Mutual Relations between Texture and Aroma of Cooked Rice—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Chemical Compositions
2.2. Appearance Characterization
2.3. Rice Cooking
2.4. Textural Analysis
2.5. Analysis of Volatile Compounds by GC-IMS
2.6. Statistical Analysis
3. Results and Discussion
3.1. Basic Rice Compositions and Rice Appearance
3.2. Textural Analysis
3.3. Analysis of 3D Topographic Map and 2D Difference Comparison Map of the Volatile Flavor Compounds in Cooked Rice
3.4. Qualitative Results and Fingerprint Analysis of Volatile Organic Compounds in Cooked Rice Samples
3.5. Mutual Relations between Textures and Aromas of Cooked Rice
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Concepcion, J.C.T.; Ouk, M.; Zhao, D.; Fitzgerald, M.A. The need for new tools and investment to improve the accuracy of selecting for grain quality in rice. Field Crops Res. 2015, 182, 60–67. [Google Scholar] [CrossRef]
- Calingacion, M.; Laborte, A.; Nelson, A.; Resurreccion, A.; Concepcion, J.C.; Daygon, V.D.; Mumm, R.; Reinke, R.; Dipti, S.; Bassinello, P.Z.; et al. Diversity of global rice markets and the science required for consumer-targeted rice breeding. PLoS ONE 2014, 9, e85106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biao, Y.; Chanjuan, Z.; Ming, Y.; Dechun, H.; McClements, D.J.; Zhigang, H.; Chongjiang, C. Influence of gene regulation on rice quality: Impact of storage temperature and humidity on flavor profile. Food Chem. 2019, 283, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.K.; Srivastav, P.P. Extraction, identification and quantification methods of rice aroma compounds with emphasis on 2-Acetyl-1-Pyrroline (2-AP) and its relationship with rice quality: A comprehensive review. Food Rev. Int. 2022, 38, 111–162. [Google Scholar] [CrossRef]
- Verma, D.K.; Srivastav, P.P. A paradigm of volatile aroma compounds in rice and their product with extraction and identification methods: A comprehensive review. Food Res. Int. 2020, 130, 108924. [Google Scholar] [CrossRef]
- Hu, X.; Lu, L.; Guo, Z.; Zhu, Z. Volatile compounds, affecting factors and evaluation methods for rice aroma: A review. Trends Food Sci. Technol. 2020, 97, 136–146. [Google Scholar] [CrossRef]
- Bergman, C.J.; Delgado, J.T.; Bryant, R.; Grimm, C.; Cadwallader, K.R.; Webb, B.D. Rapid gas chromatographic technique for quantifying 2-acetyl-1-pyrroline and hexanal in rice (Oryza sativa L.). Cereal Chem. 2000, 77, 454–458. [Google Scholar] [CrossRef]
- Mathure, S.V.; Wakte, K.V.; Jawali, N.; Nadaf, A.B. Quantification of 2-Acetyl-1-pyrroline and other rice aroma volatiles among indian scented rice cultivars by HS-SPME/GC-FID. Food Anal. Methods 2011, 4, 326–333. [Google Scholar] [CrossRef]
- Ma, R.; Tian, Y.; Chen, L.; Cai, C.; Jin, Z. Effects of cooling rate on retrograded nucleation of different rice starch-aromatic molecule complexes. Food Chem. 2019, 294, 179–186. [Google Scholar] [CrossRef]
- Arvisenet, G.; Le Bail, P.; Voilley, A.; Cayot, N. Influence of physicochemical interactions between amylose and aroma compounds on the retention of aroma in food-like matrices. J. Agric. Food Chem. 2002, 50, 7088–7093. [Google Scholar] [CrossRef]
- Li, C.; Luo, J.; Zhang, C.; Yu, W. Causal relations among starch chain-length distributions, short-term retrogradation and cooked rice texture. Food Hydrocolloid 2020, 108, 106064. [Google Scholar] [CrossRef]
- Tao, K.; Yu, W.; Prakash, S.; Gilbert, R.G. High-amylose rice: Starch molecular structural features controlling cooked rice texture and preference. Carbohydr. Polym. 2019, 219, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Tao, K.; Yu, W.; Prakash, S.; Gilbert, R.G. Investigating cooked rice textural properties by instrumental measurements. Food Sci. Hum. Wellness 2020, 9, 130–135. [Google Scholar] [CrossRef]
- Li, C.; Cao, P.; Wu, P.; Yu, W.; Gilbert, R.G.; Li, E. Effects of endogenous proteins on rice digestion during small intestine (in vitro) digestion. Food Chem. 2021, 344, 128687. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hu, Z.; Deng, B.; Gilbert, R.G.; Sullivan, M.A. The effect of high-amylose resistant starch on the glycogen structure of diabetic mice. Int. J. Biol. Macromol. 2022, 200, 124–131. [Google Scholar] [CrossRef]
- Okpala, N.E.; Potcho, M.P.; An, T.; Ahator, S.D.; Duan, L.; Tang, X. Low temperature increased the biosynthesis of 2-AP, cooked rice elongation percentage and amylose content percentage in rice. J. Cereal Sci. 2020, 93, 102980. [Google Scholar] [CrossRef]
- Zhao, Q.; Xi, J.; Xu, D.; Jin, Y.; Wu, F.; Tong, Q.; Yin, Y.; Xu, X. A comparative HS-SPME/GC-MS-based metabolomics approach for discriminating selected rice varieties from different regions of China in raw and cooked form. Food Chem. 2022, 385, 132701. [Google Scholar] [CrossRef]
- Zhao, Y.; Henry, R.J.; Gilbert, R.G. Starch structure-property relations in Australian wild rices compared to domesticated rices. Carbohydr. Polym. 2021, 271, 118412. [Google Scholar] [CrossRef]
- Yang, Y.; Qian, M.C.; Deng, Y.; Yuan, H.; Jiang, Y. Insight into aroma dynamic changes during the whole manufacturing process of chestnut-like aroma green tea by combining GC-E-Nose, GC-IMS, and GC x GC-TOFMS. Food Chem. 2022, 387, 132813. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, Z.; Fan, X.; Liu, M.; Ma, J.; Shang, W.; Liu, J.; Strappe, P.; Blanchard, C.; Zhou, Z. A study on volatile metabolites screening by HS-SPME-GC-MS and HS-GC-IMS for discrimination and characterization of white and yellowed rice. Cereal Chem. 2020, 97, 496–504. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Liu, Y.; Jia, M.; Wang, S.; Kang, X.; Sun, H.; Strappe, P.; Zhou, Z. Moisture content is a key factor responsible for inducing rice yellowing. J. Cereal Sci. 2020, 94, 102988. [Google Scholar] [CrossRef]
- Li, H.; Gilbert, R.G. Starch molecular structure: The basis for an improved understanding of cooked rice texture. Carbohydr. Polym. 2018, 195, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Szczesniak, A.S. Classification of textural characteristics. J. Food Sci. 1962, 28, 385–389. [Google Scholar] [CrossRef]
- Sahi, S.S.; Little, K.; Ananingsih, V.K. “Quality Control” Bakery Products Science and Technology, 2nd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 490–509. [Google Scholar]
- Buttery, R.G.; Ling, L.C.; Juliano, B.O.; Turnbaugh, J.G. Cooked rice aroma and 2-acetyl-1-pyrroline. J. Agric. Food Chem. 1983, 31, 823–826. [Google Scholar] [CrossRef]
- García-Llatas, G.; Lagarda, M.J.; Clemente, G.; Farré, R. Monitoring of headspace volatiles in milk-cereal-based liquid infant foods during storage. Eur. J. Lipid Sci. Technol. 2006, 108, 1028–1036. [Google Scholar] [CrossRef]
- Sun, Z.; Lyu, Q.; Chen, L.; Zhuang, K.; Wang, G.; Ding, W.; Wang, Y.; Chen, X. An HS-GC-IMS analysis of volatile flavor compounds in brown rice flour and brown rice noodles produced using different methods. LWT—Food Sci. Technol. 2022, 161, 113358. [Google Scholar] [CrossRef]
- Zhang, M.; Li, L.; Song, G.; Wang, H.; Wang, H.; Shen, Q. Analysis of volatile compound change in tuna oil during storage using a laser irradiation based HS-SPME-GC/MS. LWT—Food Sci. Technol. 2020, 120, 108922. [Google Scholar] [CrossRef]
- Lehtonen, M.; Kekalainen, S.; Nikkila, I.; Kilpelainen, P.; Tenkanen, M.; Mikkonen, K.S. Active food packaging through controlled in situ production and release of hexanal. Food Chem. X 2020, 5, 100074. [Google Scholar] [CrossRef]
- Gaona Colman, E.; Blanco, M.B.; Barnes, I.; Wiesen, P.; Teruel, M.A. Mechanism and Product Distribution of the O3-Initiated Degradation of (E)-2-Heptenal, (E)-2-Octenal, and (E)-2-Nonenal. J. Phys. Chem. A 2017, 121, 5147–5155. [Google Scholar] [CrossRef]
- Germinara, G.S.; Conte, A.; De Cristofaro, A.; Lecce, L.; Di Palma, A.; Rotundo, G.; Del Nobile, M.A. Electrophysiological and behavioral activity of (E)-2-hexenal in the granary weevil and its application in food packaging. J. Food Prot. 2012, 75, 366–370. [Google Scholar] [CrossRef]
- Yu, H.; Xie, T.; Xie, J.; Chen, C.; Ai, L.; Tian, H. Aroma perceptual interactions of benzaldehyde, furfural, and vanillin and their effects on the descriptor intensities of Huangjiu. Food Res. Int. 2020, 129, 108808. [Google Scholar] [CrossRef] [PubMed]
- Griglione, A.; Liberto, E.; Cordero, C.; Bressanello, D.; Cagliero, C.; Rubiolo, P.; Bicchi, C.; Sgorbini, B. High-quality Italian rice cultivars: Chemical indices of ageing and aroma quality. Food Chem. 2015, 172, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Resconi, V.C.; Bueno, M.; Escudero, A.; Magalhaes, D.; Ferreira, V.; Campo, M.M. Ageing and retail display time in raw beef odour according to the degree of lipid oxidation. Food Chem. 2018, 242, 288–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Chao, C.; Cai, J.; Niu, B.; Copeland, L.; Wang, S. Starch–lipid and starch–lipid–protein complexes: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1056–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Li, E.; Gong, B. Main starch molecular structures controlling the textural attributes of cooked instant rice. Food Hydrocolloid 2022, 132, 107866. [Google Scholar] [CrossRef]
- Li, H.; Yan, S.; Yang, L.; Xu, M.; Ji, J.; Mao, H.; Song, Y.; Wang, J.; Sun, B. Starch gelatinization in the surface layer of rice grains is crucial in reducing the stickiness of parboiled rice. Food Chem. 2021, 341, 128202. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, J.; Yan, S.; Lei, N.; Wang, J.; Sun, B. Molecular causes for the increased stickiness of cooked non-glutinous rice by enzymatic hydrolysis of the grain surface protein. Carbohydr. Polym. 2019, 216, 197–203. [Google Scholar] [CrossRef]
Samples | Sources | Location | Abbreviation |
---|---|---|---|
Nangeng No. 46 | Jiangsu Nongken Rice Industry Group Co., Ltd. | Nantong, China | NG46 |
Nangeng No. 5055 | Nantong Fuzhikang Rice Industry Co., Ltd. | Nantong, China | NG5055 |
Nangeng No. 9108 | Gaoyou Tianyang rice factory | Gaoyou, China | NG9108 |
Yangnong No. 1 | Gaoyou Younong Rice Industry Co., Ltd. | Gaoyou, China | YN1 |
Wuyu No. 3 | Sheyang Yucheng Rice Industry Co., Ltd. | Yancheng, China | WY3 |
Yueguang | Japan Quannong pearl rice Co., Ltd. | Ayase, Japan | YG |
Samples | Total Starch (%) | Protein (%) | AC (%) | Average Length (mm) | Average Width (mm) | Average Length/Width | Chalky Rice Rate (%) | Chalkiness (%) |
---|---|---|---|---|---|---|---|---|
NG46 | 78.25 ± 0.49 bc | 5.81 ± 0.17 e | 10.52 ± 0.36 e | 4.67 ± 0.03 bc | 2.78 ± 0.03 b | 1.69 ± 0.01 bcd | 12.58 ± 0.78 c | 3.66 ± 0.09 c |
NG5055 | 79.53 ± 0.49 ab | 6.76 ± 0.04 a | 10.64 ± 0.07 e | 4.64 ± 0.06 c | 2.78 ± 0.01 b | 1.67 ± 0.02 cd | 24.77 ± 5.32 ab | 9.15 ± 0.55 a |
NG9108 | 76.44 ± 1.68 c | 6.26 ± 0.02 c | 17.20 ± 0.67 b | 4.75 ± 0.07 b | 2.79 ± 0.06 b | 1.71 ± 0.01 ab | 23.81 ± 0.54 b | 6.72 ± 0.40 b |
YN1 | 77.07 ± 0.29 c | 6.45 ± 0.04 b | 12.20 ± 0.10 d | 4.59 ± 0.02 c | 2.77 ± 0.01 b | 1.66 ± 0.00 d | 29.70 ± 0.60 a | 8.88 ± 0.50 a |
WY3 | 77.85 ± 0.51 bc | 6.04 ± 0.01 d | 18.63 ± 0.09 a | 4.94 ± 0.05 a | 2.85 ± 0.01 a | 1.73 ± 0.01 a | 14.32 ± 1.86 c | 3.27 ± 0.37 c |
YG | 80.97 ± 0.96 a | 5.32 ± 0.02 f | 15.61 ± 0.52 c | 4.65 ± 0.01 bc | 2.76 ± 0.00 b | 1.69 ± 0.00 bc | 10.34 ± 1.02 c | 2.97 ± 0.06 c |
Samples | Hardness (g) | Stickiness (g·s) | Gumminess (g) | Cohesiveness | Springiness |
---|---|---|---|---|---|
NG46 | 10,025.26 ± 498.03 b | 1116.70 ± 32.70 b | 5092.86 ± 415.44 d | 0.42 ± 0.03 b | 0.83 ± 0.04 bc |
NG5055 | 10,261.49 ± 129.89 b | 770.04 ± 9.88 c | 5274.70 ± 129.64 cd | 0.44 ± 0.00 b | 0.83 ± 0.01 bc |
NG9108 | 10,291.83 ± 381.47 b | 871.16 ± 27.09 c | 5393.01 ± 14.92 bcd | 0.42 ± 0.01 b | 0.87 ± 0.01 ab |
YN1 | 10,959.79 ± 684.16 b | 1471.02 ± 88.82 a | 6066.69 ± 43.76 b | 0.44 ± 0.01 b | 0.85 ± 0.01 abc |
WY3 | 11,244.82 ± 659.16 b | 551.49 ± 10.35 d | 6013.26 ± 222.36 bc | 0.49 ± 0.01 a | 0.80 ± 0.03 c |
YG | 12,852.05 ± 959.56 a | 1151.44 ± 140.94 b | 7075.90 ± 647.55 a | 0.49 ± 0.03 a | 0.83 ± 0.01 bc |
Volatiles | No. | Flavor Compounds | Drift Time (ms) | NG46 | NG5055 | NG9108 | YN1 | WY3 | YG |
---|---|---|---|---|---|---|---|---|---|
Aldehydes | 1 | Isopentanal | 1.2024 | 408.78 ± 66.44 b | 19.14 ± 19.14 c | 979.73 ± 20.27 a | 918.92 ± 56.31 a | 172.30 ± 28.15 c | 557.43 ± 102.48 b |
2 | C-9 aldehyde | 1.4876 | 98.31 ± 14.04 c | 129.21 ± 106.74 c | 901.69 ± 98.31 a | 564.61 ± 58.99 b | 28.09 ± 28.09 c | 643.26 ± 47.75 b | |
3 | E-2-heptenal-monomer | 1.2515 | 174.85 ± 21.47 d | 33.74 ± 33.74 d | 960.12 ± 39.88 a | 466.26 ± 42.94 c | 101.23 ± 46.01 d | 748.47 ± 55.21 b | |
4 | E-2-heptenal-dimer | 1.6656 | 150.79 ± 23.81 c | 23.81 ± 23.81 c | 904.76 ± 95.24 a | 547.62 ± 87.30 b | 71.43 ± 23.81 c | 603.17 ± 63.49 b | |
5 | Phenylacetaldehyde | 1.259 | 287.88 ± 45.45 b | 242.42 ± 242.42 b | 848.48 ± 151.52 a | 818.18 ± 90.91 a | 515.15 ± 30.30 ab | 469.70 ± 106.06 ab | |
6 | E-2-hexenal | 1.5283 | 181.03 ± 43.10 a | 318.97 ± 181.03 a | 275.86 ± 275.86 a | 482.76 ± 206.90 a | 681.03 ± 232.76 a | 637.93 ± 362.07 a | |
7 | Heptanal-monomer | 1.3392 | 189.72 ± 47.87 c | 67.38 ± 67.38 c | 943.26 ± 35.46 a | 966.31 ± 33.69 a | 90.43 ± 15.96 c | 500.00 ± 49.65 b | |
8 | Heptanal-dimer | 1.6906 | 137.72 ± 35.93 c | 35.93 ± 35.93 c | 922.16 ± 77.84 a | 913.17 ± 86.83 a | 44.91 ± 2.99 c | 356.29 ± 38.92 b | |
9 | Benzaldehyde-monomer | 1.1491 | 210.46 ± 64.48 b | 201.95 ± 4.87 b | 42.58 ± 42.58 b | 918.49 ± 81.51 a | 221.41 ± 58.39 b | 141.12 ± 21.90 b | |
10 | Benzaldehyde-dimer | 1.4631 | 105.42 ± 45.18 b | 90.36 ± 6.02 b | 15.06 ± 15.06 b | 858.43 ± 141.57 a | 96.39 ± 36.14 b | 60.24 ± 12.05 b | |
11 | E-2-octenal | 1.3322 | 385.42 ± 156.25 bc | 62.50 ± 62.50 c | 864.58 ± 72.92 a | 895.83 ± 104.17 a | 114.58 ± 72.92 bc | 395.83 ± 20.83 b | |
12 | Octanal | 1.8172 | 25.42 ± 2.82 d | 25.42 ± 25.42 d | 966.10 ± 33.90 a | 649.72 ± 62.15 b | 19.77 ± 2.82 d | 364.41 ± 31.07 c | |
13 | Pentanal | 1.4194 | 253.86 ± 68.61 bc | 5.15 ± 5.15 d | 906.52 ± 93.48 a | 734.13 ± 73.76 a | 48.89 ± 9.43 cd | 275.30 ± 72.90 b | |
14 | Furfural | 1.0787 | 412.28 ± 263.16 a | 302.63 ± 250.00 a | 171.05 ± 171.05 a | 407.89 ± 118.42 a | 811.40 ± 188.60 a | 596.49 ± 377.19 a | |
Alcohols | 15 | 2-Hexanol-monomer | 1.2719 | 230.77 ± 230.77 c | 543.27 ± 24.04 bc | 649.04 ± 43.27 ab | 687.50 ± 52.88 ab | 812.50 ± 100.96 ab | 951.92 ± 48.08 a |
16 | 2-Hexanol-dimer | 1.5623 | 685.04 ± 14.62 b | 140.04 ± 53.43 c | 968.50 ± 31.50 a | 867.83 ± 21.93 a | 21.93 ± 21.93 c | 718.79 ± 70.87 b | |
17 | E-2-Hexen-1-ol | 1.1772 | 346.85 ± 58.56 c | 193.69 ± 94.59 cd | 986.49 ± 13.51 a | 684.68 ± 27.03 b | 13.51 ± 13.51 e | 45.05 ± 45.05 de | |
18 | 2-Ethyl-1-hexanol | 1.4217 | 208.96 ± 119.40 b | 141.79 ± 22.39 b | 253.73 ± 14.93 b | 880.60 ± 119.40 a | 246.27 ± 67.16 b | 29.85 ± 29.85 b | |
19 | n-Hexanol | 1.324 | 637.17 ± 362.83 a | 39.82 ± 39.82 b | 35.40 ± 26.55 b | 101.77 ± 48.67 ab | 66.37 ± 39.82 ab | 349.56 ± 39.82 ab | |
20 | 2-Methyl-1-propanol | 1.1705 | 355.42 ± 307.23 a | 48.19 ± 48.19 a | 307.23 ± 259.04 a | 728.92 ± 271.08 a | 548.19 ± 367.47 a | 391.57 ± 343.37 a | |
21 | 2-Octanol | 1.4319 | 90.00 ± 30.00 b | 60.00 ± 60.00 b | 940.00 ± 60.00 a | 990.00 ± 10.00 a | 140.00 ± 0.00 b | 80.00 ± 0.00 b | |
22 | 1-Propanol | 1.1149 | 259.33 ± 68.07 a | 149.28 ± 149.28 a | 461.41 ± 378.29 a | 511.87 ± 187.87 a | 557.46 ± 189.36 a | 703.35 ± 296.65 a | |
23 | 1-Pentanol | 1.2483 | 350.81 ± 76.61 b | 48.39 ± 24.19 c | 733.87 ± 40.32 a | 891.13 ± 108.87 a | 32.26 ± 32.26 c | 403.23 ± 48.39 b | |
24 | 1-Octen-3-ol | 1.1547 | 620.48 ± 114.46 b | 138.55 ± 30.12 c | 945.78 ± 54.22 a | 873.49 ± 90.36 a | 30.12 ± 30.12 c | 831.33 ± 0.00 ab | |
25 | 5-Methyl-2-Furanmethanol | 1.5638 | 128.87 ± 56.70 bc | 25.77 ± 25.77 c | 324.74 ± 67.01 b | 855.67 ± 144.33 a | 72.16 ± 51.55 bc | 314.43 ± 5.15 b | |
26 | 1-Heptanol | 1.3877 | 300.00 ± 250.00 a | 762.50 ± 237.50 a | 600.00 ± 325.00 a | 12.50 ± 12.50 a | 400.00 ± 175.00 a | 50.00 ± 50.00 a | |
Esters | 27 | Acetic acid butyl ester | 1.2352 | 419.35 ± 64.52 a | 104.84 ± 104.84 a | 419.35 ± 32.26 a | 580.65 ± 161.29 a | 620.97 ± 379.03 a | 572.58 ± 266.13 a |
28 | n-Hexyl acetate | 1.412 | 51.17 ± 13.16 d | 48.25 ± 48.25 d | 998.54 ± 1.46 a | 783.63 ± 38.01 b | 39.47 ± 7.31 d | 540.94 ± 58.48 c | |
29 | Methyl butyrate | 1.4401 | 400.00 ± 88.89 a | 400.00 ± 0.00 a | 344.44 ± 344.44 a | 555.56 ± 200.00 a | 722.22 ± 277.78 a | 677.78 ± 322.22 a | |
Ketones | 30 | Cyclohexanone | 1.1486 | 250.00 ± 107.14 a | 386.90 ± 375.00 a | 250.00 ± 250.00 a | 767.86 ± 113.10 a | 934.52 ± 65.48 a | 636.90 ± 220.24 a |
31 | 2-Heptanone-monomer | 1.2596 | 303.03 ± 90.91 bc | 49.24 ± 34.09 cd | 875.00 ± 49.24 a | 928.03 ± 71.97 a | 45.45 ± 45.45 d | 382.58 ± 109.85 b | |
32 | 2-Heptanone-dimer | 1.6248 | 402.3 ± 149.43 b | 109.2 ± 5.75 bc | 827.59 ± 114.94 a | 885.06 ± 114.94 a | 5.75 ± 5.75 c | 304.60 ± 74.71 bc | |
Furans | 33 | 2-Ethylfuran | 1.2989 | 762.82 ± 237.18 a | 173.08 ± 6.41 bc | 641.03 ± 89.74 a | 551.28 ± 51.28 ab | 0.00 ± 0.00 c | 96.15 ± 44.87 c |
34 | 2-Pentylfuran | 1.2512 | 373.35 ± 33.57 c | 282.30 ± 38.15 cd | 948.63 ± 51.37 a | 690.23 ± 17.80 b | 197.86 ± 5.60 d | 13.73 ± 13.73 e | |
Terpenes | 35 | Styrene | 1.5024 | 126.87 ± 126.87 a | 328.36 ± 328.36 a | 179.10 ± 134.33 a | 470.15 ± 97.01 a | 895.52 ± 104.48 a | 634.33 ± 335.82 a |
Alkenes | 36 | E-2-Pentenal | 1.1036 | 281.25 ± 31.25 a | 250.00 ± 62.50 a | 156.25 ± 156.25 a | 531.25 ± 343.75 a | 625.00 ± 312.50 a | 906.25 ± 31.25 a |
Pyrazines | 37 | Ethyl pyrazine | 1.1253 | 353.45 ± 25.86 bc | 275.86 ± 17.24 c | 431.03 ± 17.24 b | 948.28 ± 51.72 a | 224.14 ± 86.21 c | 8.62 ± 8.62 d |
Acids | 38 | Propanoic acid | 1.2678 | 357.14 ± 166.67 ab | 7.94 ± 7.94 b | 809.52 ± 190.48 a | 738.10 ± 182.54 a | 190.48 ± 111.11 b | 412.70 ± 126.98 ab |
Others | 39 | Dimethyl trisulfide | 1.3047 | 638.89 ± 138.89 abc | 416.67 ± 27.78 bcd | 250.00 ± 83.33 cd | 777.78 ± 0.00 ab | 138.89 ± 138.89 d | 833.33 ± 166.67 a |
Hardness | Stickiness | Gumminess | Cohesiveness | Springiness | ||
---|---|---|---|---|---|---|
Aldehydes | Isopentanal | 0.058 | 0.62 | 0.166 | −0.336 | 0.764 |
C-9 aldehyde | 0.262 | 0.418 | 0.326 | −0.16 | 0.81 | |
E-2-heptenal-monomer | 0.338 | 0.334 | 0.376 | −0.052 | 0.708 | |
E-2-heptenal-dimer | 0.241 | 0.415 | 0.307 | −0.16 | 0.775 | |
Phenylacetaldehyde | 0.072 | 0.312 | 0.201 | −0.136 | 0.545 | |
E-2-hexenal | 0.825 * | −0.121 | 0.845 * | 0.930 ** | −0.555 | |
Heptanal-monomer | 0.081 | 0.605 | 0.203 | −0.313 | 0.792 | |
Heptanal-dimer | −0.015 | 0.562 | 0.111 | −0.382 | 0.806 | |
Benzaldehyde-monomer | 0 | 0.677 | 0.144 | −0.135 | 0.103 | |
Benzaldehyde-dimer | −0.003 | 0.714 | 0.148 | −0.179 | 0.203 | |
E-2-octenal | −0.077 | 0.654 | 0.045 | −0.458 | 0.795 | |
Octanal | 0.024 | 0.385 | 0.122 | −0.326 | 0.830 * | |
Pentanal | −0.138 | 0.505 | −0.027 | −0.485 | 0.832 * | |
Furfural | 0.597 | −0.257 | 0.569 | 0.873 * | −0.889 * | |
Alcohols | 2-Hexanol-monomer | 0.838 * | −0.085 | 0.864 * | 0.788 | −0.156 |
2-Hexanol-dimer | 0.025 | 0.737 | 0.094 | −0.449 | 0.824 * | |
E-2-Hexen-1-ol | −0.488 | 0.348 | −0.389 | −0.747 | 0.866 * | |
2-Ethyl-1-hexanol | −0.192 | 0.592 | −0.031 | −0.315 | 0.273 | |
n-Hexanol | 0.046 | 0.37 | −0.025 | −0.077 | −0.124 | |
2-Methyl-1-propanol | 0.312 | 0.467 | 0.431 | 0.257 | −0.134 | |
2-Octanol | −0.218 | 0.432 | −0.076 | −0.466 | 0.719 | |
1-Propanol | 0.838 * | 0.194 | 0.877 * | 0.695 | −0.096 | |
1-Pentanol | −0.016 | 0.755 | 0.108 | −0.434 | 0.787 | |
1-Octen-3-ol | 0.166 | 0.749 | 0.233 | −0.329 | 0.796 | |
5-Methyl-2-Furanmethanol | 0.185 | 0.817 * | 0.335 | −0.167 | 0.506 | |
1-Heptanol | −0.619 | −0.744 | −0.685 | −0.357 | 0.058 | |
Esters | Acetic acid butyl ester | 0.572 | 0.269 | 0.633 | 0.528 | −0.245 |
n-Hexyl acetate | 0.152 | 0.475 | 0.252 | −0.239 | 0.808 | |
Methyl butyrate | 0.804 | −0.054 | 0.813 * | 0.932 ** | −0.681 | |
Ketones | Cyclohexanone | 0.58 | −0.035 | 0.642 | 0.755 | −0.607 |
2-Heptanone-monomer | −0.055 | 0.657 | 0.069 | −0.447 | 0.815 * | |
2-Heptanone-dimer | −0.197 | 0.683 | −0.076 | −0.586 | 0.848 * | |
Furans | 2-Ethylfuran | −0.619 | 0.512 | −0.567 | −0.861 * | 0.66 |
2-Pentylfuran | −0.583 | 0.221 | −0.48 | −0.747 | 0.765 | |
Terpenes | Styrene | 0.684 | −0.291 | 0.693 | 0.918 ** | −0.719 |
Alkenes | E-2-Pentenal | 0.952 ** | 0.204 | 0.950 ** | 0.887 * | −0.46 |
Pyrazines | Ethyl pyrazine | −0.414 | 0.575 | −0.261 | −0.56 | 0.442 |
Acids | Propanoic acid | 0.004 | 0.574 | 0.114 | −0.354 | 0.735 |
Others | Dimethyl trisulfide | 0.419 | 0.888 * | 0.448 | 0.009 | 0.246 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, J.; Chen, X.; Li, E.; Li, S.; Li, C. Mutual Relations between Texture and Aroma of Cooked Rice—A Pilot Study. Foods 2022, 11, 3738. https://doi.org/10.3390/foods11223738
Wang Z, Wang J, Chen X, Li E, Li S, Li C. Mutual Relations between Texture and Aroma of Cooked Rice—A Pilot Study. Foods. 2022; 11(22):3738. https://doi.org/10.3390/foods11223738
Chicago/Turabian StyleWang, Zihan, Jun Wang, Xu Chen, Enpeng Li, Songnan Li, and Cheng Li. 2022. "Mutual Relations between Texture and Aroma of Cooked Rice—A Pilot Study" Foods 11, no. 22: 3738. https://doi.org/10.3390/foods11223738
APA StyleWang, Z., Wang, J., Chen, X., Li, E., Li, S., & Li, C. (2022). Mutual Relations between Texture and Aroma of Cooked Rice—A Pilot Study. Foods, 11(22), 3738. https://doi.org/10.3390/foods11223738