Impact of Different Frozen Dough Technology on the Quality and Gluten Structure of Steamed Buns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Frozen Dough and Steamed-Bun-Making Procedure
2.3. Quality Evaluation of Steamed Buns
2.4. Gassing Power Analysis
2.5. Free Sulfhydryl (SH) Content
2.6. Molecular Weight Distribution of Gluten Protein
2.7. Surface Hydrophobicity Analysis
2.8. Statistics Analysis
3. Results and Discussion
3.1. Effects of Different Processes on the Quality of Frozen Buns
3.1.1. Specific Volume
3.1.2. Hardness
3.1.3. Moisture Content
3.1.4. Crumb Grain Structure
3.1.5. Sensory Quality
3.1.6. Gassing Power
3.2. The Influence of Different Processing Techniques on the Gluten Structure
3.2.1. Free SH Content
3.2.2. Molecular Weight Distribution of Gluten Protein
3.2.3. The Effect of Different Processes on the Surface Hydrophobicity of Gluten Protein
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luangsakul, N.; Keeratipibul, S.; Jindamorakot, S.; Tanasupawat, S. Lactic acid bacteria and yeasts isolated from the starter doughs for Chinese steamed buns in Thailand. LWT Food Sci. Technol. 2009, 42, 1404–1412. [Google Scholar] [CrossRef]
- Feng, W.; Ma, S.; Huang, J.; Li, L.; Wang, X.; Bao, Q. Recent advances in the technology of quick-frozen baozi: A review. Int. J. Food Sci. Technol. 2022, 57, 1493–1507. [Google Scholar] [CrossRef]
- Rosell, C.M.; Gómez, M. Frozen dough and partially baked bread: An update. Food. Rev. Int. 2007, 23, 303–319. [Google Scholar] [CrossRef] [Green Version]
- Omedi, J.O.; Huang, W.; Zhang, B.; Li, Z.; Zheng, J. Advances in present-day frozen dough technology and its improver and novel biotech ingredients development trends—A review. Cereal Chem. 2019, 96, 34–56. [Google Scholar] [CrossRef] [Green Version]
- Zhao, A.; Shi, P.; Yang, R.; Gu, Z.; Jiang, D.; Wang, P. Isolation of novel wheat bran antifreeze polysaccharides and the cryoprotective effect on frozen dough quality. Food Hydrocolloid. 2022, 125, 107446. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, H.; Zhu, W.; Li, C.; Xu, Y.; Ding, X.; Zhou, X. Physicochemical properties and nutritional quality of pre-fermented red bean steamed buns as affected by freeze-thaw cycling. Int. J. Food Prop. 2022, 25, 748–763. [Google Scholar] [CrossRef]
- Lambrecht, M.A.; Rombouts, I.; De Ketelaere, B.; Delcour, J.A. Prediction of heat-induced polymerization of different globular food proteins in mixtures with wheat gluten. Food Chem. 2017, 221, 1158–1167. [Google Scholar] [CrossRef]
- Rombouts, I.; Lagrain, B.; Delcour, J.A. Heat-induced cross-Linking and degradation of wheat gluten, serum albumin, and mixtures thereof. J. Agric. Food Chem. 2012, 60, 10133–10140. [Google Scholar] [CrossRef]
- Wang, P.; Tao, H.; Jin, Z.; Xu, X. The final established physicochemical properties of steamed bread made from frozen dough: Study of the combined effects of gluten polymerization, water content and starch crystallinity on bread firmness. J. Cereal Sci. 2015, 63, 116–121. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, B.; Zhou, J.; Lian, H.; Yu, X.; Zhao, J.; Zhang, H.; Chen, W.; Fan, D. Effects of sourdough on improving the textural characteristics of microwave-steamed cake: A perspective from dielectric properties and water distribution. J. Food Sci. 2020, 85, 3282–3292. [Google Scholar] [CrossRef]
- Sahli, S. Quality, Phytonutrient and Antioxidant Properties of Bread Baked with Different Methods; University of Guelph: Guelph, ON, Canada, 2015. [Google Scholar]
- Wang, P.; Tao, H.; Jin, Z.; Xu, X. Impact of water extractable arabinoxylan from rye bran on the frozen steamed bread dough quality. Food Chem. 2016, 200, 117–124. [Google Scholar] [CrossRef] [PubMed]
- GB/T 17320-2013; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Quality classification of wheat varieties. Standards Press of China: Beijing, China, 2013.
- Zhao, B.; Fu, S.; Li, H.; Li, H.; Liu, C.; Chen, Z. Effect of storage conditions on the quality of frozen steamed bread. Int. J. Food Sci. Technol. 2022, 57, 695–704. [Google Scholar] [CrossRef]
- Meziani, S.; Ioannou, I.; Jasniewski, J.; Belhaj, N.; Muller, J.-M.; Ghoul, M.; Desobry, S. Effects of freezing treatments on the fermentative activity and gluten network integrity of sweet dough. LWT Food Sci. Technol. 2012, 46, 118–126. [Google Scholar] [CrossRef]
- Beveridge, T.; Toma, S.J.; Nakai, S. Determination of SH-and SS-groups in some food proteins using ellman’s reagent. J. Food Sci. 1974, 39, 49–51. [Google Scholar] [CrossRef]
- Wang, P.; Zou, M.; Tian, M.; Gu, Z.; Yang, R. The impact of heating on the unfolding and polymerization process of frozen-stored gluten. Food Hydrocolloid. 2018, 85, 195–203. [Google Scholar] [CrossRef]
- Sang, S.; Zhang, H.; Xu, L.; Chen, Y.; Xu, X.; Jin, Z.; Yang, N.; Wu, F.; Li, D. Functionality of ovalbumin during Chinese steamed bread-making processing. Food Chem. 2018, 253, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Agyare, K.K.; Xiong, Y.L.; Addo, K. Influence of salt and pH on the solubility and structural characteristics of transglutaminase-treated wheat gluten hydrolysate. Food Chem. 2008, 107, 1131–1137. [Google Scholar] [CrossRef]
- Kondakci, T.; Zhang, J.W.; Zhou, W. Impact of flour protein content and freezing conditions on the quality of frozen dough and corresponding steamed bread. Food Bioprocess. Technol. 2015, 8, 1877–1889. [Google Scholar] [CrossRef]
- Bárcenas, M.E.; Rosell, C.M. Different approaches for improving the quality and extending the shelf life of the partially baked bread: Low temperatures and HPMC addition. J. Food Eng. 2006, 72, 92–99. [Google Scholar] [CrossRef]
- Keeratipibul, S.; Luangsakul, N.; Otsuka, S.; Sakai, S.; Hatano, Y.; Tanasupawat, S. Application of the chinese steamed bun starter dough (CSB-SD) in breadmaking. J. Food Sci. 2010, 75, E596–E604. [Google Scholar] [CrossRef]
- Andrzej, K.M.; Małgorzata, M.; Sabina, K.; Horbańczuk, O.K.; Rodak, E. Application of rich in β-glucan flours and preparations in bread baked from frozen dough. Food Sci. Technol. Int. 2019, 26, 53–64. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, S.; Sun, B.; Wang, F.; Huang, J.; Wang, X.; Bao, Q. Effects of thermal properties and behavior of wheat starch and gluten on their interaction: A review. Int. J. Biol. Macromol. 2021, 177, 474–484. [Google Scholar] [CrossRef]
- Kumar, P.K.; Rasco, B.A.; Tang, J.; Sablani, S.S. State/phase transitions, ice recrystallization, and quality changes in frozen foods subjected to temperature fluctuations. Food Eng. Rev. 2020, 12, 421–451. [Google Scholar] [CrossRef]
- Luo, W.; Sun, D.-W.; Zhu, Z.; Wang, Q.-J. Improving freeze tolerance of yeast and dough properties for enhancing frozen dough quality—A review of effective methods. Trends. Food Technol. 2018, 72, 25–33. [Google Scholar] [CrossRef]
- Ribotta, P.D.; León, A.E.; Añón, M.C. Effects of yeast freezing in frozen dough. Cereal Chem. 2003, 80, 454–458. [Google Scholar] [CrossRef]
- Gan, Z.; Ellis, P.R.; Schofield, J.D. Gas cell stabilisation and gas retention in wheat bread dough. J. Cereal. Sci. 1995, 21, 215–230. [Google Scholar] [CrossRef]
- Zhu, F. Influence of ingredients and chemical components on the quality of Chinese steamed bread. Food Chem. 2014, 163, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Mohan, C.O.; Carvajal-Millan, E.; Ravishankar, C.N.; Haghi, A.K. (Eds.) Food Process Engineering and Quality Assurance; Taylor & Francis Group: London, UK, 2018; p. 676. [Google Scholar]
- Ribotta, P.D.; León, A.E.; Añón, M.C. Effect of freezing and frozen storage of doughs on bread quality. J. Agric. Food Chem. 2001, 49, 913–918. [Google Scholar] [CrossRef]
- Verheyen, C.; Albrecht, A.; Herrmann, J.; Strobl, M.; Jekle, M.; Becker, T. The contribution of glutathione to the destabilizing effect of yeast on wheat dough. Food Chem. 2015, 173, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; MacRitchie, F. Changes in proteins induced by heating gluten dispersions at high temperature. J. Cereal Sci. 2004, 39, 297–301. [Google Scholar] [CrossRef]
- Hayta, M.; Schofield, J.D. Heat and additive induced biochemical transitions in gluten from good and poor breadmaking quality wheats. J. Cereal Sci. 2004, 40, 245–256. [Google Scholar] [CrossRef]
- Lu, L.; Xing, J.-J.; Yang, Z.; Guo, X.-N.; Zhu, K.-X. Influence of ε-poly-l-lysine treated yeast on gluten polymerization and freeze–thaw tolerance of frozen dough. Food Chem. 2021, 343, 128440. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Xu, L.; Nikoo, M.; Ocen, D.; Wu, F.; Yang, N.; Jin, Z.; Xu, X. Effect of frozen storage on the conformational, thermal and microscopic properties of gluten: Comparative studies on gluten-, glutenin- and gliadin-rich fractions. Food Hydrocoll. 2014, 35, 238–246. [Google Scholar] [CrossRef]
- Rahaman, T.; Vasiljevic, T.; Ramchandran, L. Shear, heat and pH induced conformational changes of wheat gluten—Impact on antigenicity. Food Chem. 2016, 196, 180–188. [Google Scholar] [CrossRef] [PubMed]
Parameters | Score | Evaluation Rules |
---|---|---|
Color | 15 | White/creamy white (11–15), little yellow (6–10), gray, or dark (1–5) |
Tissue | 15 | Very smooth, bright, no specks (11–15), rough surface, shrinking skin, specks or bubbles in skin (6–10), skin damage (1–5) |
Texture | 15 | Good resilience when pressed with finger and bite a little hard stress (11–15), rebounds slowly and bite with a little stress (6–10), and poor resilience and crumbly (1–5) |
Taste | 15 | Sweet, filling aroma obvious (8–10), the taste is flat and the aroma is not outstanding (4–7), and musty or abnormally smell poor (1–3) |
Odor | 10 | A pleasant smell, no peculiar smell (8–10), smells flat (4–7), and poor very unpleasant (1–3) |
Chewiness | 15 | Not rough (11–15), a little rough (6–10), and very rough (1–5) |
Stickiness | 15 | Not sticky (11–15), a little sticky (6–10), and very sticky (1–5) |
Frozen Time | Unfermented Frozen Dough Buns | Pre-Fermented Frozen Dough Buns | Par-Steamed Frozen Dough Buns | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0.5% | 1.0% | 2.0% | 20 min | 30 min | 40 min | 10 min | 15 min | 20 min | ||
Porosity(%) | 0 d | 54.35 ± 2.50 aAB | 57.86 ± 2.41 aA | 53.88 ± 0.80 aB | 54.49 ± 1.09 aA | 55.03 ± 1.03 aA | 57.86 ± 2.41 aA | 57.86 ± 2.41 aA | 57.86 ± 2.41 aA | 57.86 ± 2.41 aA |
−40 °C 12 h | 50.46 ± 1.19 aB | 54.74 ± 1.15 aA | 55.95 ± 1.47 aA | 48.89 ± 0.52 bB | 53.17 ± 2.36 abA | 46.08 ± 0.94 bC | 56.52 ± 1.05 aA | 57.39 ± 1.19 aA | 55.89 ± 2.94 aA | |
30 d | 46.30 ± 1.59 bB | 48.54 ± 0.79 bB | 53.54 ± 0.81 aA | 42.77 ± 1.83 cB | 48.87 ± 3.42 bA | 39.04 ± 3.89 cB | 54.05 ± 3.74 abA | 55.87 ± 3.10 aA | 53.42 ± 2.22 aA | |
60 d | 40.12 ± 2.38 cB | 43.41 ± 1.10 cB | 49.27 ± 2.97 bA | 38.64 ± 1.35 dB | 44.35 ± 0.35 cA | 35.01 ± 0.40 cdC | 50.73 ± 3.39 bA | 49.91 ± 2.38 bA | 47.33 ± 2.71 bA | |
90 d | 33.51 ± 1.61 dC | 37.27 ± 0.40 dB | 43.45 ± 1.13 cA | 32.72 ± 0.92 eB | 38.85 ± 2.42 dA | 31.09 ± 3.71 dB | 45.23 ± 1.38 cA | 46.74 ± 3.24 bA | 43.68 ± 3.19 bA | |
120 d | 30.18 ± 0.64 eB | 32.02 ± 0.29 eB | 36.97 ± 1.46 dA | 28.52 ± 2.78 fB | 34.28 ± 1.24 eA | 25.55 ± 2.88 eB | 38.60 ± 0.80 dB | 40.67 ± 0.26 cA | 37.42 ± 0.20 cB | |
Cell density (cells/cm2) | 0 d | 42.78 ± 3.16 eA | 43.54 ± 3.70 eA | 43.89 ± 2.62 dA | 42.41 ± 2.87 eA | 43.25 ± 3.85 dA | 43.54 ± 3.70 eA | 43.54 ± 3.70 eA | 43.54 ± 3.70 dA | 43.54 ± 3.70 eA |
−40 °C 12 h | 55.04 ± 4.06 dA | 52.53 ± 2.08 dA | 51.65 ± 4.31 cA | 58.04 ± 3.38 dAB | 55.02 ± 1.85 cB | 61.47 ± 2.15 dA | 46.88 ± 1.25 deA | 47.82 ± 5.01 cdA | 49.78 ± 2.66 dA | |
30 d | 60.14 ± 2.13 cdA | 56.32 ± 5.78 cdA | 54.73 ± 4.55 cA | 63.04 ± 5.70 cdAB | 58.73 ± 2.93 cB | 67.40 ± 4.10 cA | 52.16 ± 2.55 cdA | 52.54 ± 1.63 cA | 54.13 ± 3.29 cdA | |
60 d | 67.93 ± 7.68 bcA | 62.86 ± 3.76 bcA | 58.98 ± 5.87 bcA | 69.82 ± 2.01 cA | 65.99 ± 4.52 bA | 72.11 ± 4.77 cA | 56.33 ± 2.82 bcA | 57.10 ± 0.61 bA | 58.41 ± 3.70 bcA | |
90 d | 75.25 ± 8.85 abA | 67.33 ± 4.93 bA | 63.21 ± 4.98 abA | 77.23 ± 1.79 bB | 70.86 ± 2.95 abC | 81.95 ± 1.32 bA | 60.75 ± 5.27 abA | 60.11 ± 5.57 abA | 62.71 ± 1.16 abA | |
120 d | 80.52 ± 3.30 aA | 75.56 ± 2.07 aA | 69.59 ± 2.15 aB | 84.30 ± 2.35 aA | 76.18 ± 5.40 aB | 88.11 ± 1.77 aA | 65.71 ± 2.44 aA | 64.49 ± 5.30 aA | 67.25 ± 4.53 aA | |
Cell average area (mm2) | 0 d | 1.27 ± 0.08 aA | 1.33 ± 0.03 aA | 1.32 ± 0.08 aA | 1.28 ± 0.02 aA | 1.29 ± 0.10 aA | 1.33 ± 0.03 aA | 1.33 ± 0.03 aA | 1.33 ± 0.03 aA | 1.33 ± 0.03 aA |
−40 °C 12 h | 0.92 ± 0.03 bB | 1.04 ± 0.01 bA | 1.08 ± 0.05 bA | 0.84 ± 0.06 bB | 0.97 ± 0.09 bA | 0.75 ± 0.08 bB | 1.16 ± 0.07 bA | 1.20 ± 0.04 bA | 1.12 ± 0.07 bA | |
30 d | 0.77 ± 0.07 cB | 0.86 ± 0.10 cAB | 0.98 ± 0.10 bcA | 0.68 ± 0.01 cB | 0.83 ± 0.02 cA | 0.58 ± 0.03 cC | 1.04 ± 0.05 cA | 1.06 ± 0.07 cA | 1.07 ± 0.01 bA | |
60 d | 0.59 ± 0.07 dB | 0.69 ± 0.05 dB | 0.84 ± 0.04 cA | 0.55 ± 0.03 dB | 0.67 ± 0.07 dA | 0.49 ± 0.06 cB | 0.90 ± 0.08 dA | 0.87 ± 0.01 dA | 0.81 ± 0.08 cA | |
90 d | 0.45 ± 0.04 eB | 0.55 ± 0.08 eB | 0.69 ± 0.02 dA | 0.42 ± 0.05 eB | 0.55 ± 0.04 deA | 0.38 ± 0.04 cdB | 0.74 ± 0.06 eA | 0.73 ± 0.10 eA | 0.70 ± 0.10 cA | |
120 d | 0.37 ± 0.01 fB | 0.42 ± 0.09 fA | 0.53 ± 0.02 eA | 0.34 ± 0.03 eB | 0.45 ± 0.05 eA | 0.29 ± 0.07 dB | 0.59 ± 0.03 fA | 0.63 ± 0.07 eA | 0.56 ± 0.04 dA |
Free SH Content (μmol/g) | ||||||
---|---|---|---|---|---|---|
Frozen Time | Thawed Dough | Steamed Bun | ||||
Unfermented | Pre-Fermented | Par-Steamed | Unfermented | Pre-Fermented | Par-Steamed | |
0 d | 1.11 ± 0.01 fA | 1.05 ± 0.02 fA | 0.46 ± 0.04 fB | 0.87 ± 0.04 eA | 0.60 ± 0.06 fB | 0.46 ± 0.04 eC |
−40 °C 12 h | 1.32 ± 0.03 eB | 1.49 ± 0.03 eA | 0.59 ± 0.02 eC | 0.92 ± 0.03 deB | 1.05 ± 0.02 eA | 0.50 ± 0.02 eC |
30 d | 1.57 ± 0.05 dA | 1.61 ± 0.04 dA | 0.81 ± 0.02 dB | 1.00 ± 0.03 dB | 1.16 ± 0.03 dA | 0.59 ± 0.03 dC |
60 d | 1.84 ± 0.10 cB | 2.25 ± 0.04 cA | 1.13 ± 0.06 cC | 1.36 ± 0.06 cB | 1.46 ± 0.01 cA | 0.90 ± 0.05 cC |
90 d | 2.35 ± 0.05 bB | 2.58 ± 0.06 bA | 1.34 ± 0.04 bC | 1.59 ± 0.05 bB | 1.74 ± 0.05 bA | 1.26 ± 0.01 bC |
120 d | 2.55 ± 0.08 aB | 3.20 ± 0.10 aA | 1.67 ± 0.04 aC | 1.79 ± 0.03 aB | 1.93 ± 0.02 aA | 1.36 ± 0.03 aC |
Protein Molecular Weight Distribution (%) | |||||||
---|---|---|---|---|---|---|---|
Frozen Time | Thawed Dough | Steamed Bun | |||||
Unfermented | Pre-Fermented | Par-Steamed | Unfermented | Pre-Fermented | Par-Steamed | ||
SDS-P | 0 d | 9.42 ± 0.47 fA | 2.97 ± 0.31 eB | 1.06 ± 0.08 dC | 0.81 ± 0.11 eA | 0.82 ± 0.15 dA | 0.77 ± 0.08 dA |
−40 °C 12 h | 10.18 ± 0.32 eA | 3.44 ± 0.29 eB | 1.12 ± 0.06 cdC | 1.02 ± 0.08 deA | 0.99 ± 0.19 cdA | 0.82 ± 0.17 dA | |
30 d | 10.97 ± 0.26 dA | 4.36 ± 0.16 dB | 1.34 ± 0.04 bcC | 1.20 ± 0.11 dA | 1.17 ± 0.07 bcA | 1.29 ± 0.05 cA | |
60 d | 13.17 ± 0.61 cA | 6.40 ± 0.41 cB | 1.46 ± 0.09 bC | 1.67 ± 0.23 cA | 1.35 ± 0.03 abA | 1.41 ± 0.11 bcA | |
90 d | 16.43 ± 0.96 bA | 7.58 ± 0.32 bB | 1.61 ± 0.24 abC | 2.21 ± 0.16 bA | 1.46 ± 0.07 aB | 1.57 ± 0.07 abB | |
120 d | 18.28 ± 0.53 aA | 8.98 ± 0.19 aB | 1.86 ± 0.09 aC | 2.68 ± 0.19 aA | 1.58 ± 0.11 aB | 1.73 ± 0.12 aB | |
SDS-M | 0 d | 64.32 ± 0.80 cA | 63.5 ± 0.85 cA | 17.52 ± 0.44 cB | 14.97 ± 0.35 eB | 27.21 ± 0.87 dA | 15.83 ± 0.44 dB |
−40 °C 12 h | 65.91 ± 0.96 bcA | 64.58 ± 0.97 cA | 23.19 ± 0.87 cB | 17.03 ± 0.33 dB | 28.69 ± 0.76 dA | 17.97 ± 0.79 cB | |
30 d | 66.82 ± 2.33 bcA | 66.84 ± 0.84 bA | 27.62 ± 0.86 bB | 18.19 ± 0.41 cC | 30.69 ± 0.76 cA | 21.01 ± 0.77 bB | |
60 d | 68.61 ± 3.12 abA | 68.97 ± 2.54 bA | 29.39 ± 1.25 bB | 20.52 ± 0.18 bC | 32.55 ± 0.20 bA | 22.37 ± 0.84 bB | |
120 d | 73.27 ± 2.89 aA | 72.59 ± 0.70 aA | 34.70 ± 0.66 aB | 22.20 ± 1.18 aC | 35.89 ± 0.68 aA | 29.46 ± 0.74 aB | |
SDS-I | 0 d | 26.26 ± 0.39 aC | 33.53 ± 0.96 aB | 81.42 ± 0.30 aA | 84.22 ± 0.33 aA | 71.97 ± 0.76 aB | 83.41 ± 0.51 aA |
−40 °C 12 h | 23.91 ± 0.78 bC | 31.98 ± 0.82 abB | 75.69 ± 0.91 bA | 81.95 ± 0.31 bA | 70.32 ± 0.92 aB | 81.21 ± 0.81 bA | |
30 d | 22.22 ± 2.10 bcC | 28.80 ± 0.99 bB | 71.04 ± 0.86 bA | 80.61 ± 0.43 cA | 68.14 ± 0.74 bC | 77.70 ± 0.77 cB | |
60 d | 18.22 ± 2.90 cC | 24.63 ± 2.92 cB | 69.16 ± 1.30 bA | 77.81 ± 0.05 dA | 66.10 ± 0.17 cC | 76.22 ± 0.95 cB | |
90 d | 13.57 ± 1.94 dC | 22.73 ± 2.15 cB | 65.09 ± 1.08 cA | 75.98 ± 0.21 eA | 64.78 ± 0.94 cC | 73.33 ± 0.76 dB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Zhang, Y.; Yuan, J.; Yang, M.; Yang, R.; Gu, Z.; Xie, C.; Zhou, Q.; Jiang, D.; Zhou, J.; et al. Impact of Different Frozen Dough Technology on the Quality and Gluten Structure of Steamed Buns. Foods 2022, 11, 3833. https://doi.org/10.3390/foods11233833
Yang B, Zhang Y, Yuan J, Yang M, Yang R, Gu Z, Xie C, Zhou Q, Jiang D, Zhou J, et al. Impact of Different Frozen Dough Technology on the Quality and Gluten Structure of Steamed Buns. Foods. 2022; 11(23):3833. https://doi.org/10.3390/foods11233833
Chicago/Turabian StyleYang, Bailu, Yining Zhang, Jiayi Yuan, Minzhen Yang, Runqiang Yang, Zhenxin Gu, Chong Xie, Qin Zhou, Dong Jiang, Jianzhong Zhou, and et al. 2022. "Impact of Different Frozen Dough Technology on the Quality and Gluten Structure of Steamed Buns" Foods 11, no. 23: 3833. https://doi.org/10.3390/foods11233833
APA StyleYang, B., Zhang, Y., Yuan, J., Yang, M., Yang, R., Gu, Z., Xie, C., Zhou, Q., Jiang, D., Zhou, J., & Wang, P. (2022). Impact of Different Frozen Dough Technology on the Quality and Gluten Structure of Steamed Buns. Foods, 11(23), 3833. https://doi.org/10.3390/foods11233833