M.; et al. Interactions of Blueberry Anthocyanins with Whey Protein Isolate and Bovine Serum Protein: Color Stability, Antioxidant Activity, In Vitro Simulation, and Protein Functionality. LWT Food Sci. Technol. 2021, 152, 112269. [Google Scholar] [CrossRef]
- Wu, D.; Zheng, J.; Mao, G.; Hu, W.; Ye, X.; Linhardt, R.J.; Chen, S.G. Rethinking the Impact of RG-I Mainly from Fruits and Vegetables on Dietary Health. Crit. Rev. Food Sci. Nutr. 2020, 60, 2938–2960. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.D.; Tie, S.S.; Hou, S.; Wang, H.T.; Song, Y.K.; Rai, R.; Tan, M. Facile Synthesis of Nano-nanocarriers from Chitosan and Pectin with Improved Stability and Biocompatibility for Anthocyanins Delivery: An In Vitro and In Vivo Study. Food Hydrocoll. 2020, 109, 106114. [Google Scholar] [CrossRef]
- Cho, E.H.; Jung, H.T.; Lee, B.H.; Kim, H.S.; Rhee, J.K.; Yoo, S.H. Green Process Development for Apple-Peel Pectin Production by Organic Acid Extraction. Carbohydr. Polym. 2019, 204, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Mathew, S.; Abraham, T.E. Characterisation of Ferulic Acid Incorporated Starch-Chitosan Blend Films. Food Hydrocoll. 2008, 22, 826–835. [Google Scholar] [CrossRef]
- Khalifa, I.; Nie, R.; Ge, Z.; Li, K.; Li, C. Understanding the Shielding Effects of Whey Protein on Mulberry Anthocyanins: Insights from Multispectral and Molecular Modelling Investigations. Int. J. Biol. Macromol. 2018, 119, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Koh, J.; Xu, Z.M.; Wicker, L. Blueberry Pectin and Increased Anthocyanins Stability Under In Vitro Digestion. Food Chem. 2020, 302, 125343. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Yue, X.Y.; Wang, S.; Chi, J.P.; Liang, J.; Sun, Y.; Gao, X.; Yue, P. Nanocomplexes Composed of Chitosan Derivatives and β-Lactoglobulin as a Carrier for Anthocyanins: Preparation, Stability and Bioavailability In Vitro. Food Res. Int. 2019, 116, 336–345. [Google Scholar] [CrossRef]
- Ren, S.; Giusti, M.M. The Effect of Whey Protein Concentration and Preheating Temperature on the Color and Stability of Purple Corn, Grape and Black Carrot Anthocyanins in the Presence of Ascorbic Acid. Food Res. Int. 2021, 144, 110350. [Google Scholar] [CrossRef] [PubMed]
- Lang, Y.X.; Li, B.; Gong, E.S.; Shu, C.; Si, X.; Gao, N.; Zhang, W.; Cui, H.; Meng, X. Effects of Alpha-Casein and Beta-Casein on the Stability, Antioxidant Activity and Bioaccessibility of Blueberry Anthocyanins with an In Vitro Simulated Digestion. Food Chem. 2021, 334, 127526. [Google Scholar] [CrossRef] [PubMed]
- Oancea, A.M.; Hasan, M.; Vasile, A.M.; Barbu, V.; Enachi, E.; Bahrim, G.; Râpeanu, G.; Silvi, S.; Stănciuc, N. Functional Evaluation of Microencapsulated Anthocyanins from Sour Cherries Skins Extract in Whey Proteins Isolate. LWT 2018, 95, 129–134. [Google Scholar] [CrossRef]
- Yang, Z.D.; Zhai, W.W. Optimization of Microwave-Assisted Extraction of Anthocyanins from Purple Corn (Zea mays L.) Cob and Identification with HPLC-MS. Innov. Food Sci. Emerg. Technol. 2010, 11, 470–476. [Google Scholar] [CrossRef]
- He, B.; Ge, J.; Yue, P.X.; Yue, X.Y.; Fu, R.Y.; Liang, J.; Gao, X. Loading of Anthocyanins on Chitosan Nanoparticles Influences Anthocyanin Degradation in Gastrointestinal Fluids and Stability in a Beverage. Food Chem. 2017, 221, 1671–1677. [Google Scholar] [CrossRef]
- Shittu, T.A.; Lawal, M.O. Factors Affecting Instant Properties of Powdered Cocoa Beverages. Food Chem. 2007, 100, 91–98. [Google Scholar] [CrossRef]
- Kanha, N.; Regenstein, J.M.; Surawang, S.; Pitchakarn, P.; Laokuldilok, T. Properties and Kinetics of the In Vitro Release of Anthocyanin-Rich Microcapsules Produced Through Spray and Freeze-Drying Complex Coacervated Double Emulsions. Food Chem. 2021, 340, 127950. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Kumar, H.; Vedasiromoni, J.R.; Pal, B.C. Bio-assay Guided Isolation of a-Glucosidase Inhibitory Constituents from Hibiscus Mutabilis Leaves. Phytochem. Anal. 2012, 23, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Selmi, G.A.; Bozza, F.T.; Thomazini, M.; Bolini, H.M.A.; Fávaro-Trindade, C.S. Microencapsulation of Aspartame by Double Emulsion Followed by Complex Coacervation to Provide Protection and Prolong Sweetness. Food Chem. 2013, 139, 72–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, D.F.; Favaro-Trindade, C.S.; Rocha, G.A.; Thomazini, M. Microencapsulation of Lycopene by Gelatin-Pectin Complex Coacervation. J. Food Process. Preserv. 2012, 36, 185–190. [Google Scholar] [CrossRef]
- Shaddel, R.; Hesari, J.; Azadmard-Damirchi, S.; Hamishehkar, H.; Fathi-Achachlouei, B.; Huang, Q.R. Double Emulsion Followed by Complex Coacervation as a Promising Method for Protection of Black Raspberry Anthocyanins. Food Hydrocoll. 2018, 77, 803–816. [Google Scholar] [CrossRef]
- Kong, F.H.; Kang, S.; Tian, J.L.; Li, M.H.; Liang, X.N.; Yang, M.; Zheng, Y.; Pi, Y.; Cao, X.; Liu, Y.; et al. Interaction of Xylitol with Whey Proteins: Multi-spectroscopic Techniques and Docking Studies. Food Chem. 2020, 326, 126804. [Google Scholar] [CrossRef]
- Klimaviciute, R.; Navikaite, V.; Jakstas, V.; Ivanauskas, L. Complexes of Dextran Sulfate and Anthocyanins from Vaccinium myrtillus: Formation and Stability. Carbohydr. Polym. 2015, 129, 70–78. [Google Scholar] [CrossRef]
- Yong, H.M.; Wang, X.C.; Bai, R.Y.; Miao, Z.Q.; Zhang, X.; Liu, J. Development of Antioxidant and Intelligent pH-Sensing Packaging Films by Incorporating Purple-Fleshed Sweet Potato Extract into Chitosan Matrix. Food Hydrocoll. 2019, 90, 216–224. [Google Scholar] [CrossRef]
- Guo, Z.; Zuo, H.; Ling, H.; Yu, Q.; Gou, Q.M.; Yang, L. A Novel Colorimetric Indicator Film Based on Watermelon Peel Pectin and Anthocyanins from Purple Cabbage for Monitoring Mutton Freshness. Food Chem. 2022, 383, 131915. [Google Scholar] [CrossRef]
- Cai, X.R.; Du, X.F.; Cui, D.M.; Wang, X.N.; Yang, Z.K.; Zhu, G.L. Improvement of Stability of Blueberry Anthocyanins by Carboxymethyl Starch/Xanthan Gum Combinations Microencapsulation. Food Hydrocoll. 2019, 91, 238–245. [Google Scholar] [CrossRef]
- Carra, J.B.; Matos, R.L.N.; Novelli, A.P.; Couto, R.O.D.; Yamashita, F.; Ribeiro, M.A.D.S.; Meurer, E.C.; Verri, W.A.; Casagrande, R.; Georgetti, S.R.; et al. Spray-Drying of Casein/Pectin Bioconjugate Microcapsules Containing Grape (Vitis labrusca) By-Product Extract. Food Chem. 2022, 368, 130817. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.A., Jr.; de Arruda, I.N.Q.; Stefani, R. Active Chitosan/PVA Films with Anthocyanins from Brassica Oleraceae (Red Cabbage) as Time-Temperature Indicators for Application in Intelligent Food Packaging. Food Hydrocoll. 2015, 43, 180–188. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Sauraj; Kumar, B.; Deeba, F.; Kulshreshtha, A.; Negi, Y.S. Chitosan films incorporated with Apricot (Prunus armeniaca) kernel essential oil as active food packaging material. Food Hydrocoll. 2018, 85, 158–166. [Google Scholar] [CrossRef]
- Melih, G.; Akpınar, Ö. Valorisation of Fruit By-Products: Production Characterization of Pectins from Fruit Peels. Food Bioprod. Process. 2019, 115, 126–133. [Google Scholar]
- Liu, L.Y.; Zhang, D.D.; Song, X.X.; Guo, M.; Wang, Z.W.; Geng, F.; Zhou, X.; Nie, S. Compound Hydrogels Derived from Gelatin and Gellan Gum Regulates the Release of Anthocyanins in Simulated Digestion. Food Hydrocoll. 2022, 127, 107487. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Smith, B.; Guo, Y. Pectin Extraction from Common Fig Skin by Different Methods: The Physicochemical, Rheological, Functional, and Structural Evaluations. Int. J. Biol. Macromol. 2019, 136, 275–283. [Google Scholar] [CrossRef]
- Lopez, O.; Garcia, M.A.; Villar, M.A.; Gentili, A.; Rodriguez, M.S.; Albertengo, L. Thermo-compression of Biodegradable Thermoplastic Corn Starch Films Containing Chitin and Chitosan. LWT Food Sci. Technol. 2014, 57, 106–115. [Google Scholar] [CrossRef]
- Liu, J.; Liu, S.; Wu, Q.Q.; Gu, Y.Y.; Kan, J.; Jin, C.H. Effect of Protocatechuic Acid Incorporation on the Physical, Mechanical, Structural and Antioxidant Properties of Chitosan Film. Food Hydrocoll. 2017, 73, 90–100. [Google Scholar] [CrossRef]
- Liu, Y.J.; Cai, Y.X.; Jiang, X.Y.; Wu, J.P.; Le, X.Y. Molecular Interactions, Characterization and Antimicrobial Activity of Curcumin-Chitosan Blend Films. Food Hydrocoll. 2016, 52, 564–572. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, J.L.; Shen, L.H.; Feng, L.J.; Zhou, Q. Inhibition Mechanism of Diacylated Anthocyanins from Purple Sweet Potato (Ipomoea batatas L.) Against α-Amylase and α-Glucosidase. Food Chem. 2021, 359, 129934. [Google Scholar] [CrossRef] [PubMed]
- Dou, Z.M.; Chen, C.; Huang, Q.; Fu, X. In Vitro Digestion of the Whole Blackberry Fruit: Bioaccessibility, Bioactive Variation of Active Ingredients and Impacts on Human Gut Microbiota. Food Chem. 2022, 370, 131001. [Google Scholar] [CrossRef]
- Kim, I.; Moon, J.K.; Hur, S.J.; Lee, J. Structural Changes in Mulberry (Morus Microphylla. Buckl) and Chokeberry (Aronia Melanocarpa) Anthocyanins during Simulated in Vitro Human Digestion. Food Chem. 2020, 318, 126449. [Google Scholar] [CrossRef] [PubMed]
- Segul, H.; Surek, E.; Nilufer-Erdil, D. Investigating the Effects of Food Matrix and Food Components on Bioaccessibility of Pomegranate (Punica granatum) Phenolics and Anthocyanins Using an In-Vitro Gastrointestinal Digestion Model. Food Res. Int. 2014, 62, 1069–1079. [Google Scholar] [CrossRef] [Green Version]
- Zang, Z.H.; Chou, S.R.; Tian, J.L.; Lang, Y.X.; Shen, Y.X.; Ran, X.L.; Gao, N.; Li, B. Effect of Whey Protein Isolate on the Stability and Antioxidant Capacity of Blueberry Anthocyanins: A Mechanistic and In Vitro Simulation Study. Food Chem. 2021, 336, 127700. [Google Scholar] [CrossRef]
- David, L.; Danciu, V.; Moldovan, B.; Filip, A. Effects of In Vitro Gastrointestinal Digestion on the Antioxidant Capacity and Anthocyanin Content of Cornelian Cherry Fruit Extract. Antioxidants 2019, 8, 114. [Google Scholar] [CrossRef] [PubMed]
EE/% | Solubility/% | Hygroscopicity/% | ζ-Potential/mV | |
---|---|---|---|---|
PC−PCCA | 45.83% ± 0.45 c | 12.30 ± 0.98 c | 13.10 ± 0.45 c | 7.18 ± 0.61 c |
WPI−PCCA | 41.80% ± 0.05 d | 20.73 ± 0.25 b | 20.93 ± 0.12 a | −13.21 ± 0.54 b |
WPI−PC−PCCA | 58.84% ± 2.82 a | 28.16 ± 1.38 a | 13.93 ± 0.19 b | 8.04 ± 0.26 c |
CS−PC−PCCA | 48.13% ± 2.73 b | 10.57 ± 1.26 c | 10.23 ± 0.28 d | 28.20 ± 1.14 a |
Total Anthocyanin Content (mg/L) | ||||||
---|---|---|---|---|---|---|
Origin | Mouth | Gastric 1 h | Gastric 2 h | Intestinal 1 h | Intestinal 2 h | |
PCCA | 580.36 ± 4.82 a | 550.61 ± 3.16 b | 523.56 ± 2.89 c | 491.48 ± 3.21 d | 127.64 ± 2.21 e | 75.84 ± 0.98 f |
PC−PCCA | 395.64 ± 1.77 a | 387.25 ± 2.14 b | 369.62 ± 4.14 c | 363.51 ± 2.44 d | 162.33 ± 1.36 e | 94.32 ± 1.16 f |
WPI−PCCA | 481.37 ± 2.28 a | 467.49 ± 2.49 b | 438.08 ± 2.36 c | 419.90 ± 2.67 d | 179.87 ± 1.44 e | 109.61 ± 1.27 f |
WPI−PC−PCCA | 413.39 ± 3.27 a | 394.38 ± 3.27 b | 367.47 ± 1.19 c | 351.44 ± 1.03 d | 138.88 ± 0.93 e | 80.39 ± 1.08 f |
CS−PC−PCCA | 405.05 ± 2.14 a | 396.22 ± 2.55 b | 387.87 ± 2.16 c | 374.47 ± 2.14 d | 159.02 ± 2.48 e | 101.26 ± 3.42 f |
NO. (Peak) | tR (min) | Precursor Ion (m/z) | Theoretical Mass (m/z) | Proposed Formula | Product Ions (m/z) | Proposed Structure |
---|---|---|---|---|---|---|
1 | 9.210 | 287.0552 | 287.055 | C15H11O6 | 213.0534 | Cyanidin |
2 | 10.136 | 621.1091 | 621.1086 | C27H25O17 | 287.0555 | Cyanidin-3-O-(3″,6″-dimalonylglucoside) |
3 | 9.260 | 535.1084 | 535.1082 | C24H22O14 | 287.0540 | Cyanidin-3-O-(6″-malonylglucoside) |
4 | 8.318 | 449.1092 | 449.1078 | C21H21O11 | 287.0557 | Cyanidin-3-O-glucoside |
5 | 10.253 | 577.1238 | 577.1188 | C26H25O15 | 287.0600 | Cyanidin-3-O-sambubioside |
6 | 11.802 | 331.0820 | 331.0812 | C17H15O7 | 315.0498 | Malvidin |
7 | 11.751 | 493.1343 | 493.1346 | C23H25O12 | 331.0801 | Malvidin-3-O-glucoside |
8 | 12.610 | 579.1360 | 579.1344 | C26H27O15 | 331.0798 | Malvidin-3-O-(6″-malonylglucoside) |
9 | 12.088 | 639.1613 | 639.1556 | C28H31O17 | 331.0811 | Malvidin-3-O-rutinoside |
10 | 8.637 | 271.0647 | 271.0606 | C15H11O5 | 253.0537 | Pelargonidin |
11 | 5.911 | 595.1658 | 595.1657 | C27H31O15 | 271.0592 | Pelargonidin-3,5-diglucoside |
12 | 8.722 | 433.1134 | 433.1129 | C21H21O10 | 271.0603 | Pelargonidin-3-O-glucoside |
13 | 9.732 | 519.1140 | 519.1133 | C24H23O13 | 271.0602 | Pelargonidin-3-O-(6″-malonylglucoside) |
14 | 10.455 | 605.1167 | 605.1137 | C27H25O16 | 271.0593 | Pelargonidin-3-O-(dimalonylglucoside) |
15 | 7.510 | 625.1782 | 625.1763 | C28H33O16 | 301.0706 | Peonidin-3,5-diglucoside |
16 | 10.321 | 549.1253 | 549.1239 | C25H25O14 | 301.0707 | Peonidin-3-O-(6″-malonylglucoside) |
17 | 12.004 | 577.1569 | 577.1552 | C27H29O14 | 301.0719 | Peonidin-3-O-(6″-ethyl malonylglucoside) |
18 | 10.489 | 635.1247 | 635.1243 | C28H27O17 | 301.0710 | Peonidin-3-O-(dimalonylglucoside) |
19 | 8.907 | 463.1230 | 463.1240 | C22H23O11 | 301.0695 | Peonidin-3-O-glucoside |
20 | 11.196 | 591.1383 | 591.1344 | C27H27O15 | 301.0694 | Peonidin-3-O-sambubioside |
21 | 11.903 | 317.0676 | 317.0656 | C16H13O7 | 302.0446 | Petunidin |
22 | 11.635 | 625.1765 | 625.1763 | C28H33O16 | 317.0647 | Petunidin-3-rutinoside |
23 | 12.913 | 565.1200 | 565.1188 | C25H24O15 | 317.0648 | Petunidin-3-O-(6″-malonylglucoside) |
NO. (Peak) | Proposed Structure | PCCA | PC−PCCA | WPI−PCCA | CS−PC−PCCA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Origin | Gastric 2 h | Intestinal 2 h | Origin | Gastric 2 h | Intestinal 2 h | Origin | Gastric 2 h | Intestinal 2 h | Origin | Gastric 2 h | Intestinal 2 h | ||
1 | Cyanidin | 0.27 ± 0.03 a | 0.29 ± 0.01 a | ND | 0.09 ± 0.01 a | 0.10 ± 0.03 a | ND | 0.10 ± 0.02 a | 0.09 ± 0.01 a | ND | 0.05 ± 0.01 a | 0.06 ± 0.00 a | 0.01 ± 0.00 b |
2 | Cyanidin-3-O-(3″,6″-dimalonylglucoside) | 1.32 ± 0.08 a | 0.97 ± 0.05 b | 0.25 ± 0.08 c | 0.75 ± 0.06 a | 0.49 ± 0.04 b | 0.15 ± 0.05 c | 1.16 ± 0.08 a | 0.69 ± 0.03 b | 0.20 ± 0.02 c | 1.09 ± 0.22 a | 0.68 ± 0.08 b | 0.11 ± 0.06 c |
3 | Cyanidin-3-O-(6″-malonylglucoside) | 0.34 ± 0.05 a | 0.25 ± 0.04 b | 0.08 ± 0.02 c | 0.23 ± 0.04 a | 0.15 ± 0.04 b | 0.06 ± 0.07 c | 0.21 ± 0.04 a | 0.11 ± 0.01 b | 0.04 ± 0.05 c | 0.16 ± 0.01 a | 0.13 ± 0.02 b | 0.05 ± 0.02 c |
4 | Cyanidin-3-O-glucoside | 74.23 ± 0.81 a | 53.35 ± 0.43 b | ND | 43.91 ± 0.07 a | 25.31 ± 0.21 b | ND | 91.30 ± 0.20 a | 64.57 ± 0.03 b | ND | 95.14 ± 0.30 a | 69.64 ± 0.13 b | ND |
5 | Cyanidin-3-O-sambubioside | 7.83 ± 0.51 a | 6.84 ± 0.16 b | ND | 20.96 ± 0.42 b | 24.46 ± 0.46 a | ND | 20.94 ± 0.66 a | 19.44 ± 0.34 b | 0.33 ± 0.02 c | 20.83 ± 0.85 b | 22.65 ± 0.49 a | ND |
6 | Malvidin | 23.98 ± 0.14 c | 16.21 ± 0.12 b | 4.63 ± 0.34 c | 63.83 ± 0.49 b | 71.78 ± 0.73 a | 14.11 ± 0.16 c | 84.61 ± 0.87 b | 100.73 ± 0.2 a | 17.50 ± 0.07 c | 57.48 ± 0.04 b | 71.33 ± 0.43 a | 15.93 ± 0.34 c |
7 | Malvidin-3-O-glucoside | 5.46 ± 0.02 a | 1.89 ± 0.21 b | 0.17 ± 0.01 c | 0.36 ± 0.03 a | 0.21 ± 0.01 b | 0.02 ± 0.02 c | 1.06 ± 0.08 a | 0.67 ± 0.01 b | 0.07 ± 0.11 c | 1.24 ± 0.31 a | 0.87 ± 0.26 b | 0.12 ± 0.03 c |
8 | Malvidin-3-O-(6″-malonylglucoside) | 8.02 ± 0.25 a | 4.72 ± 0.23 b | 0.11 ± 0.02 c | 7.39 ± 0.33 a | 2.63 ± 0.12 b | 1.17 ± 0.22 c | 3.66 ± 0.44 a | 2.54 ± 0.13 b | 0.92 ± 0.24 c | 5.91 ± 0.41 a | 2.68 ± 0.46 b | 0.15 ± 0.04 c |
9 | Malvidin-3-O-rutinoside | 1.78 ± 0.02 a | 1.37 ± 0.10 a | 0.43 ± 0.41 b | 1.69 ± 0.04 b | 2.18 ± 0.91 a | 0.52 ± 0.07 c | 2.54 ± 0.23 a | 1.67 ± 0.91 ab | 0.68 ± 0.02 b | 1.85 ± 0.08 b | 2.32 ± 0.12 a | 0.59 ± 0.04 c |
10 | Pelargonidin | 26.66 ± 0.86 a | 21.55 ± 0.44 b | 0.21 ± 0.03 c | 5.52 ± 0.29 a | 4.53 ± 0.03 b | 0.39 ± 0.02 b | 1.98 ± 0.06 a | 1.16 ± 0.03 b | 0.19 ± 0.03 c | 1.88 ± 0.02 a | 1.51 ± 0.02 b | 0.21 ± 0.00 c |
11 | Pelargonidin-3,5-diglucoside | 2.15 ± 0.03 a | 1.92 ± 0.23 a | 0.59 ± 0.08 b | 3.60 ± 0.05 a | 2.64 ± 0.05 b | 1.02 ± 0.15 c | 3.18 ± 0.42 a | 2.53 ± 0.16 b | 0.92 ± 0.07 c | 2.73 ± 0.08 a | 2.38 ± 0.19 a | 0.87 ± 0.25 b |
12 | Pelargonidin-3-O-glucoside | 210.31 ± 0.8 a | 158.82 ± 0.2 b | 20.53 ± 0.62 c | 66.74 ± 0.67 a | 44.68 ± 0.61 b | 18.07 ± 0.30 c | 79.67 ± 0.53 a | 52.6 ± 0.72 b | 16.49 ± 0.41 c | 57.73 ± 0.47 a | 40.66 ± 0.21 b | 16.92 ± 0.06 c |
13 | Pelargonidin-3-O-(6″-malonylglucoside) | 107.30 ± 0.6 a | 98.40 ± 0.51 b | 7.29 ± 0.15 c | 74.71 ± 0.19 a | 69.74 ± 0.34 b | 7.09 ± 0.23 c | 38.13 ± 2.32 a | 32.20 ± 0.70 b | 3.98 ± 0.68 c | 66.61 ± 0.33 a | 61.87 ± 0.91 b | 12.62 ± 0.65 c |
14 | Pelargonidin-3-O-(dimalonylglucoside) | 4.09 ± 0.55 a | 3.61 ± 0.08 b | 0.82 ± 0.09 c | 9.96 ± 0.44 a | 9.02 ± 0.57 b | 2.01 ± 0.22 c | 5.25 ± 0.19 a | 4.93 ± 0.47 a | 1.27 ± 0.61 b | 3.00 ± 0.62 a | 2.79 ± 0.49 a | 0.78 ± 0.21 a |
15 | Peonidin-3,5-diglucoside | 1.22 ± 0.04 a | 1.04 ± 0.01 b | ND | 3.77 ± 0.21 b | 4.18 ± 0.29 a | 0.26 ± 0.02 c | 7.07 ± 0.30 b | 8.14 ± 0.59 a | ND | 5.94 ± 0.18 b | 6.97 ± 0.03 a | ND |
16 | Peonidin-3-O-(6″-malonylglucoside) | 1.87 ± 0.03 a | 1.60 ± 0.07 b | 0.04 ± 0.02 c | 10.21 ± 0.21 a | 9.30 ± 0.22 b | 1.01 ± 0.01 c | 5.42 ± 0.07 a | 4.41 ± 0.03 b | ND | 17.89 ± 0.03 a | 15.70 ± 0.24 b | 1.83 ± 0.04 c |
17 | Peonidin-3-O-(6″-ethyl malonylglucoside) | 24.71 ± 0.43 b | 26.44 ± 0.70 a | 0.24 ± 0.05 c | 66.58 ± 0.50 b | 76.14 ± 0.72 a | ND | 66.52 ± 7.03 a | 67.72 ± 0.77 a | 0.77 ± 0.08 b | 66.17 ± 0.50 b | 72.96 ± 0.73 a | 1.27 ± 0.06 c |
18 | Peonidin-3-O-(dimalonylglucoside) | 5.52 ± 0.25 a | 4.80 ± 0.09 b | ND | 7.75 ± 0.47 b | 8.79 ± 0.62 a | 1.22 ± 0.06 c | 11.90 ± 0.91 b | 13.41 ± 0.62 a | 2.04 ± 0.09 c | 13.52 ± 0.82 b | 15.02 ± 0.80 a | 2.70 ± 0.04 c |
19 | Peonidin-3-O-glucoside | 68.04 ± 0.37 a | 61.49 ± 0.42 b | 18.09 ± 0.68 c | 20.54 ± 0.59 a | 19.04 ± 0.13 b | 6.09 ± 0.54 c | 21.82 ± 0.80 a | 20.30 ± 0.40 a | 6.14 ± 0.40 b | 23.14 ± 1.39 a | 21.71 ± 0.25 b | 7.15 ± 0.26 c |
20 | Peonidin-3-O-sambubioside | 5.38 ± 0.26 a | 4.51 ± 1.54 ab | 0.91 ± 0.86 b | 11.03 ± 2.74 a | 9.51 ± 1.57 ab | 2.78 ± 1.26 b | 11.72 ± 0.59 a | 10.38 ± 3.72 a | 2.61 ± 1.09 b | 4.79 ± 1.51 a | 4.31 ± 1.18 a | 1.13 ± 1.71 a |
21 | Petunidin | 3.09 ± 0.14 b | 2.89 ± 0.52 a | ND | 3.62 ± 0.23 a | 3.46 ± 0.04 b | ND | 2.94 ± 0.18 a | 2.79 ± 0.06 b | 0.02 ± 0.01 c | 1.09 ± 0.05 a | 0.98 ± 0.03 b | ND |
22 | Petunidin-3-rutinoside | 0.03 ± 0.00 a | 0.03 ± 0.01 a | ND | 0.38 ± 0.04 ab | 0.41 ± 0.46 a | 0.02 ± 0.00 b | 0.73 ± 0.02 b | 0.84 ± 0.05 a | ND | 0.61 ± 0.05 b | 0.72 ± 0.02 a | ND |
23 | Petunidin-3-O-(6″-malonylglucoside) | 0.67 ± 0.08 a | 0.62 ± 0.07 a | 0.19 ± 0.04 b | 21.53 ± 0.04 a | 19.49 ± 0.35 b | 6.49 ± 0.04 c | 30.23 ± 0.11 a | 26.97 ± 0.07 b | 8.484 ± 0.03 c | 0.67 ± 0.03 a | 0.59 ± 0.07 b | 0.20 ± 0.05 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, J.; Ruan, Y.; Feng, Y.; Li, B. Physical Properties, α-Glucosidase Inhibitory Activity, and Digestive Stability of Four Purple Corn Cob Anthocyanin Complexes. Foods 2022, 11, 3665. https://doi.org/10.3390/foods11223665
Dai J, Ruan Y, Feng Y, Li B. Physical Properties, α-Glucosidase Inhibitory Activity, and Digestive Stability of Four Purple Corn Cob Anthocyanin Complexes. Foods. 2022; 11(22):3665. https://doi.org/10.3390/foods11223665
Chicago/Turabian StyleDai, Jialin, Yanye Ruan, Ying Feng, and Bin Li. 2022. "Physical Properties, α-Glucosidase Inhibitory Activity, and Digestive Stability of Four Purple Corn Cob Anthocyanin Complexes" Foods 11, no. 22: 3665. https://doi.org/10.3390/foods11223665
APA StyleDai, J., Ruan, Y., Feng, Y., & Li, B. (2022). Physical Properties, α-Glucosidase Inhibitory Activity, and Digestive Stability of Four Purple Corn Cob Anthocyanin Complexes. Foods, 11(22), 3665. https://doi.org/10.3390/foods11223665