Investigating the Tocopherol Contents of Walnut Seed Oils Produced in Different European Countries Analyzed by HPLC-UV: A Comparative Study on the Basis of Geographical Origin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Walnut Samples
2.3. Instrumentation
2.4. Chromatographic Analysis
2.5. Sample Preparation
2.6. Method Validation
2.7. Statistical Analysis
3. Results
3.1. Method Validation Results
3.2. Walnut Seed Oil Analysis
3.3. Quantitative Analysis of Tocopherols
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rébufa, C.; Artaud, J.; Le Dréau, Y. Walnut (Juglans Regia L.) Oil Chemical Composition Depending on Variety, Locality, Extraction Process and Storage Conditions: A Comprehensive Review. J. Food Compos. Anal. 2022, 110, 104534. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Manousi, N.; Rosenberg, E.; Zachariadis, G.A.; Samanidou, V.F. Advances in the Chromatographic Separation and Determination of Bioactive Compounds for Assessing the Nutrient Profile of Nuts. Curr. Anal. Chem. 2021, 17, 495–511. [Google Scholar] [CrossRef]
- Food and Agricultural Association (FAO). Available online: https://www.fao.org/faostat/en/#data/QC (accessed on 18 August 2022).
- Zhang, Y.G.; Kan, H.; Chen, S.X.; Thakur, K.; Wang, S.; Zhang, J.G.; Shang, Y.F.; Wei, Z.J. Comparison of Phenolic Compounds Extracted from Diaphragma Juglandis Fructus, Walnut Pellicle, and Flowers of Juglans Regia Using Methanol, Ultrasonic Wave, and Enzyme Assisted-Extraction. Food Chem. 2020, 321, 126672. [Google Scholar] [CrossRef] [PubMed]
- Ros, E.; Izquierdo-Pulido, M.; Sala-Vila, A. Beneficial Effects of Walnut Consumption on Human Health: Role of Micronutrients. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; An, J.M.; Han, Y.M.; Surh, Y.J.; Hwang, S.J.; Kim, S.J.; Hahm, K.B. Walnut Polyphenol Extracts Inhibit Helicobacter Pylori-Induced STAT3Tyr705 Phosphorylation through Activation of PPAR-γ and SOCS1 Induction. J. Clin. Biochem. Nutr. 2020, 67, 248–256. [Google Scholar] [CrossRef]
- Muthaiyah, B.; Essa, M.M.; Lee, M.; Chauhan, V.; Kaur, K.; Chauhan, A. Dietary Supplementation of Walnuts Improves Memory Deficits and Learning Skills in Transgenic Mouse Model of Alzheimer’s Disease. J. Alzheimer’s Dis. 2014, 42, 1397–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandareesh, M.D.; Chauhan, V.; Chauhan, A. Walnut Supplementation in the Diet Reduces Oxidative Damage and Improves Antioxidant Status in Transgenic Mouse Model of Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 64, 1295–1305. [Google Scholar] [CrossRef] [Green Version]
- Wilson, T.; Devaan, L.S.; Lacasse, M.E.; Gile, E.M.; Weis, M.J.; Ahmann, M.D.; Schnellman, G.I.; Lenz, M.T.; Hooks, T.L. Effect of Walnut Predinner Snack on Mealtime Hunger and Nutrient Intake Among University Students. J. Med. Food 2022, 25, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Niki, E.; Noguchi, N. Antioxidant Action of Vitamin E in Vivo as Assessed from Its Reaction Products with Multiple Biological Oxidants. Free Radic. Res. 2021, 55, 352–363. [Google Scholar] [CrossRef]
- Basta-kaim, A.; Trela-makowej, A.; Le, M.; Kruk, J.; Andrzej, Z. Antioxidant and Neuroprotective Activity of Vitamin E Homologues: In Vitro Study. Metabolites 2022, 8, 608. [Google Scholar]
- Niki, E. Lipid Oxidation That Is, and Is Not, Inhibited by Vitamin E: Consideration about Physiological Functions of Vitamin E. Free Radic. Biol. Med. 2021, 176, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Fritsche, S.; Wang, X.; Jung, C. Recent Advances in Our Understanding of Tocopherol Biosynthesis in Plants: An Overview of Key Genes, Functions, and Breeding of Vitamin E Improved Crops. Antioxidants 2017, 6, 99. [Google Scholar] [CrossRef] [Green Version]
- Aksoz, E.; Korkut, O.; Aksit, D.; Gokbulut, C. Vitamin E (α-, β + γ- and δ-Tocopherol) Levels in Plant Oils. Flavour Fragr. J. 2020, 35, 504–510. [Google Scholar] [CrossRef]
- Matthäus, B.; Özcan, M.M.; Al Juhaimi, F.; Adiamo, O.Q.; Alsawmahi, O.N.; Ghafoor, K.; Babike, E.E. Effect of the Harvest Time on Oil Yield, Fatty Acid, Tocopherol and Sterol Contents of Developing Almond and Walnut Kernels. J. Oleo Sci. 2018, 67, 39–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.H.D.; Vu, D.C. A Review on Phytochemical Composition and Potential Health-Promoting Properties of Walnuts. Food Rev. Int. 2021. [Google Scholar] [CrossRef]
- Grilo, F.S.; Wang, S.C. Walnut (Juglans Regia L.) Volatile Compounds Indicate Kernel and Oil Oxidation. Foods 2021, 10, 329. [Google Scholar] [CrossRef] [PubMed]
- Cittadini, M.C.; Martín, D.; Gallo, S.; Fuente, G.; Bodoira, R.; Martínez, M.; Maestri, D. Evaluation of Hazelnut and Walnut Oil Chemical Traits from Conventional Cultivars and Native Genetic Resources in a Non-Traditional Crop Environment from Argentina. Eur. Food Res. Technol. 2020, 246, 833–843. [Google Scholar] [CrossRef]
- Pycia, K.; Kapusta, I.; Jaworska, G.; Jankowska, A. Antioxidant Properties, Profile of Polyphenolic Compounds and Tocopherol Content in Various Walnut (Juglans Regia L.) Varieties. Eur. Food Res. Technol. 2019, 245, 607–616. [Google Scholar] [CrossRef]
- Pycia, K.; Kapusta, I.; Jaworska, G. Impact of the Degree of Maturity of Walnuts (Juglans Regia L.) and Their Variety on the Antioxidant Potential and the Content of Tocopherols and Polyphenols. Molecules 2019, 24, 2936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed Ahmed, I.A.; Al-Juhaimi, F.Y.; Özcan, M.M.; Osman, M.A.; Gassem, M.A.; Salih, H.A.A. Effects of Cold-Press and Soxhlet Extraction Systems on Antioxidant Activity, Total Phenol Contents, Fatty Acids, and Tocopherol Contents of Walnut Kernel Oils. J. Oleo Sci. 2019, 68, 167–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojeda-Amador, R.M.; Salvador, M.D.; Gómez-Alonso, S.; Fregapane, G. Characterization of Virgin Walnut Oils and Their Residual Cakes Produced from Different Varieties. Food Res. Int. 2018, 108, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Jin, J.; Liu, R.; Jin, Q.; Wang, X. Chemical Compositions of Walnut (Juglans Regia L.) Oils from Different Cultivated Regions in China. JAOCS J. Am. Oil Chem. Soc. 2018, 95, 825–834. [Google Scholar] [CrossRef]
- Kafkas, E.; Burgut, A.; Ozcan, H.; Ozcan, A.; Sutyemez, M.; Kafkas, S.; Türemis, N. Fatty Acid, Total Phenol and Tocopherol Profiles of Some Walnut Cultivars: A Comparative Study. Food Nutr. Sci. 2017, 8, 1074–1084. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Liu, R.; Jin, Q.; Wang, X. Comparative Study of Chemical Compositions and Antioxidant Capacities of Oils Obtained from Two Species of Walnut: Juglans regia and Juglans sigillata. Food Chem. 2019, 279, 279–287. [Google Scholar] [CrossRef] [PubMed]
- González-Gómez, D.; Ayuso-Yuste, M.C.; Blanco-Roque, C.; Bernalte-García, M.J. Optimization of Enzyme-Assisted Aqueous Method for the Extraction of Oil from Walnuts Using Response Surface Methodology. J. Food Process. Preserv. 2019, 43, e14218. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Kabir, A.; Olayanju, B.; Furton, K.G.; Samanidou, V.F. Development of Highly Hydrophobic Fabric Phase Sorptive Extraction Membranes and Exploring Their Applications for the Rapid Determination of Tocopherols in Edible Oils Analyzed by High Pressure Liquid Chromatography-Diode Array Detection. J. Chromatogr. A 2022, 1664, 462785. [Google Scholar] [CrossRef]
- Xie, Q.; Xia, M.; Sun, D.; Cao, J.; Xiao, Y.; Lin, M.; Hou, B.; Jia, L.; Li, D. Deep Eutectic Solvent-Based Liquid-Phase Microextraction Coupled with Reversed-Phase High-Performance Liquid Chromatography for Determination of α-, β-, γ-, and δ-Tocopherol in Edible Oils. Anal. Bioanal. Chem. 2021, 413, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Bakir, D.S.; Yalcin, G.; Cucu, A.K. Isolation and Determination of Tocopherols and Tocotrienols from the Seed of Capparis Ovata Grown in Turkey by Reversed-Phase High-Performance Liquid Chromatography. Chromatographia 2020, 83, 77–86. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Mitsikaris, P.D.; Papadopoulos, A.N.; Samanidou, V.F. Microwave-Assisted Extraction Coupled to HPLC-UV Combined with Chemometrics for the Determination of Bioactive Compounds in Pistachio Nuts and the Guarantee of Quality and Authenticity. Molecules 2022, 27, 1435. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Mitsikaris, P.D.; Klaoudatos, D.; Papadopoulos, A.N.; Samanidou, V.F. A Rapid Hplc-Uv Protocol Coupled to Chemometric Analysis for the Determination of the Major Phenolic Constituents and Tocopherol Content in Almonds and the Discrimination of the Geographical Origin. Molecules 2021, 26, 5433. [Google Scholar] [CrossRef] [PubMed]
- Rotondo, A.; La Torre, G.L.; Gervasi, T.; Di Matteo, G.; Spano, M.; Ingallina, C.; Salvo, A. A Fast and Efficient Ultrasound-Assisted Extraction of Tocopherols in Cow Milk Followed by HPLC Determination. Molecules 2021, 26, 4645. [Google Scholar] [CrossRef]
- Liu, S.; Hu, H.; Yu, Y.; Zhao, J.; Liu, L.; Zhao, S.; Xie, J.; Li, C.; Shen, M. Simultaneous Determination of Tocopherols, Phytosterols, and Squalene in Vegetable Oils by High Performance Liquid Chromatography-Tandem Mass Spectrometry. Food Anal. Methods 2021, 14, 1567–1576. [Google Scholar] [CrossRef]
- Gachumi, G.; Demelenne, A.; Poudel, A.; Dallal Bashi, Z.; El-Aneed, A. Novel Fast Chromatography-Tandem Mass Spectrometric Quantitative Approach for the Determination of Plant-Extracted Phytosterols and Tocopherols. Molecules 2021, 26, 1402. [Google Scholar] [CrossRef]
- Dugo, L.; Russo, M.; Cacciola, F.; Mandolfino, F.; Salafia, F.; Vilmercati, A.; Fanali, C.; Casale, M.; De Gara, L.; Dugo, P.; et al. Determination of the Phenol and Tocopherol Content in Italian High-Quality Extra-Virgin Olive Oils by Using LC-MS and Multivariate Data Analysis. Food Anal. Methods 2020, 13, 1027–1041. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Yang, R.; Mao, J.; Jiang, J.; Wang, X.; Zhang, W.; Zhang, Q.; Li, P. Simultaneous Determination of Tocopherols, Carotenoids and Phytosterols in Edible Vegetable Oil by Ultrasound-Assisted Saponification, LLE and LC-MS/MS. Food Chem. 2019, 289, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Bodoira, R.; Maestri, D. Phenolic Compounds from Nuts: Extraction, Chemical Profiles, and Bioactivity. J. Agric. Food Chem. 2020, 68, 927–942. [Google Scholar] [CrossRef] [PubMed]
- Indyk, H. Total Vitamin E in Dairy Products, Foods and Tissues By. Analyst 1988, 113, 1217–1221. [Google Scholar] [CrossRef] [PubMed]
- Kalogiouri, N.P.; Manousi, N.; Rosenberg, E.; Zachariadis, G.A.; Paraskevopoulou, A.; Samanidou, V. Exploring the Volatile Metabolome of Conventional and Organic Walnut Oils by Solid-Phase Microextraction and Analysis by GC-MS Combined with Chemometrics. Food Chem. 2021, 363, 130331. [Google Scholar] [CrossRef] [PubMed]
- Kalogiouri, N.P.; Samanidou, V.F. HPLC Fingerprints for the Characterization of Walnuts and the Detection of Fraudulent Incidents. Foods 2021, 10, 2145. [Google Scholar] [CrossRef] [PubMed]
- Martakos, I.; Kostakis, M.; Dasenaki, M.; Pentogennis, M.; Thomaidis, N. Simultaneous determination of pigments, tocopherols, and squalene in Greek olive oils: A study of the influence of cultivation and oil-production parameters. Foods 2019, 9, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manousi, N.; Alampanos, V.; Priovolos, I.; Kabir, A.; Furton, K.G.; Rosenberg, E.; Zachariadis, G.A.; Samanidou, V.F. Talanta Designing a Moderately Hydrophobic Sol-Gel Monolithic Carbowax 20 M Sorbent for the Capsule Phase Microextraction of Triazine Herbicides from Water Samples Prior to HPLC Analysis. Talanta 2021, 234, 122710. [Google Scholar] [CrossRef] [PubMed]
- McHugh, M.L. Multiple Comparison Analysis Testing in ANOVA. Biochem. Med. 2011, 21, 203–209. [Google Scholar] [CrossRef]
- Ruxton, G.D.; Beauchamp, G. Time for Some a Priori Thinking about Post Hoc Testing. Behav. Ecol. 2008, 19, 690–693. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the Gap between Raw Spectra and Functional Insights. Nucleic Acids Res. 2021, 49, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Gliszczynska-Swiglo, A.; Sikorska, E.; Khmelinskii, I.; Sikorski, M. Tocopherol Content in Edible Plant Oils. Pol. J. Food Nutr. Sci. 2007, 57, 157–161. [Google Scholar]
- Rabrenovic, B.; Dimic, E.; Maksimovic, M. Determination of Fatty Acid and Tocopherol Compositions. Czech J. Food Sci. 2011, 29, 74–78. [Google Scholar] [CrossRef] [Green Version]
- Amaral, J.S.; Alves, M.R.; Seabra, R.M.; Oliveira, B.P.P. Vitamin E Composition of Walnuts (Juglans Regia L.): A 3-Year Comparative Study of Different Cultivars. J. Agric. Food Chem. 2005, 53, 5467–5472. [Google Scholar] [CrossRef]
- Abdallah, I.B.; Tlili, N.; Martinez-Force, E.; Rubio, A.G.P.; Perez-Camino, M.C.; Albouchi, A.; Boukhchina, S. Content of Carotenoids, Tocopherols, Sterols, Triterpenic and Aliphatic Alcohols, and Volatile Compounds in Six Walnuts (Juglans Regia L.) Varieties. Food Chem. 2015, 173, 972–978. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Ni, Z.; Wang, R.; Zhao, B.; Han, Y.; Zheng, Y.; Liu, F.; Gong, Y.; Tang, F.; Liu, Y. The Effects of Cultivar and Climate Zone on Phytochemical Components of Walnut (Juglans Regia L.). Food Energy Secur. 2020, 9, e196. [Google Scholar] [CrossRef]
Compound | Calibrationequation | Linear Range (mg/kg) | r2 | LOD (mg/kg) | LOQ (mg/kg) |
---|---|---|---|---|---|
α-tocopherol | y = 5.68x − 1.23 | 1–50 | 0.999 | 0.30 | 1.00 |
β+γ-tocopherol | y = 6.94x + 0.19 | 0.5–50 | 0.997 | 0.15 | 0.50 |
δ-tocopherol | y = 5.89x + 0.33 | 0.8–50 | 0.996 | 0.27 | 0.80 |
Compound | Low Concentration (%R, n = 6) | %RSD | Medium Concentration (%R, n = 6) | %RSD | High Concentration (%R, n = 6) | %RSD |
---|---|---|---|---|---|---|
α-tocopherol | 92.2 | 5.4 | 90.8 | 5.8 | 96.5 | 6.1 |
β+γ-tocopherol | 94.1 | 3.6 | 92.5 | 2.9 | 97.1 | 5.8 |
δ-tocopherol | 93.5 | 6.5 | 96.9 | 4.3 | 93.4 | 5.3 |
Compound | Low Concentration (%R, n = 3 × 3) | %RSD | Medium Concentration (%R, n = 3 × 3) | %RSD | High Concentration (%R, n = 3 × 3) | %RSD |
---|---|---|---|---|---|---|
α-tocopherol | 93.7 | 6.5 | 93.3 | 6.5 | 95.5 | 8.2 |
(β+γ)-tocopherol | 94.3 | 7.3 | 94.1 | 8.3 | 91.2 | 6.9 |
δ-tocopherol | 95.8 | 5.8 | 90.4 | 7.5 | 92.4 | 7.5 |
Compound | Molecular Formula | Molecular Structure | RT (min) |
---|---|---|---|
α-tocopherol | C29H50O2 | 12.0 | |
β-tocopherol | C28H48O2 | 10.6 | |
γ-tocopherol | C28H48O2 | 10.6 | |
δ-tocopherol | C27H46O2 | 9.1 |
Tocopherol | Greek Walnuts | French Walnuts | Ukrainian Walnuts | Bulgarian Walnuts |
---|---|---|---|---|
α- | 5.3–18.4 | 2.9–10.9 | 7.2–22.1 | 4.1–7.2 |
β- and γ- | 100.3–189 | 92.0–142.5 | 166.9–229.0 | 105.9–160.8 |
δ- | 11.2–19.6 | 14.5–20.9 | 18.3–24.8 | 12.5–20.9 |
Total | 117.5–220.8 | 110.6–174.3 | 192.4–263.2 | 124.4–187.0 |
Tocopherol | Greek Walnuts (n = 10) | French Walnuts (n = 10) | Ukrainian Walnuts (n = 10) | Bulgarian Walnuts (n = 10) |
---|---|---|---|---|
α- | 10± 4 | 6 ± 3 | 12 ± 6 | 5.5 ± 1.0 |
β- and γ- | 150 ± 30 | 122 ± 17 | 204 ± 21 | 138.0 ± 17.8 |
δ- | 15± 3 | 17 ± 2 | 23 ± 2 | 16 ± 2 |
Total | 176 ± 34 | 145 ± 20 | 239± 23 | 159 ± 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsikaris, P.D.; Kokokiris, L.; Pritsa, A.; Papadopoulos, A.N.; Kalogiouri, N.P. Investigating the Tocopherol Contents of Walnut Seed Oils Produced in Different European Countries Analyzed by HPLC-UV: A Comparative Study on the Basis of Geographical Origin. Foods 2022, 11, 3719. https://doi.org/10.3390/foods11223719
Mitsikaris PD, Kokokiris L, Pritsa A, Papadopoulos AN, Kalogiouri NP. Investigating the Tocopherol Contents of Walnut Seed Oils Produced in Different European Countries Analyzed by HPLC-UV: A Comparative Study on the Basis of Geographical Origin. Foods. 2022; 11(22):3719. https://doi.org/10.3390/foods11223719
Chicago/Turabian StyleMitsikaris, Petros D., Lambros Kokokiris, Agathi Pritsa, Athanasios N. Papadopoulos, and Natasa P. Kalogiouri. 2022. "Investigating the Tocopherol Contents of Walnut Seed Oils Produced in Different European Countries Analyzed by HPLC-UV: A Comparative Study on the Basis of Geographical Origin" Foods 11, no. 22: 3719. https://doi.org/10.3390/foods11223719
APA StyleMitsikaris, P. D., Kokokiris, L., Pritsa, A., Papadopoulos, A. N., & Kalogiouri, N. P. (2022). Investigating the Tocopherol Contents of Walnut Seed Oils Produced in Different European Countries Analyzed by HPLC-UV: A Comparative Study on the Basis of Geographical Origin. Foods, 11(22), 3719. https://doi.org/10.3390/foods11223719