Development of Protein- and Fiber-Enriched, Sugar-Free Lentil Cookies: Impact of Whey Protein, Inulin, and Xylitol on Physical, Textural, and Sensory Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cookies
2.3. Methods
2.3.1. Color Measurement
2.3.2. Determination of Baking Loss and Geometry
2.3.3. Texture Analysis
2.3.4. Sensory Tests
2.4. Data Analysis
3. Results and Discussion
3.1. Baking Loss and Geometry
3.2. Color (L*, a*, b*) Parameters
3.3. Textural Properties
3.4. Sensory Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, N.; Bhatia, S.; Chunduri, V.; Kaur, S.; Sharma, S.; Kapoor, P.; Kumari, A.; Garg, M. Pathogenesis of celiac disease and other gluten related disorders in wheat and strategies for mitigating them. Front. Nutr. 2020, 7, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradauskiene, V.; Vaiciulyte-Funk, L.; Martinaitiene, D.; Andruskiene, J.; Verma, A.K.; Lima, J.P.M.; Serin, Y.; Catassi, C. Wheat consumption and prevalence of celiac disease: Correlation from a multilevel analysis. Crit. Rev. Food Sci. Nutr. 2023, 63, 18–32. [Google Scholar] [CrossRef]
- Lerner, A.; O’Bryan, T.; Matthias, T. Navigating the gluten-free boom: The dark side of gluten free diet. Front. Pediatr. 2019, 7, 414. [Google Scholar] [CrossRef] [Green Version]
- Di Cairano, M.; Condelli, N.; Galgano, F.; Caruso, M.C. Experimental gluten-free biscuits with underexploited flours versus commercial products: Preference pattern and sensory characterisation by check all that apply questionnaire. Int. J. Food Sci. Technol. 2022, 57, 1936–1944. [Google Scholar] [CrossRef]
- Benedek, C.; Bodor, Z.; Merrill, V.T.; Kókai, Z.; Gere, A.; Kovacs, Z.; Dalmadi, I.; Abrankó, L. Effect of sweeteners and storage on compositional and sensory properties of blackberry jams. Eur. Food Res. Technol. 2020, 246, 2187–2204. [Google Scholar] [CrossRef]
- Winkelhausen, E.; Jovanovic-Malinovska, R.; Velickova, E.; Kuzmanova, S. Sensory and microbiological quality of a baked product containing xylitol as an alternative sweetener. Int. J. Food Prop. 2007, 10, 639–649. [Google Scholar] [CrossRef]
- Mushtaq, Z.; Rehman, S.-U.; Zahoor, T.; Jamil, A. Impact of xylitol replacement on physicochemical, sensory and microbial quality of cookies. Pak. J. Nutr. 2010, 9, 605–610. [Google Scholar] [CrossRef] [Green Version]
- Valitutti, F.; Iorfida, D.; Anania, C.; Trovato, C.M.; Montuori, M.; Cucchiara, S.; Catassi, C. Cereal consumption among subjects with celiac disease: A snapshot for nutritional considerations. Nutrients 2017, 9, 396. [Google Scholar] [CrossRef] [Green Version]
- Raju, K.; Roshan, D. Allied Market Research Gluten-Free Products Market by Type (Gluten-Free Baby Food, Gluten-Free Pasta, Gluten-Free Bakery Products, and Gluten-Free Ready Meals) and Distribution Channel (Convenience Stores, Specialty Stores, Drug-store & Pharmacy, and Others): Global Opportunity. Available online: https://www.alliedmarketresearch.com/gluten-free-products-market (accessed on 18 November 2022).
- Grand View Research Gluten-Free Products Market Size, Share & Trends Analysis Report by Product, by Distribution Channel, By Region, and Segment Forecasts, 2022–2030. Available online: https://www.grandviewresearch.com/industry-analysis/gluten-free-products-market (accessed on 18 November 2022).
- Gularte, M.A.; de la Hera, E.; Gómez, M.; Rosell, C.M. Effect of different fibers on batter and gluten-free layer cake properties. LWT Food Sci. Technol. 2012, 48, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Sciarini, L.S.; Bustos, M.C.; Vignola, M.B.; Paesani, C.; Salinas, C.N.; Pérez, G.T. A study on fibre addition to gluten free bread: Its effects on bread quality and in vitro digestibility. J. Food Sci. Technol. 2017, 54, 244–252. [Google Scholar] [CrossRef]
- del Mercado, P.P.-V.; Mojica, L.; Morales-Hernández, N. Protein ingredients in bread: Technological, textural and health implications. Foods 2022, 11, 2399. [Google Scholar] [CrossRef]
- Di Stefano, V.; Pagliaro, A.; Del Nobile, M.A.; Conte, A.; Melilli, M.G. Lentil fortified spaghetti: Technological properties and nutritional characterization. Foods 2020, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, K.; Xu, B. Polyphenol-rich lentils and their health promoting effects. Int. J. Mol. Sci. 2017, 18, 2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Păucean, A.; Moldovan, O.P.; Mureșan, V.; Socaci, S.A.; Dulf, F.V.; Alexa, E.; Man, S.M.; Mureșan, A.E.; Muste, S. Folic acid, minerals, amino-acids, fatty acids and volatile compounds of green and red lentils. Folic acid content optimization in wheat-lentils composite flours. Chem. Cent. J. 2018, 12, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhary, A.; Tremorin, D. Nutritional and environmental sustainability of lentil reformulated beef burger. Sustainability 2020, 12, 6712. [Google Scholar] [CrossRef]
- Di Cairano, M.; Galgano, F.; Tolve, R.; Caruso, M.C.; Condelli, N. Focus on gluten free biscuits: Ingredients and issues. Trends Food Sci. Technol. 2018, 81, 203–212. [Google Scholar] [CrossRef]
- Khazaei, H.; Subedi, M.; Nickerson, M.; Martínez-Villaluenga, C.; Frias, J.; Vandenberg, A. Seed protein of lentils: Current status, progress, and food applications. Foods 2019, 8, 391. [Google Scholar] [CrossRef] [Green Version]
- Faris, M.A.-I.E.; Takruri, H.R.; Issa, A.Y. Role of lentils (Lens culinaris L.) in human health and nutrition: A review. Mediterr. J. Nutr. Metab. 2012, 6, 3–16. [Google Scholar] [CrossRef]
- Portman, D.; Maharjan, P.; McDonald, L.; Laskovska, S.; Walker, C.; Irvin, H.; Blanchard, C.; Naiker, M.; Panozzo, J.F. Nutritional and functional properties of cookies made using down-graded lentil—A candidate for novel food production and crop utilization. Cereal Chem. 2019, 97, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Hajas, L.; Sipos, L.; Csobod, É.C.; Bálint, M.V.; Juhász, R.; Benedek, C. Lentil (Lens culinaris Medik.) flour varieties as promising new ingredients for gluten-free cookies. Foods 2022, 11, 2028. [Google Scholar] [CrossRef]
- European Parliament; Council of the European Union. Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union 2006, L 404, 9–25. [Google Scholar]
- Belitz, H.-D.; Grosch, W.; Schieberle, P. Carbohydrates. In Food Chemistry; Springer: Berlin, Heidelberg, 2009; pp. 248–339. [Google Scholar]
- CIE (Commission Internationale de l’Éclairage). Technical Report: Colorimetry, 3rd ed.; CIE: Washington, DC, USA, 2004; ISBN 390-190-633-9. [Google Scholar]
- ISO 11035:1994; Sensory Analysis—Identification and Selection of De-scriptors for Establishing a Sensory Profile by a Multidimensional Approach. ISO (International Organization for Standardization): Geneva, Switzerland, 1994.
- ISO 13299:2003; Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile. ISO (International Organization for Standardization): Geneva, Switzerland, 2003.
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Tsatsaragkou, K.; Methven, L.; Chatzifragkou, A.; Rodriguez-Garcia, J. The functionality of inulin as a sugar replacer in cakes and biscuits; highlighting the influence of differences in degree of polymerisation on the properties of cake batter and product. Foods 2021, 10, 951. [Google Scholar] [CrossRef] [PubMed]
- Canalis, M.S.B.; Steffolani, M.E.; León, A.E.; Ribotta, P.D. Effect of different fibers on dough properties and biscuit quality. J. Sci. Food Agric. 2017, 97, 1607–1615. [Google Scholar] [CrossRef] [PubMed]
- Laguna, L.; Sanz, T.; Sahi, S.; Fiszman, S.M. Role of fibre morphology in some quality features of fibre-enriched biscuits. Int. J. Food Prop. 2014, 17, 163–178. [Google Scholar] [CrossRef]
- Struck, S.; Gundel, L.; Zahn, S.; Rohm, H. Fiber enriched reduced sugar muffins made from iso-viscous batters. LWT Food Sci. Technol. 2016, 65, 32–38. [Google Scholar] [CrossRef]
- Ho, L.-H.; Latif, N.W.B.A. Nutritional composition, physical properties, and sensory evaluation of cookies prepared from wheat flour and pitaya (Hylocereus undatus) peel flour blends. Cogent Food Agric. 2016, 2, 1136369. [Google Scholar] [CrossRef]
- Šarić, B.; Dapčević-Hadnađev, T.; Hadnađev, M.; Sakač, M.; Mandić, A.; Misan, A.; Škrobot, D. Fiber concentrates from raspberry and blueberry pomace in gluten-free cookie formulation: Effect on dough rheology and cookie baking properties. J. Texture Stud. 2018, 50, 124–130. [Google Scholar] [CrossRef]
- Maravić, N.; Škrobot, D.; Dapčević-Hadnađev, T.; Pajin, B.; Tomić, J.; Hadnađev, M. Effect of sourdough and whey protein addition on the technological and nutritive characteristics of sponge cake. Foods 2022, 11, 1992. [Google Scholar] [CrossRef]
- Zoulias, E.I.; Piknis, S.; Oreopoulou, V. Effect of sugar replacement by polyols and acesulfame-k on properties of low-fat cookies. J. Sci. Food Agric. 2000, 80, 2049–2056. [Google Scholar] [CrossRef]
- Canalis, M.S.B.; León, A.E.; Ribotta, P.D. Effect of inulin on dough and biscuit quality produced from different flours. Int. J. Food Stud. 2017, 6, 13–23. [Google Scholar] [CrossRef]
- Ahmed, H.A.M.; Ashraf, S.A.; AwadElkareem, A.M.; Alam, J.; Mustafa, A.I. Physico-chemical, textural and sensory characteristics of wheat flour biscuits supplemented with different levels of whey protein concentrate. Curr. Res. Nutr. Food Sci. J. 2019, 7, 761–771. [Google Scholar] [CrossRef]
- Gong, S.; Xu, B.; Gu, X.; Li, W.; Yu, Y.; Zhang, W.; Wang, Z. Study on the effects of sugar alcohols and Angelica keiskei flour on cookie quality, antioxidant, and nutrition. Cereal Chem. 2020, 97, 714–722. [Google Scholar] [CrossRef]
- Komeroski, M.R.; Homem, R.V.; Schmidt, H.D.O.; Rockett, F.C.; de Lira, L.; da Farias, D.V.; Kist, T.L.; Doneda, D.; Rios, A.D.O.; de Oliveira, V.R. Effect of whey protein and mixed flours on the quality parameters of gluten-free breads. Int. J. Gastron. Food Sci. 2021, 24, 100361. [Google Scholar] [CrossRef]
- Handa, C.; Goomer, S.; Siddhu, A. Physicochemical properties and sensory evaluation of fructoligosaccharide enriched cookies. J. Food Sci. Technol. 2012, 49, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Horstmann, S.W.; Belz, M.C.E.; Heitmann, M.; Zannini, E.; Arendt, E.K. Fundamental study on the impact of gluten-free starches on the quality of gluten-free model breads. Foods 2016, 5, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kweon, M.; Slade, L.; Levine, H.; Gannon, D. Cookie-versus cracker-baking—What’s the difference? Flour functionality requirements explored by SRC and alveography. Crit. Rev. Food Sci. Nutr. 2014, 54, 115–138. [Google Scholar] [CrossRef]
- Adeola, A.A.; Ohizua, E.R. Physical, chemical, and sensory properties of biscuits prepared from flour blends of unripe cooking banana, pigeon pea, and sweet potato. Food Sci. Nutr. 2018, 6, 532–540. [Google Scholar] [CrossRef] [Green Version]
- Kutyła-Kupidura, E.M.; Sikora, M.; Krystyjan, M.; Dobosz, A.; Kowalski, S.; Pysz, M.; Tomasik, P. Properties of sugar-free cookies with xylitol, sucralose, acesulfame K and their blends. J. Food Process. Eng. 2016, 39, 321–329. [Google Scholar] [CrossRef]
- Sahin, A.W.; Zannini, E.; Coffey, A.; Arendt, E.K. Sugar reduction in bakery products: Current strategies and sourdough technology as a potential novel approach. Food Res. Int. 2019, 126, 108583. [Google Scholar] [CrossRef]
- Gómez, M.; Sciarini, L.S. Gluten-free bakery products and pasta. In Advances in the Understanding of Gluten Related Pathology and the Evolution of Gluten-Free Foods; OmniaScience: Barcelona, Spain, 2015; ISBN 978-849-434-182-3. [Google Scholar]
- Pereira, D.; Correia, P.M.R.; Guiné, R.P.F. Analysis of the physical-chemical and sensorial properties of Maria type cookies. Acta Chim. Slovaca 2013, 6, 269–280. [Google Scholar] [CrossRef]
- Di Cairano, M.; Caruso, M.C.; Galgano, F.; Favati, F.; Ekere, N.; Tchuenbou-Magaia, F. Effect of sucrose replacement and resistant starch addition on textural properties of gluten-free doughs and biscuits. Eur. Food Res. Technol. 2021, 247, 707–718. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Sun, X.; Sun, Y. Heat-induced interactions between whey protein and inulin and changes in physicochemical and antioxidative properties of the complexes. Int. J. Mol. Sci. 2019, 20, 4089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahagún, M.; Gómez, M. Influence of protein source on characteristics and quality of gluten-free cookies. J. Food Sci. Technol. 2018, 55, 4131–4138. [Google Scholar] [CrossRef]
- Skendi, A.; Papageorgiou, M.; Varzakas, T. High protein substitutes for gluten in gluten-free bread. Foods 2021, 10, 1997. [Google Scholar] [CrossRef]
- Gallo, V.; Romano, A.; Miralles, B.; Ferranti, P.; Masi, P.; Santos-Hernández, M.; Recio, I. Physicochemical properties, structure and digestibility in simulated gastrointestinal environment of bread added with green lentil flour. LWT Food Sci. Technol. 2022, 154, 112713. [Google Scholar] [CrossRef]
- Pérez, S.; Matta, E.; Osella, C.; de la Torre, M.; Sánchez, H.D. Effect of soy flour and whey protein concentrate on cookie color. LWT Food Sci. Technol. 2013, 50, 120–125. [Google Scholar] [CrossRef]
Ingredient | % a | Amount (g) | |||||||
---|---|---|---|---|---|---|---|---|---|
Control | XY | IN | WP | XY-IN | XY-WP | IN-WP | XY-IN-WP | ||
Lentil flour (green or red) | 29.7–47.6 | 100.0 (47.6%) | 100.0 (47.6%) | 87.4 (41.6%) | 75.0 (35.7%) | 87.4 (41.6%) | 75.0 (35.7%) | 62.4 (29.7%) | 62.4 (29.7%) |
Powdered sugar | 27.5 or 0.0 | 57.8 | - | 57.8 | 57.8 | - | - | 57.8 | - |
Glucose solution (5 g/100 mL) | 7.0 or 0.0 | 14.6 | - | 14.6 | 14.6 | - | - | 14.6 | - |
Distilled water | 3.4 or 10.0 | 7.1 | 21.0 | 7.1 | 7.1 | 21.0 | 21.0 | 7.1 | 21.0 |
Margarine (with 70% fat content) | 13.5 | 28.4 | 28.4 | 28.4 | 28.4 | 28.4 | 28.4 | 28.4 | 28.4 |
Sodium bicarbonate | 0.5 | 1.11 | 1.11 | 1.11 | 1.11 | 1.11 | 1.11 | 1.11 | 1.11 |
Salt | 0.4 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 |
Xylitol | 0.0 or 27.9 | - | 58.5 | - | - | 58.5 | 58.5 | - | 58.5 |
Inulin | 0.0 or 6.0 | - | - | 12.6 | - | 12.6 | - | 12.6 | 12.6 |
Whey protein isolate | 0.0 or 11.9 | - | - | - | 25.0 | - | 25.0 | 25.0 | 25.0 |
Sample | Baking Loss (%) | Diameter (mm) | Height (mm) | Volume (cm3) | Spread Ratio (-) |
---|---|---|---|---|---|
GL (control) | 17.0 ± 0.4 bc | 61.5 ± 3.1 d | 7.1 ± 0.3 cd | 21.2 ± 2.4 d | 8.6 ± 0.6 cd |
GL-XY | 16.9 ± 0.9 abc | 48.7 ± 0.4 a | 5.9 ± 0.4 ab | 10.9 ± 0.8 a | 8.4 ± 0.6 bcd |
GL-IN | 18.2 ± 0.3 d | 64.3 ± 2.2 e | 5.1 ± 0.6 a | 16.5 ± 2.3 b | 12.8 ± 1.7 e |
GL-WP | 16.9 ± 0.4 abc | 62.8 ± 1.0 de | 8.3 ± 0.4 e | 25.8 ± 1.3 e | 7.6 ± 0.4 ab |
GL-XY-IN | 17.4 ± 0.4 c | 58.5 ± 1.9 c | 6.5 ± 0.4 bc | 17.4 ± 1.5 bc | 9.1 ± 0.7 d |
GL-XY-WP | 17.5 ± 0.7 c | 58.0 ± 2.1 bc | 7.7 ± 1.2 de | 20.4 ± 3.6 d | 7.7 ± 1.3 abc |
GL-IN-WP | 16.6 ± 0.4 ab | 62.4 ± 1.5 de | 8.1 ± 0.5 e | 24.8 ± 1.8 e | 7.7 ± 0.6 abc |
GL-XY-IN-WP | 16.3 ± 0.8 a | 55.5 ± 1.9 b | 8.2 ± 0.9 e | 19.7 ± 2.0 cd | 6.9 ± 1.0 a |
Sample | Baking Loss (%) | Diameter (mm) | Height (mm) | Volume (cm3) | Spread Ratio (-) |
---|---|---|---|---|---|
RL (control) | 16.9 ± 0.9 a | 63.2 ± 3.2 bc | 6.9 ± 0.5 bc | 21.8 ± 2.4 a | 9.2 ± 0.8 c |
RL-XY | 17.3 ± 0.3 abc | 58.0 ± 1.6 a | 8.0 ± 0.4 de | 21.1 ± 1.5 a | 7.3 ± 0.4 a |
RL-IN | 17.4 ± 0.4 bc | 67.4 ± 4.9 d | 6.1 ± 0.4 a | 21.9 ± 3.7 a | 11.1 ± 1.1 d |
RL-WP | 17.8 ± 0.2 c | 64.8 ± 1.4 bcd | 7.6 ± 0.4 d | 25.0 ± 1.4 b | 8.6 ± 0.5 bc |
RL-XY-IN | 17.9 ± 0.2 c | 66.8 ± 1.8 d | 6.4 ± 0.5 ab | 22.4 ± 2.5 ab | 10.5 ± 0.9 d |
RL-XY-WP | 17.8 ± 0.2 c | 61.6 ± 3.3 b | 8.4 ± 0.7 e | 25.0 ± 2.3 b | 7.4 ± 1.0 a |
RL-IN-WP | 17.0 ± 0.2 ab | 65.6 ± 1.0 cd | 7.5 ± 0.3 cd | 25.3 ± 1.0 b | 8.8 ± 0.4 bc |
RL-XY-IN-WP | 17.7 ± 0.6 c | 61.3 ± 2.6 ab | 7.8 ± 0.8 de | 23.0 ± 2.6 ab | 8.0 ± 1.0 ab |
Sample | L* | a* | b* | ∆E |
---|---|---|---|---|
GL (control) | 35.68 ± 6.80 bcd | 6.82 ± 0.86 c | 16.24 ± 1.82 d | - |
GL-XY | 32.89 ± 0.72 ab | 3.45 ± 0.33 a | 8.15 ± 0.99 a | 9.2 |
GL-IN | 34.46 ± 1.28 abc | 6.65 ± 0.49 c | 13.13 ± 1.08 bc | 3.3 |
GL-WP | 37.77 ± 1.13 cd | 9.97 ± 0.30 d | 18.50 ± 1.10 e | 4.4 |
GL-XY-IN | 31.17 ± 0.88 a | 4.34 ± 0.40 b | 8.77 ± 0.95 a | 9.1 |
GL-XY-WP | 32.56 ± 1.04 ab | 6.29 ± 0.24 c | 12.26 ± 1.00 b | 5.1 |
GL-IN-WP | 39.17 ± 1.25 d | 10.03 ± 0.40 d | 19.08 ± 0.90 e | 5.5 |
GL-XY-IN-WP | 35.58 ± 1.14 bcd | 6.60 ± 0.57 c | 14.31 ± 1.01 c | 1.9 |
Sample | L* | a* | b* | ∆E |
---|---|---|---|---|
RL (control) | 45.25 ± 2.74 a | 16.53 ± 0.73 e | 28.17 ± 3.04 a | - |
RL-XY | 53.01 ± 1.41 c | 7.61 ± 0.33 a | 32.29 ± 1.08 b | 12.5 |
RL-IN | 43.86 ± 1.72 a | 15.31 ± 1.11 d | 26.09 ± 2.93 a | 2.8 |
RL-WP | 43.22 ± 1.48 a | 16.82 ± 0.52 e | 26.40 ± 1.73 a | 2.7 |
RL-XY-IN | 48.05 ± 2.22 b | 10.93 ± 0.29 b | 32.21 ± 5.69 b | 7.5 |
RL-XY-WP | 52.64 ± 1.54 c | 14.01 ± 0.35 c | 36.17 ± 1.25 c | 11.2 |
RL-IN-WP | 43.29 ± 1.53 a | 17.78 ± 0.31 f | 26.76 ± 1.66 a | 2.7 |
RL-XY-IN-WP | 50.75 ± 2.90 bc | 16.67 ± 0.37 e | 36.02 ± 2.38 c | 9.6 |
Sample | Hardness (g) | Adhesive Force (g) | Cohesiveness (-) |
---|---|---|---|
GL (control) | 612.0 ± 152.5 c | 39.4 ± 28.0 ab | 0.04 ± 0.01 a |
GL-XY | 135.0 ± 24.6 a | 46.3 ± 6.4 ab | 0.19 ± 0.03 c |
GL-IN | 820.9 ± 190.5 d | 59.5 ± 36.0 b | 0.06 ± 0.02 a |
GL-WP | 350.1 ± 65.7 b | 12.3 ± 8.8 a | 0.03 ± 0.01 a |
GL-XY-IN | 290.8 ± 68.5 ab | 60.6 ± 15.4 b | 0.21 ± 0.06 c |
GL-XY-WP | 446.5 ± 103.0 b | 106.7 ± 35.8 c | 0.15 ± 0.04 b |
GL-IN-WP | 435.8 ± 102.8 b | 29.0 ± 19.8 ab | 0.03 ± 0.01 a |
GL-XY-IN-WP | 639.4 ± 178.8 c | 174.3 ± 58.5 d | 0.13 ± 0.01 b |
Sample | Hardness (g) | Adhesive Force (g) | Cohesiveness (-) |
---|---|---|---|
RL (control) | 762.1 ± 218.5 d | 98.5 ± 82.2 bc | 0.05 ± 0.02 a |
RL-XY | 177.3 ± 46.9 a | 38.4 ± 9.8 a | 0.23 ± 0.04 b |
RL-IN | 964.0 ± 206.0 e | 127.0 ± 83.9 c | 0.05 ± 0.02 a |
RL-WP | 397.7 ± 145.5 bc | 23.4 ± 24.2 a | 0.03 ± 0.02 a |
RL-XY-IN | 228.4 ± 58.6 ab | 48.0 ± 15.7 ab | 0.28 ± 0.04 c |
RL-XY-WP | 252.8 ±73.8 ab | 61.9 ± 23.0 ab | 0.19 ± 0.07 b |
RL-IN-WP | 467.3 ± 126.6 c | 25.9 ± 21.2 a | 0.04 ± 0.02 a |
RL-XY-IN-WP | 274.8 ± 44.2 ab | 75.9 ± 16.3 abc | 0.21 ± 0.06 b |
GL (Control) | GL-XY-IN | GL-XY-WP | GL-IN-WP | GL-XY-IN-WP | |
---|---|---|---|---|---|
Surface homogeneity | 70 A | 44 ± 19 b,B | 18 ± 15 a,B | 85 ± 11 c,B | 32 ± 16 ab,B |
Surface color | 40 A | 26 ± 23 a,A | 22 ± 15 a,B | 82 ± 12 b,B | 33 ± 17 a,A |
Baked aroma | 10 A | 38 ± 28 a,B | 22 ± 25 a,A | 33 ± 26 a,B | 34 ± 25 a,B |
Lentil aroma | 30 A | 41 ± 28 b,A | 14 ± 23 a,B | 14 ± 13 a,B | 16 ± 20 a,B |
Lentil taste | 40 A | 56 ± 24 a,B | 36 ± 25 a,A | 33 ± 28 a,A | 35 ± 21 a,A |
Sweet taste | 60 A | 38 ± 27 a,B | 37 ± 18 a,B | 62 ± 25 b,A | 27 ± 13 a,B |
Hardness | 70 A | 15 ± 14 a,B | 32 ± 13 b,B | 76 ± 17 c,A | 28 ± 14 ab,B |
Crunchiness | 80 A | 28 ± 17 a,B | 40 ± 15 a,B | 83 ± 16 b,A | 37 ± 16 a,B |
Crumbliness | 30 A | 51 ± 30 a,B | 55 ± 27 a,B | 32 ± 19 a,A | 51 ± 31 a,B |
RL (Control) | RL-XY-IN | RL-XY-WP | RL-IN-WP | RL-XY-IN-WP | |
---|---|---|---|---|---|
Surface homogeneity | 70 A | 46 ± 16 a,B | 45 ± 23 a,B | 84 ± 09 b,B | 42 ± 15 a,B |
Surface color | 70 A | 49 ± 21 b,B | 28 ± 16 a,B | 78 ± 14 c,B | 27 ± 17 a,B |
Baked aroma | 80 A | 66 ± 23 b,B | 34 ± 27 a,B | 57 ± 29 ab,B | 41 ± 28 ab,B |
Lentil aroma | 50 A | 68 ± 26 b,B | 42 ± 27 a,A | 40 ± 25 a,A | 36 ± 25 a,B |
Lentil taste | 40 A | 68 ± 22 b,B | 43 ± 31 ab,A | 28 ± 23 a,B | 41 ± 29 a,A |
Sweet taste | 60 A | 44 ± 26 a,B | 40 ± 29 a,B | 70 ± 18 b,B | 37 ± 25 a,B |
Hardness | 70 A | 17 ± 14 a,B | 36 ± 15 b,B | 78 ± 16 c,A | 33 ± 13 b,B |
Crunchiness | 80 A | 26 ± 13 a,B | 44 ± 16 b,B | 87 ± 10 c,B | 42 ± 17 b,B |
Crumbliness | 30 A | 76 ± 17 b,B | 62 ± 15 b,B | 22 ± 16 a,A | 68 ± 19 b,B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hajas, L.; Benedek, C.; Csajbókné Csobod, É.; Juhász, R. Development of Protein- and Fiber-Enriched, Sugar-Free Lentil Cookies: Impact of Whey Protein, Inulin, and Xylitol on Physical, Textural, and Sensory Characteristics. Foods 2022, 11, 3819. https://doi.org/10.3390/foods11233819
Hajas L, Benedek C, Csajbókné Csobod É, Juhász R. Development of Protein- and Fiber-Enriched, Sugar-Free Lentil Cookies: Impact of Whey Protein, Inulin, and Xylitol on Physical, Textural, and Sensory Characteristics. Foods. 2022; 11(23):3819. https://doi.org/10.3390/foods11233819
Chicago/Turabian StyleHajas, Lívia, Csilla Benedek, Éva Csajbókné Csobod, and Réka Juhász. 2022. "Development of Protein- and Fiber-Enriched, Sugar-Free Lentil Cookies: Impact of Whey Protein, Inulin, and Xylitol on Physical, Textural, and Sensory Characteristics" Foods 11, no. 23: 3819. https://doi.org/10.3390/foods11233819
APA StyleHajas, L., Benedek, C., Csajbókné Csobod, É., & Juhász, R. (2022). Development of Protein- and Fiber-Enriched, Sugar-Free Lentil Cookies: Impact of Whey Protein, Inulin, and Xylitol on Physical, Textural, and Sensory Characteristics. Foods, 11(23), 3819. https://doi.org/10.3390/foods11233819