Enzyme-Linked Aptamer Kits for Rapid, Visual, and Sensitive Determination of Lactoferrin in Dairy Products
Abstract
:1. Introduction
2. Experimental Sections
2.1. Reagents, Materials and Instruments
2.2. The Preparation of Capture Probe
2.3. The Preparation of Recognition Probe
2.4. The Operation of ELAA Kit
2.5. Evaluation of Selectivity and Stability
2.6. Treatment of Dairy Products
2.7. HPCE Assay
3. Results and Discussion
3.1. Working Principle of the ELAA Kit
3.2. Optimization of Experimental Conditions
3.3. Performances of ELAA Kit
3.4. Calibration Curve and Sensitivity in Spiked Matrix
3.5. Application Evaluation in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adlerova, L.; Bartoskova, A.; Faldyna, M. Lactoferrin: A review. Vet. Med. 2008, 53, 457–468. [Google Scholar] [CrossRef] [Green Version]
- Dall’Agnola, A.; Tomé, D.; Kaufman, D.A.; Tavella, E.; Pieretto, M.; Messina, A.; De Luca, D.; Bellaiche, M.; Mosca, A.; Piloquet, H.; et al. Role of Lactoferrin in Neonates and Infants: An Update. Am. J. Perinatol. 2018, 35, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Sienkiewicz, M.; Jaśkiewicz, A.; Tarasiuk, A.; Fichna, J. Lactoferrin: An overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Crit. Rev. Food Sci. Nutr. 2021, 62, 6016–6033. [Google Scholar] [CrossRef] [PubMed]
- Salaris, C.; Scarpa, M.; Elli, M.; Bertolini, A.; Guglielmetti, S.; Pregliasco, F.; Blandizzi, C.; Brun, P.; Castagliuolo, I. Protective Effects of Lactoferrin against SARS-CoV-2 Infection In Vitro. Nutrients 2021, 13, 328. [Google Scholar] [CrossRef]
- Mancinelli, R.; Rosa, L.; Cutone, A.; Lepanto, M.S.; Franchitto, A.; Onori, P.; Gaudio, E.; Valenti, P. Viral Hepatitis and Iron Dysregulation: Molecular Pathways and the Role of Lactoferrin. Molecules 2020, 25, 1997. [Google Scholar] [CrossRef]
- Naot, D.; Grey, A.; Reid, I.R.; Cornish, J. Lactoferrin-A Novel Bone Growth Factor. Clin. Med. Res. 2005, 3, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Rico, G.; Drago-Serrano, M.E.; León-Sicairos, N.; de la Garza, M. Lactoferrin: A Nutraceutical with Activity against Colorectal Cancer. Front. Pharmacol. 2022, 13, 855852. [Google Scholar] [CrossRef]
- Li, Y.-Q.; Guo, C. A Review on Lactoferrin and Central Nervous System Diseases. Cells 2021, 10, 1810. [Google Scholar] [CrossRef]
- Bobreneva, I.V.; Rokhlova, M.V. Lactoferrin: Properties and application—A review. Theory Pract. Meat Process. 2021, 6, 128–134. [Google Scholar] [CrossRef]
- Wang, B.; Timilsena, Y.P.; Blanch, E.; Adhikari, B. Lactoferrin: Structure, function, denaturation and digestion. Crit. Rev. Food Sci. Nutr. 2019, 59, 580–596. [Google Scholar] [CrossRef]
- Niaz, B.; Saeed, F.; Ahmed, A.; Imran, M.; Maan, A.A.; Khan, M.K.I.; Tufail, T.; Anjum, F.M.; Hussain, S.; Suleria, H.A.R. Lactoferrin (LF): A natural antimicrobial protein. Int. J. Food Prop. 2019, 22, 1626–1641. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lu, C.; Zhang, J. Lactoferrin and Its Detection Methods: A Review. Nutrients 2021, 13, 2492. [Google Scholar] [CrossRef] [PubMed]
- Tsakali, E.; Chatzilazarou, A.; Houhoula, D.; Koulouris, S.; Tsaknis, J.; Van Impe, J. A rapid HPLC method for the determination of lactoferrin in milk of various species. J. Dairy Res. 2019, 86, 238–241. [Google Scholar] [CrossRef]
- Mohamed, H.G.; Al-Ghobashy, M.A.; Fouad, M.A.; Zaazaa, H.S. Quality Assessment of Lactoferrin in some Marketed Nutraceuticals Derived from Milk using Validated Analytical Methods. ChemistrySelect 2020, 5, 14816–14825. [Google Scholar] [CrossRef]
- Pang, J.; Xiao, Q.; Yan, H.; Cao, Y.; Miao, J.; Wang, S.; Li, X.; Li, H.; Cheng, Z. Bovine Lactoferrin Quantification in Dairy Products by a Simple Immunoaffinity Magnetic Purification Method Coupled with High-Performance Liquid Chromatography with Fluorescence Detection. J. Agric. Food Chem. 2019, 68, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Lu, Y.; Wang, X.; Yang, Y.; Zou, M.; Liu, J.; Jin, W.; Wang, X.; Pang, G.; Huang, L.; et al. Mass spectrometry based quantitative and qualitative analyses reveal N-glycan changes of bovine lactoferrin at different stages of lactation. LWT 2021, 147, 111626. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Z.; Fan, F.; Shi, P.; Xu, X.; Du, M.; Wang, C. Analysis Method of Lactoferrin Based on Uncoated Capillary Electrophoresis. eFood 2021, 2, 147–153. [Google Scholar] [CrossRef]
- Li, J.; Ding, X.; Chen, Y.; Song, B.; Zhao, S.; Wang, Z. Determination of bovine lactoferrin in infant formula by capillary electrophoresis with ultraviolet detection. J. Chromatogr. A 2012, 1244, 178–183. [Google Scholar] [CrossRef]
- Mao, K.; Du, H.; Bai, L.; Zhang, Y.; Zhu, H.; Wang, Y. Poly (2-methyl-2-oxazoline) coating by thermally induced immobilization for determination of bovine lactoferrin in infant formula with capillary electrophoresis. Talanta 2017, 168, 230–239. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Mozaffari, S.A.; Amoli, H.S. New method for evaluating the concentration of lactoferrin protein in infant formula using electrochemical sensors technology. Innov. Food. Technol. 2020, 7, 627–640. [Google Scholar] [CrossRef]
- Lu, Y.; Ke, H.; Wang, Y.; Zhang, Y.; Li, H.; Huang, C.; Jia, N. A ratiometric electrochemiluminescence resonance energy transfer platform based on novel dye BODIPY derivatives for sensitive detection of lactoferrin. Biosens. Bioelectron. 2020, 170, 112664. [Google Scholar] [CrossRef] [PubMed]
- Tomassetti, M.; Martini, E.; Campanella, L.; Favero, G.; Sanzò, G.; Mazzei, F. Lactoferrin determination using flow or batch immunosensor surface plasmon resonance: Comparison with amperometric and screen-printed immunosensor methods. Sensors Actuators B Chem. 2013, 179, 215–225. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Amoli, H.S.; Mozaffari, S.A. Impedimetric and single-frequency capacitance spectroscopy strategy in label-free rapid screening of lactoferrin. Sens. Actuators B Chem. 2021, 354, 131107. [Google Scholar] [CrossRef]
- Ostertag, F.; Sommer, D.; Berensmeier, S.; Hinrichs, J. Development and validation of an enzyme-linked immunosorbent assay for the determination of bovine lactoferrin in various milk products. Int. Dairy J. 2021, 125, 105246. [Google Scholar] [CrossRef]
- Kudo, H.; Maejima, K.; Hiruta, Y.; Citterio, D. Microfluidic Paper-Based Analytical Devices for Colorimetric Detection of Lactoferrin. SLAS Technol. Transl. Life Sci. Innov. 2019, 25, 47–57. [Google Scholar] [CrossRef]
- Wang, R.; Wang, J.; Liu, H.; Gao, Y.; Zhao, Q.; Ling, S.; Wang, S. Sensitive immunoassays based on specific monoclonal IgG for determination of bovine lactoferrin in cow milk samples. Food Chem. 2020, 338, 127820. [Google Scholar] [CrossRef]
- Zhu, C.; Li, L.; Yang, G.; Irfan, M.; Wang, Z.; Fang, S.; Qu, F. High-efficiency selection of aptamers for bovine lactoferrin by capillary electrophoresis and its aptasensor application in milk powder. Talanta 2019, 205, 120088. [Google Scholar] [CrossRef]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef]
- Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef]
- Röthlisberger, P.; Hollenstein, M. Aptamer chemistry. Adv. Drug Deliv. Rev. 2018, 134, 3–21. [Google Scholar] [CrossRef]
- Wang, T.; Chen, C.; Larcher, L.M.; Barrero, R.A.; Veedu, R.N. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol. Adv. 2018, 37, 28–50. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, Y.; Xu, X.; Liu, Y.; Lin, B.; Zhang, M.; Zhang, J.; Wan, S.; Yang, C.; Tan, W. Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chem. Rev. 2021, 121, 12035–12105. [Google Scholar] [CrossRef]
- Moutsiopoulou, A.; Broyles, D.; Dikici, E.; Daunert, S.; Deo, S.K. Molecular Aptamer Beacons and Their Applications in Sensing, Imaging, and Diagnostics. Small 2019, 15, e1902248. [Google Scholar] [CrossRef] [PubMed]
- Svobodova, M.; Skouridou, V.; Jauset-Rubio, M.; Viéitez, I.; Fernández-Villar, A.; Alvargonzalez, J.J.C.; Poveda, E.; Bofill, C.B.; Sans, T.; Bashammakh, A.; et al. Aptamer Sandwich Assay for the Detection of SARS-CoV-2 Spike Protein Antigen. ACS Omega 2021, 6, 35657–35666. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.-W.; Sun, C.-J.; Zhang, F.-T.; Xu, L.; Zhou, Y.-L.; Zhang, X.-X. An electrochemical aptasensor based on enzyme linked aptamer assay. Biosens. Bioelectron. 2012, 31, 363–368. [Google Scholar] [CrossRef]
- Otnaess, A.-B.K.; Meberg, A.; Sande, H.A. Plasma Lactoferrin Measured by an Enzyme-Linked Immunosorbent Assay (ELISA). Scand. J. Haematol. 2009, 31, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Kong, D.; Xing, C.; Zhang, X.; Kuang, H.; Xu, C. Sandwich immunoassay for lactoferrin detection in milk powder. Anal. Methods 2014, 6, 4742–4745. [Google Scholar] [CrossRef]
- Dupont, D.; Arnould, C.; Rolet-Repecaud, O.; Duboz, G.; Faurie, F.; Martin, B.; Beuvier, E. Determination of bovine lactoferrin concentrations in cheese with specific monoclonal antibodies. Int. Dairy J. 2006, 16, 1081–1087. [Google Scholar] [CrossRef]
Conc. Lf (nM) | Intra-Day Assay | Inter-Day Assay | Intra-Batch Assay | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean a | SD b | CV c | Mean | SD | CV | Mean | SD | CV | |
60 | 1.34 | 0.09 | 0.07 | 1.37 | 0.01 | 0.01 | 1.11 | 0.04 | 0.03 |
80 | 1.04 | 0.01 | 0.01 | 1.16 | 0.04 | 0.03 | 0.92 | 0.03 | 0.03 |
100 | 0.80 | 0.05 | 0.06 | 0.82 | 0.01 | 0.02 | 0.67 | 0.01 | 0.02 |
Spiked (nM) | Found (nM) | Recovery (%) | RSD (%) |
---|---|---|---|
50 | 53.40 | 106.80 | 1.94 |
100 | 101.90 | 101.90 | 1.41 |
150 | 142.70 | 95.13 | 1.98 |
Sample | Label (nM) | HPCE (nM) | ELAA (nM) | Accuracy (%) | RSD (%) |
---|---|---|---|---|---|
C-1 | 0 | 0 | 0 | 100 | 0.03 |
C-2 | 0 | 0 | 0 | 100 | 0.39 |
C-3 | 420 | 351.5 | 403.1 | 114.70 | 1.41 |
C-4 | 480 | 521.1 | 499.1 | 95.78 | 2.26 |
C-5 | 600 | 594.6 | 599.3 | 100.78 | 0.73 |
C-6 | 360 | 220.2 | 304.6 | 138.34 | 2.81 |
G-1 | 0 | 0 | 0 | 100 | 0.43 |
G-2 | 0 | 0 | 0 | 100 | 0.23 |
G-3 | 540 | 572.1 | 469.5 | 82.07 | 2.82 |
G-4 | 510 | 402.5 | 381.6 | 94.81 | 0.13 |
G-5 | 78 | 122.3 | 179.1 | 146.43 | 0.05 |
G-6 | 600 | 288.7 | 337.7 | 116.99 | 0.03 |
N-1 | 9000 | 8961.8 | 7144.0 | 79.71 | 3.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Du, H.; Li, L.; Li, T.; Wang, J.; Chen, Z.; Yan, M.; Zhu, C.; Qu, F. Enzyme-Linked Aptamer Kits for Rapid, Visual, and Sensitive Determination of Lactoferrin in Dairy Products. Foods 2022, 11, 3763. https://doi.org/10.3390/foods11233763
Zhang F, Du H, Li L, Li T, Wang J, Chen Z, Yan M, Zhu C, Qu F. Enzyme-Linked Aptamer Kits for Rapid, Visual, and Sensitive Determination of Lactoferrin in Dairy Products. Foods. 2022; 11(23):3763. https://doi.org/10.3390/foods11233763
Chicago/Turabian StyleZhang, Fan, Hongxia Du, Linsen Li, Tengfei Li, Jing Wang, Zilei Chen, Mengmeng Yan, Chao Zhu, and Feng Qu. 2022. "Enzyme-Linked Aptamer Kits for Rapid, Visual, and Sensitive Determination of Lactoferrin in Dairy Products" Foods 11, no. 23: 3763. https://doi.org/10.3390/foods11233763
APA StyleZhang, F., Du, H., Li, L., Li, T., Wang, J., Chen, Z., Yan, M., Zhu, C., & Qu, F. (2022). Enzyme-Linked Aptamer Kits for Rapid, Visual, and Sensitive Determination of Lactoferrin in Dairy Products. Foods, 11(23), 3763. https://doi.org/10.3390/foods11233763