The Quality of Salted Sun-Dried Meat from Young Nellore Bulls Fed Diets with Lauric Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals’ Description and the Experimental Design Used
2.2. Diet Composition
2.3. Slaughter Methods, Muscle Processing, and Meat Analysis
2.4. Production of Salted Sun-Dried Meat
2.5. Physicochemical Analyses of Salted Sun-Dried Meat
2.6. Fatty Acid Composition of the Salted Sun-Dried Meat
2.7. Sensory Attributes of the Salted Sun-Dried Meat
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Partida, J.A.; Olleta, J.L.; Sañudo, C.; Albertí, P.; Campo, M.M. Fatty acid composition and sensory traits of beef fed palm oil supplements. Meat Sci. 2007, 76, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Gouvêa, J.A.G.; Gouvêa, A.A.L. Tecnologia de Fabricação da Carne de Sol; Rede de Tecnologia da Bahia: Salvador, Brazil, 2007. [Google Scholar]
- Gesteira, S.M.; Oliveira, R.L.; Trajano, J.S.; Ribeiro, C.V.D.M.; Costa, E.I.S.; Ribeiro, R.D.X.; Pereira, E.S.; Bezerra, L.R. Fatty acid profile, physicochemical composition and sensorial attributes of salted and sun-dried meat from young Nellore bulls supplemented with condensed tannins. PLoS ONE 2019, 14, e0219581. [Google Scholar] [CrossRef]
- Toral, P.G.; Monahan, F.J.; Frutos, P.; Moloney, A.P. Review: Modulating ruminal lipid metabolism to improve the fatty acid composition of meat and milk. Challenges and opportunities. Animal 2018, 12, S272–S281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araújo, S.A.; Ribeiro, R.D.X.; Lima, A.G.V.O.; Nascimento, T.V.C.; da Silva Júnior, J.M.; Barbosa, A.M.; Pimentel, P.R.S.; Santos, N.J.A.; Bezerra, L.R.; Pereira, E.S.; et al. Physicochemical Properties, Lipid Oxidation and Fatty Acid Composition of Sausage Prepared with Meat of Young Nellore Bulls Fed a Diet with Lauric Acid. Eur. J. Lipid Sci. Technol. 2020, 51, 2000087. [Google Scholar] [CrossRef]
- Araujo, S.A.; Ribeiro, R.D.X.; Lima, A.G.V.O.; Nascimento, T.V.C.; da Silva Júnior, J.M.; Silva, T.M.; Pimentel, R.S.; Santos, N.J.A.; Lanna, D.P.D.; Bezerra, L.R.; et al. Physicochemical composition and sensory attributes of manufactured beef burger patties obtained from young Nellore bulls supplied with lauric acid. J. Food Process. Preserv. 2022, 46, e16126. [Google Scholar] [CrossRef]
- Castro, D.P.V.; Pimentel, P.R.S.; da Silva Júnior, J.M.; Virgínio Júnior, G.F.; de Andrade, E.A.; Barbosa, A.M.; Pereira, E.S.; Ribeiro, C.V.D.M.; Bezerra, L.R.; Oliveira, R.L. Effects of Increasing Levels of Palm Kernel Oil in the Feed of Finishing Lambs. Animals 2022, 12, 427. [Google Scholar] [CrossRef]
- dos Santos, N.J.A.; Bezerra, L.R.; Castro, D.P.V.; Marcelino, P.D.R.; de Andrade, E.A.; Vírginio Júnior, G.F.; da Silva Júnior, J.M.; Pereira, E.S.; Barbosa, A.M.; Oliveira, R.L. Performance, Digestibility, Nitrogen Balance and Ingestive Behavior of Young Feedlot Bulls Supplemented with Palm Kernel Oil. Animals 2022, 12, 429. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Domingues, J.L.; Nuñez, A.J.C.; Gomes, R.C.; Valinote, A.C.; Silva, S.L.; Pereira, A.S.C.; Leme, P.R.; Nogueira Filho, J.C.M. Effect of high oil corn in the diets of Nellore steers on growth performance, carcass characteristics, meat quality, and longissimus muscle fatty acid profile. Livest. Sci. 2015, 174, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Briggs, M.A.; Petersen, K.S.; Kris-Etherton, P.M. Saturated Fatty Acids and Cardiovascular Disease: Replacements for Saturated Fat to Reduce Cardiovascular Risk. Healthcare 2017, 5, 29. [Google Scholar] [CrossRef]
- Vahmani, P.; Ponnampalam, E.N.; Kraft, J.; Mapiye, C.; Berminghan, E.N.; Watkins, P.J.; Proctor, S.D.; Dugan, M.E.R. Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat Sci. 2020, 165, 108114. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; Backer, G.G.D.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hristov, A.N.; Lee, C.; Cassidy, T.; Long, M.; Heyler, K.; Corl, B.; Forster, R. Effects of lauric and myristic acids on ruminal fermentation, production, and milk fatty acid composition in lactating dairy cows. J. Dairy Sci. 2011, 94, 382–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Meile, L.; Kreuzer, M.; Zeitz, J.O. The effect of saturated fatty acids on methanogenesis and cell viability of Methanobrevibacter ruminantium. Archaea 2013, 2013, 106916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faciola, A.P.; Broderick, G.A.; Hristov, A.; Leão, M.I. Effects of lauric acid on ruminal protozoal numbers and fermentation pattern and milk production in lactating dairy cows1. J. Anim. Sci. 2013, 91, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Popova, T. Fatty acid composition and oxidative stability of muscles in lambs fed coconut oil supplemented diet. Bulg. J. Agric. Sci. 2011, 17, 402–409. [Google Scholar]
- Park, S.; Yan, Z.; Choi, C.; Kim, K.; Lee, H.; Oh, Y.; Jeong, J.; Lee, J.; Smith, S.B.; Choi, S. Carcass and meat characteristics and gene expression in intramuscular adipose tissue of korean native cattle fed finishing diets supplemented with 5% palm oil. Korean J. Food Sci. Anim. Resour. 2017, 37, 168–174. [Google Scholar] [CrossRef]
- Fiorentini, G.; Lage, J.F.; Carvalho, I.P.C.; Messana, J.D.; Canesin, R.C.; Reis, R.A.; Berchielli, T.T. Lipid sources with different fatty acid profile alters the fatty acid profile and quality of beef from confined Nellore steers. Asian-Australas. J. Anim. Sci. 2016, 28, 976–986. [Google Scholar] [CrossRef] [Green Version]
- Castro, T.; Cabezas, A.; De La Fuente, J.; Isabel, B.; Manso, T.; Jimeno, V. Animal performance and meat characteristics in steers reared in intensive conditions fed with different vegetable oils. Animal 2016, 10, 520–530. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, C.V.D.M.; Oliveira, D.E.; Juchem, S.O.; Silva, T.M.; Nalério, E.S. Fatty acid profile of meat and milk from small ruminants: A review. Rev. Bras. Zootec. 2011, 40, 121–137. [Google Scholar]
- Jenkins, T.C.; Bridges, W.C., Jr. Protection of fatty acids against ruminal biohydrogenation in cattle. Eur. J. Lipid Sci. Technol. 2007, 109, 778–789. [Google Scholar] [CrossRef]
- Jerónimo, E.; Alves, S.P.; Prates, J.A.M.; Santos-Silva, J.; Bessa, R.J.B. Effect of dietary replacement of sunflower oil with linseed oil on intramuscular fatty acids of lamb meat. Meat Sci. 2009, 83, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Gebauer, S.K.; Chardigny, J.M.; Jakobsen, M.U.; Lamarche, B.; Lock, A.L.; Proctor, S.D.; Baer, D.J. Effects of ruminant trans fatty acids on cardiovascular disease and cancer: A comprehensive review of epidemiological, clinical, and mechanistic studies. Adv. Nutr. 2011, 2, 332–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NRC. Nutrient Requirements of Beef Cattle, 7th ed.; The National Academies Press: Washington, DC, USA, 1996; 248p. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polyssacharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Mertens, D.R. Creating a system for meeting the fiber requirements of dairy cows. J. Dairy Sci. 1997, 80, 1463–1481. [Google Scholar] [CrossRef]
- AMSA. Guidelines for Cookery, Sensory Evaluation and Instrumental Tenderness Measurements of Meat; American Meat Science Association: Champaign, IL, USA, 2016. [Google Scholar]
- Hamm, R. Functional properties of the miofibrilar system and their measurement. In Muscle as Food; Bechtel, P.J., Ed.; Academic Press: Orlando, FL, USA, 1986; pp. 135–199. [Google Scholar]
- Shackelford, S.D.; Wheeler, T.L.; Koohmaraie, M. Evaluation of slice shear force as an objective method of assessing beef Longissimus tenderness. J. Anim. Sci. 1999, 77, 2693–2699. [Google Scholar] [CrossRef] [Green Version]
- Miltenburg, G.A.J.; Wensing, T.H.; Smulders, F.J.M.; Breukink, H.J. Relationship between blood hemoglobin, plasma and tissue iron, muscle heme pigment, and carcass color of veal. J. Anim. Sci. 1992, 70, 2766–2772. [Google Scholar] [CrossRef]
- Hunt, M.C.; King, A. Meat Color Measurement Guidelines; American Meat Science Association: Champaign, IL, USA, 2012. [Google Scholar]
- Witte, V.C.; Krause, G.F.; Bailey, M.E. A new extraction method for determining 2-thiobarbituric acid values of pork and beef during storage. J. Food Sci. 1970, 35, 582–585. [Google Scholar] [CrossRef]
- Gesteira, S.M.; Oliveira, R.L.; Silva, T.M.; Ribeiro, R.D.X.; Ribeiro, C.V.D.M.; Pereira, E.S.; Lanna, D.P.D.; Pinto, L.F.B.; Rocha, T.C.; Vieira, J.F.; et al. Physicochemical Quality, Fatty Acid Composition, and Sensory Analysis of Nellore Steers Meat Fed with Inclusion of Condensed Tannin in the Diet. J. Food Sci. 2018, 83, 1366–1372. [Google Scholar] [CrossRef]
- O’Fallon, J.V.; Busboom, J.R.; Nelson, M.L.; Gaskins, C.T. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef] [Green Version]
- Macedo, V.P.; Ribeiro, R.D.X.; de Araújo, S.A.; Souza, M.N.S.; de Andrade, E.A.; Ribeiro, C.V.D.N.; de Souza, C.O.; Silva, T.M.; Barbosa, A.M.; Bezerra, L.R.; et al. Physicochemical composition, fatty acid profile and sensory attributes of meat (longissimus lumborum muscle) from Nellore and Nellore-cross bulls. Trop. Anim. Health Prod. 2022, 54, 47. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Rhee, K.S. Fatty acids in meats and meat products. In Fatty Acids in Foods and Their Health Implications; Chow, C.K., Ed.; Marcel Dekker: New York, NY, USA, 1992; pp. 65–93. [Google Scholar]
- Smet, S.; Raes, K.; Demeyer, D. Meat fatty acid composition as affected by fatness and genetic factors: A review. Anim. Res. 2004, 53, 81–98. [Google Scholar] [CrossRef] [Green Version]
- SAS. SAS Systems for Windows; Version 9.1; SAS Institute Inc.: Cary, NC, USA, 2003. [Google Scholar]
- Milliken, G.A.; Johnson, D.E. Analysis of Messy Data, Volume I: Analysis of Designed Experiments, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Morais, J.S.; Bezerra, L.R.; Silva, A.M.A.; Araújo, M.J.; Oliveira, R.L.; Edvan, R.L.; Torreão, J.N.C.; Lanna, D.P.D. Production, composition, fatty acid profile and sensory analysis of goat milk in goats fed buriti oil. J. Anim. Sci. 2017, 95, 395–406. [Google Scholar] [CrossRef]
- Kazama, R.; Zeoula, L.M.; Prado, I.N.; Silva, D.C.; Ducatti, T.; Matsushita, M. Quantitative and qualitative carcass characteristics of heifers fed different energy sources on a cottonseed hulls and soybean hulls based diet. Rev. Bras. Zootec. 2008, 37, 350–357. [Google Scholar] [CrossRef] [Green Version]
- Gouvêa, A.A.; Oliveira, R.L.; Leão, A.G.; Bezerra, L.R.; Assis, D.Y.; Albuquerque, I.R.; Pellegrini, C.B.; Rocha, T.C. Effects of licury cake in young Nellore bull diets: Salted sun-dried meat is preferred rather than fresh meat by consumers despite similar physicochemical characteristics. J. Sci. Food Agric. 2017, 97, 2147–2153. [Google Scholar] [CrossRef]
- Luciano, G.; Vasta, V.; Monahan, F.J.; López-Andrés, P.; Biondi, L.; Lanza, M.; Priolo, A. Antioxidant status, colour stability and myoglobin resistance to oxidation of longissimus dorsi muscle from lambs fed a tannin-containing diet. Food Chem. 2011, 124, 1036–1042. [Google Scholar] [CrossRef]
- Oliveira, E.A.; Sampaio, A.A.M.; Henrique, W.; Pivaro, T.M.; Rosa, B.L.; Fernandes, A.R.M.; Andrade, A.T. Quality traits and lipid composition of meat from Nellore young bulls fed with different oils either protected or unprotected from rumen degradation. Meat Sci. 2012, 90, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Abularach, M.L.S.; Rocha, C.E.; de Felício, P.E. Características de qualidade do contrafilé (m. L. dorsi) de touros jovens da raça Nelore. Food Sci. Technol. 1998, 18, 205–210. [Google Scholar] [CrossRef]
- Mach, N.; Bach, A.; Velarde, A.; Devant, M. Association between animal, transportation, slaughterhouse practices, and meat pH in beef. Meat Sci. 2008, 78, 232–238. [Google Scholar] [CrossRef]
- Najafi, M.H.; Zeinoaldini, S.; Ganjkhanlou, M.; Mohammadi, H.; Hopkins, D.L.; Ponnampalam, E.N. Performance, carcass traits, muscle fatty acid composition and meat sensory properties of male Mahabadi goat kids fed palm oil, soybean oil or fish oil. Meat Sci. 2012, 92, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Francisco, A.; Dentinho, M.T.; Alves, S.P.; Portugal, P.V.; Fernandes, V.; Sengo, S.; Jerónimo, E.; Oliveira, M.A.; Costa, P.; Sequeria, A.; et al. Growth performance, carcass and meat quality of lambs supplemented with increasing levels of a tanniferous bush (Cistus ladanifer L.) and vegetable oils. Meat Sci. 2015, 100, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Belew, J.B.; Brooks, J.C.; McKenna, D.R.; Savell, J.W. Warner–Bratzler shear evaluations of 40 bovine muscles. Meat Sci. 2003, 64, 507–512. [Google Scholar] [CrossRef]
- Priolo, A.; Micol, D.; Agabriel, J. Effects of grass feeding systems on ruminant meat colour and flavour. A review. Anim. Res. 2001, 50, 185–200. [Google Scholar] [CrossRef] [Green Version]
- Sabadini, E.; Hubinger, M.D.; Sobral, P.J.d.A.; Carvalho Júnior, B.C. Change of water activity and meat colour in the elaboration process of dehydrated salted meat. Food Sci. Technol. 2001, 21, 14–19. [Google Scholar] [CrossRef]
- Costa, R.G.; Medeiros, G.R.; Duarte, T.F.; Pedrosa, N.A.; Voltolini, T.V.; Madruga, M.S. Salted goat and lamb meat: Typical regional product of the city of Petrolina, state of Pernambuco. Small Rumin. Res. 2011, 98, 51–54. [Google Scholar] [CrossRef] [Green Version]
- Bessa, R.J.B.; Alves, S.P.; Santos-Silva, J. Constraints and potentials for the nutritional modulation of the fatty acid composition of ruminant meat. Eur. J. Lipid Sci. Technol. 2015, 117, 1325–1344. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sherad, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Mourão, D.M.; Monteiro, J.B.R.; Costa, N.M.B.; Stringheta, P.C.; Minim, V.P.R.; Dias, C.M.G.C. Conjugated linoleic acid and weight loss. Rev. Nutr. 2005, 18, 391–399. [Google Scholar] [CrossRef] [Green Version]
- Campo, M.M.; Nute, G.R.; Hughes, S.I.; Enser, M.; Wood, J.D.; Richardson, R.I. Flavour perception of oxidation in beef. Meat Sci. 2006, 72, 303–311. [Google Scholar] [CrossRef]
- Zorzi, K.; Bonilha, S.F.M.; Queiroz, A.C.; Branco, R.H.; Sobrinho, T.L.; Duarte, M.S. Meat quality of young Nellore bulls with low and high residual feed intake. Meat Sci. 2013, 93, 593–599. [Google Scholar] [CrossRef] [PubMed]
Item | Lauric Acid Level 1 (% Total DM Diet) | |||
---|---|---|---|---|
0 | 0.5 | 1.0 | 1.5 | |
Ingredient proportion (g/kg DM) | ||||
Tifton-85 hay | 400 | 400 | 400 | 400 |
Soybean meal | 26.0 | 27.0 | 29.6 | 31.4 |
Ground corn | 544 | 530 | 517 | 504 |
Palm kernel oil | 0.0 | 11.5 | 23.0 | 34.6 |
Urea + ammonium sulfate 2 | 15.0 | 15.0 | 15.0 | 15.0 |
Mineral mixture 3 | 15.0 | 15.0 | 15.0 | 15.0 |
Chemical composition (g/kg DM) | ||||
Dry matter (g/kg as fed) | 905 | 906 | 907 | 908 |
Ash | 66.3 | 66.2 | 66.2 | 66.1 |
Crude protein | 124 | 124 | 124 | 124 |
Ether extract | 32.6 | 43.4 | 54.1 | 65.0 |
Neutral detergent fiberap 4 | 363 | 361 | 359 | 358 |
Non-fibrous carbohydrate | 442 | 432 | 423 | 414 |
NIDN (g/kg CP) 5 | 231 | 230 | 228 | 226 |
Acid detergent lignin | 26.6 | 26.5 | 26.4 | 26.4 |
Cellulose | 82.8 | 82.8 | 82.7 | 82.7 |
Hemicellulose | 272 | 270 | 269 | 267 |
Total digestible nutrients | 796 | 809 | 823 | 836 |
Fatty acids (% FAME) | ||||
C12:0 | 3.16 | 26.4 | 28.5 | 36.2 |
C14:0 | 1.11 | 8.72 | 10.7 | 13.1 |
C16:0 | 30.0 | 20.4 | 18.6 | 15.4 |
C16:1 cis-9 | 0.11 | 0.14 | 0.16 | 0.05 |
C18:1 cis-9 | 42.9 | 28.3 | 26.5 | 22.2 |
C18:2 cis-9, cis-12 | 10.3 | 5.16 | 5.17 | 0.04 |
Animal performance | ||||
Dry matter intake (kg/day) | 9.87 | 9.78 | 7.19 | 5.18 |
Average daily gain (kg/day) | 1.14 | 1.34 | 1.03 | 0.59 |
Slaughter body weight (kg) | 512 | 533 | 502 | 468 |
Physicochemical Variables | Lauric Acid Levels (% DM) 1 | SEM 2 | p-Value 3 | ||||
---|---|---|---|---|---|---|---|
0 | 0.5 | 1.0 | 1.5 | Linear | Quadratic | ||
pH meat (24 h) | 5.51 | 5.47 | 5.45 | 5.46 | 0.07 | 0.661 | 0.752 |
pH salted sun-dried meat | 5.84a | 5.73ab | 5.63b | 5.68b | 0.047 | 0.009 | 0.098 |
Moisture, g/100 g | 70.2 | 70.7 | 70.0 | 70.1 | 0.324 | 0.457 | 0.523 |
Protein, g/100 g | 21.2a | 20.8ab | 20.9ab | 20.3b | 0.251 | 0.041 | 0.740 |
Ash, g/100 g | 6.34 | 6.18 | 6.55 | 7.08 | 0.395 | 0.158 | 0.395 |
Lipid, g/100 g | 2.24 | 2.35 | 2.49 | 2.51 | 0.201 | 0.316 | 0.814 |
Collagen (%) | 1.95 | 1.95 | 1.99 | 2.01 | 0.071 | 0.532 | 0.887 |
Water activity (AW) | 0.87 | 0.87 | 0.88 | 0.86 | 0.006 | 0.533 | 0.028 |
WHC 4 (%) | 28.8 | 26.2 | 27.7 | 27.1 | 0.454 | 0.141 | 0.058 |
Cooking loss (%) | 27.0 | 30.1 | 28.5 | 25.9 | 3.103 | 0.714 | 0.369 |
Shear force (N) | 18.3 | 23.9 | 22.1 | 21.9 | 1.96 | 0.435 | 0.177 |
Color index | |||||||
L* (lightness) | 34.9 | 34.1 | 34.2 | 33.5 | 0.600 | 0.173 | 0.887 |
a* (redness) | 19.2 | 17.9 | 18.4 | 18.6 | 0.972 | 0.747 | 0.461 |
b* (yellowness) | 6.36 | 6.21 | 6.42 | 6.05 | 0.408 | 0.706 | 0.791 |
C* (saturation) | 20.2 | 19.0 | 19.5 | 19.5 | 1.010 | 0.719 | 0.538 |
Lipid oxidation (TBARS) | |||||||
0 days | 0.31 | 0.30 | 0.26 | 0.30 | 0.038 | 0.791 | 0.536 |
7 days | 0.75b | 0.79ab | 0.86ab | 0.97a | 0.077 | 0.046 | 0.657 |
14 days | 1.13 | 1.04 | 1.00 | 1.05 | 0.106 | 0.650 | 0.583 |
21 days | 1.06 | 0.89 | 1.13 | 1.39 | 0.256 | 0.313 | 0.421 |
Fatty Acid (% Total Fatty Acids) | Lauric Acid Levels (% DM) 1 | SEM 2 | p-Value 3 | |||||
---|---|---|---|---|---|---|---|---|
0 | 0.5 | 1.0 | 1.5 | Linear | Quadratic | |||
Saturated fatty acids (SFA) | ||||||||
Lauric | C12:0 | 0.05b | 0.11ab | 0.15ab | 0.18a | 0.024 | 0.004 | 0.622 |
Myristic | C14:0 | 2.20 | 2.61 | 2.33 | 2.09 | 0.524 | 0.783 | 0.501 |
Palmitic | C16:0 | 23.8 | 23.9 | 23.2 | 23.2 | 0.966 | 0.769 | 0.816 |
Margaric | C17:0 | 0.98 | 0.95 | 0.10 | 0.98 | 0.074 | 0.532 | 0.842 |
Stearic | C18:0 | 20.2 | 19.6 | 20.9 | 19.4 | 0.932 | 0.396 | 0.507 |
Others | 1.05 | 1.08 | 1.07 | 1.11 | 0.083 | 0.537 | 0.834 | |
Monounsaturated fatty acids (MUFA) | ||||||||
Myristoleic | C14:1 cis-9 | 0.48 | 0.43 | 0.49 | 0.51 | 0.05 | 0.432 | 0.532 |
Palmitoleic | 16:1 cis-9 | 2.32 | 2.43 | 2.12 | 2.21 | 0.12 | 0.745 | 0.824 |
Oleic | C18:1 cis-9 | 36.9 | 35.3 | 37.1 | 35.2 | 2.461 | 0.535 | 0.681 |
C18:1 trans-11 | 1.15 | 1.05 | 1.33 | 1.18 | 1.140 | 0.566 | 0.858 | |
Eicosenoic | 20:1 cis-9 | 0.16 | 0.15 | 0.16 | 0.2 | 0.02 | 0.342 | 0.723 |
Others | 0.08 | 0.10 | 0.09 | 0.08 | 0.004 | 0.934 | 0.911 | |
Polyunsaturated fatty acids (PUFA) n − 6 | ||||||||
CLA | C18:2–cis-9. trans-11 | 0.12 | 0.12 | 0.24 | 0.18 | 0.12 | 0.226 | 0.626 |
Linoleic | 18:2 cis-9. cis-12 | 6.19 | 5.72 | 5.77 | 7.97 | 6.19 | 0.403 | 0.354 |
γ-linolenic | C18:3n − 6 | 0.16 | 0.17 | 0.15 | 0.18 | 0.011 | 0.622 | 0.852 |
Arachidonic | C20:4n − 6 | 1.81 | 3.17 | 2.08 | 1.83 | 1.81 | 0.342 | 0.023 |
DTA | C22:4n − 6 | 0.79 | 0.98 | 0.81 | 1.17 | 0.220 | 0.337 | 0.720 |
Others | 0.15 | 0.17 | 0.17 | 0.12 | 0.011 | 0.521 | 0.102 | |
PUFA n − 3 | ||||||||
α-linolenic | C18:3n − 3 | 0.92 | 1.08 | 0.97 | 1.15 | 0.168 | 0.840 | 0.871 |
EPA | C20:5n − 3 | 0.24b | 0.57ab | 0.46ab | 0.68a | 0.045 | <0.01 | 0.445 |
DHA | C22:6n − 3 | 0.04b | 0.13ab | 0.10ab | 0.15a | 0.054 | <0.01 | 0.346 |
Others | 0.22 | 0.18 | 0.23 | 0.22 | 0.012 | 0.764 | 0.633 |
Variables | Lauric Acid Levels (% DM) 1 | SEM 2 | p-Value 3 | ||||
---|---|---|---|---|---|---|---|
0 | 0.5 | 1.0 | 1.5 | Linear | Quadratic | ||
Sums and ratios | |||||||
∑SFA | 48.3 | 48.3 | 47.8 | 47.0 | 0.859 | 0.155 | 0.980 |
∑MUFA | 41.1 | 39.5 | 41.3 | 39.4 | 1.543 | 0.706 | 0.610 |
∑PUFA | 10.6b | 12.3ab | 11.0ab | 13.7a | 1.961 | <0.01 | 0.536 |
∑PUFA:∑SFA | 0.22 | 0.25 | 0.23 | 0.29 | 0.112 | 0.456 | 0.763 |
∑n − 6 | 9.22b | 10.33ab | 9.22b | 11.45a | 1.982 | <0.01 | 0.224 |
∑n − 3 | 1.419b | 1.965ab | 1.761ab | 2.199a | 0.256 | <0.01 | 0.645 |
∑n − 6:∑n − 3 | 6.50 | 5.26 | 5.24 | 5.21 | 1.143 | <0.01 | 0.111 |
Health indexes | |||||||
Desirable fatty acids | 71.9 | 71.4 | 73.2 | 72.4 | 2.326 | 0.109 | 0.211 |
h:H | 1.77ab | 1.73b | 1.82ab | 1.85a | 0.092 | <0.01 | 0.646 |
AI | 0.63 | 0.67 | 0.63 | 0.60 | 0.066 | 0.944 | 0.835 |
TI | 1.56a | 1.49ab | 1.51ab | 1.39b | 0.099 | <0.01 | 0.112 |
Enzymatic activity | |||||||
Δ9-desaturase C16 | 8.88 | 9.23 | 8.37 | 8.70 | 0.114 | 0.823 | 0.853 |
Δ9-desaturase C18 | 64.6 | 64.3 | 64.0 | 64.5 | 0.312 | 0.713 | 0.512 |
Elongase | 68.6 | 67.6 | 69.6 | 68.2 | 0.444 | 0.632 | 0.941 |
Attributes | Lauric Acid Levels (% DM) 1 | SEM 2 | p-Value 3 | |||
---|---|---|---|---|---|---|
0 | 0.5 | 1.0 | 1.5 | |||
Flavor | 7.58 | 7.47 | 7.16 | 7.49 | 0.130 | 0.316 |
Tenderness | 6.90bc | 7.12b | 6.72c | 7.53a | 0.159 | 0.023 |
Juiciness | 7.22 | 7.20 | 6.89 | 7.26 | 0.152 | 0.423 |
Overall acceptance | 7.21ab | 7.24ab | 6.98b | 7.45a | 0.140 | 0.045 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Araújo, S.A.; dos Santos, F.M.; Ribeiro, R.D.X.; Barbosa, A.M.; de Andrade, E.A.; Virginio Júnior, G.F.; dos Santos, N.J.A.; da Silva Júnior, J.M.; Pereira, E.S.; Bezerra, L.R.; et al. The Quality of Salted Sun-Dried Meat from Young Nellore Bulls Fed Diets with Lauric Acid. Foods 2022, 11, 3764. https://doi.org/10.3390/foods11233764
de Araújo SA, dos Santos FM, Ribeiro RDX, Barbosa AM, de Andrade EA, Virginio Júnior GF, dos Santos NJA, da Silva Júnior JM, Pereira ES, Bezerra LR, et al. The Quality of Salted Sun-Dried Meat from Young Nellore Bulls Fed Diets with Lauric Acid. Foods. 2022; 11(23):3764. https://doi.org/10.3390/foods11233764
Chicago/Turabian Stylede Araújo, Sergiane A., Fernanda M. dos Santos, Rebeca D. X. Ribeiro, Analívia M. Barbosa, Ederson A. de Andrade, Gercino F. Virginio Júnior, Neiri J. A. dos Santos, Jarbas M. da Silva Júnior, Elzânia S. Pereira, Leilson R. Bezerra, and et al. 2022. "The Quality of Salted Sun-Dried Meat from Young Nellore Bulls Fed Diets with Lauric Acid" Foods 11, no. 23: 3764. https://doi.org/10.3390/foods11233764
APA Stylede Araújo, S. A., dos Santos, F. M., Ribeiro, R. D. X., Barbosa, A. M., de Andrade, E. A., Virginio Júnior, G. F., dos Santos, N. J. A., da Silva Júnior, J. M., Pereira, E. S., Bezerra, L. R., & Oliveira, R. L. (2022). The Quality of Salted Sun-Dried Meat from Young Nellore Bulls Fed Diets with Lauric Acid. Foods, 11(23), 3764. https://doi.org/10.3390/foods11233764