A Review of the Effects of Puerarin on Glucose and Lipid Metabolism in Metabolic Syndrome: Mechanisms and Opportunities
Abstract
:1. Introduction
2. Effect of Puerarin on Glucose and Lipid Metabolism
2.1. Mechanism of Glucose Metabolism Regulation
2.1.1. Effect of Inhibiting α-Amylase
2.1.2. Effect of Increasing GLUT4-Mediated Glucose Uptake
2.1.3. Effect of Suppressing Gluconeogenesis
2.1.4. Effect of Promoting Insulin Secretion
2.1.5. Effect of Improving Insulin Resistance
2.2. Mechanism of Regulating Lipid Metabolism
2.2.1. Effect of Suppressing Lipoprotein Lipolysis
2.2.2. Effect of Decreasing FA Uptake
2.2.3. Effect of Promoting FA β-Oxidation
2.2.4. Effect of Inhibiting FA Synthesis
2.2.5. Effect of Inhibiting Cholesterol Synthesis
2.3. Oxidative Stress and Inflammation
3. Approaches to Improving Oral Bioavailability of Puerarin
3.1. Microemulsion and Self-Microemulsifying Drug Delivery Systems
3.2. Nanoparticles and Nanocrystals
3.3. Glycosylation Modification
4. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Juliana, C.; Chan, N.; Malik, V.; Jia, W.; Kadowaki, T.; Chittaranjan, S.Y.; Yoon, K.-H.; Hu, F.B. Diabetes in Asia Epidemiology, Risk Factors, and Pathophysiology. JAMA 2009, 301, 2129–2140. [Google Scholar]
- Isganaitis, E.; Lustig, R.H. Fast food, central nervous system insulin resistance, and obesity. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2451–2462. [Google Scholar] [CrossRef] [Green Version]
- Jia, P.; Luo, M.; Li, Y.; Zheng, J.S.; Xiao, Q.; Luo, J. Fast-food restaurant, unhealthy eating, and childhood obesity: A systematic review and meta-analysis. Obes. Rev. 2021, 22 (Suppl. S1), e12944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, S.; Couture, P.; Lamarche, B. Diet Quality, Saturated Fat and Metabolic Syndrome. Nutrients. 2020, 12, 3232. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases. 2003. Available online: https://apps.who.int/iris/handle/10665/42665 (accessed on 1 July 2022).
- McCreight, L.J.; Bailey, C.J.; Pearson, E.R. Metformin and the gastrointestinal tract. Diabetologia 2016, 59, 426–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanjan, M.J.; Mohammed, M.; Prashantha Kumar, B.R.; Chandrasekar, M.J.N. Thiazolidinediones as antidiabetic agents: A critical review. Bioorg. Chem. 2018, 77, 548–567. [Google Scholar] [CrossRef] [PubMed]
- Ward, N.C.; Watts, G.F.; Eckel, R.H. Statin Toxicity. Circ. Res. 2019, 124, 328–350. [Google Scholar] [CrossRef]
- Antilipemic Agents. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2019.
- Zhou, Y.X.; Zhang, H.; Peng, C. Puerarin: A review of pharmacological effects. Phytother. Res. 2014, 28, 961–975. [Google Scholar] [CrossRef]
- Chen, X.; Yu, J.; Shi, J. Management of Diabetes Mellitus with Puerarin, a Natural Isoflavone from Pueraria lobata. Am. J. Chin. Med. 2018, 46, 1771–1789. [Google Scholar] [CrossRef]
- Yuan, G.; Shi, S.; Jia, Q.; Shi, J.; Shi, S.; Zhang, X.; Shou, X.; Zhu, X.; Hu, Y. Use of Network Pharmacology to Explore the Mechanism of Gegen (Puerariae lobatae Radix) in the Treatment of Type 2 Diabetes Mellitus Associated with Hyperlipidemia. Evid.-Based Complement. Altern. Med. 2021, 2021, 6633402. [Google Scholar] [CrossRef]
- Slamova, K.; Kapesova, J.; Valentova, K. “Sweet Flavonoids”: Glycosidase-Catalyzed Modifications. Int. J. Mol Sci. 2018, 19, 2126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L. Pharmacokinetics and drug delivery systems for puerarin, a bioactive flavone from traditional Chinese medicine. Drug Deliv. 2019, 26, 860–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, J.G. Hepatic glucose and lipid metabolism. Diabetologia 2016, 59, 1098–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.; Tu, B.P. Acetyl-CoA and the regulation of metabolism: Mechanisms and consequences. Curr. Opin. Cell Biol. 2015, 33, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Tappy, L. Metabolism of sugars: A window to the regulation of glucose and lipid homeostasis by splanchnic organs. Clin. Nutr. 2021, 40, 1691–1698. [Google Scholar] [CrossRef]
- Dimitriadis, G.D.; Maratou, E.; Kountouri, A.; Board, M.; Lambadiari, V. Regulation of Postabsorptive and Postprandial Glucose Metabolism by Insulin-Dependent and Insulin-Independent Mechanisms: An Integrative Approach. Nutrients 2021, 13, 159. [Google Scholar] [CrossRef]
- Bai, L.; Li, X.; He, L.; Zheng, Y.; Lu, H.; Li, J.; Zhong, L.; Tong, R.; Jiang, Z.; Shi, J.; et al. Antidiabetic Potential of Flavonoids from Traditional Chinese Medicine: A Review. Am. J. Chin. Med. 2019, 47, 933–957. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, Y.; Chen, Q.; Han, X.; Cai, M.; Hao, L. Puerarin suppresses the hepatic gluconeogenesis via activation of PI3K/Akt signaling pathway in diabetic rats and HepG(2) cells. Biomed. Pharmacother. 2021, 137, 111325. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, C.Q.; Wang, P.W.; Sun, S.Y.; Su, W.J.; Zhang, H.J.; Li, X.J.; Yang, S.Y. Puerarin improves insulin resistance and modulates adipokine expression in rats fed a high-fat diet. Eur. J. Pharmacol. 2010, 649, 398–402. [Google Scholar] [CrossRef]
- Xu, M.E.; Xiao, S.Z.; Sun, Y.H.; Zheng, X.X.; Ou-Yang, Y.; Guan, C. The study of anti-metabolic syndrome effect of puerarin in vitro. Life Sci. 2005, 77, 3183–3196. [Google Scholar] [CrossRef]
- Williamson, G. Possible effects of dietary polyphenols on sugar absorption and digestion. Mol. Nutr. Food Res. 2013, 57, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Gao, L.; Zhou, H.; Ai, C.; Huang, X.; Wang, M.; Zhang, Y.; Zhao, C. Opportunities and challenges of algal fucoidan for diabetes management. Trends. Food Sci. Technol. 2021, 111, 628–641. [Google Scholar] [CrossRef]
- Sahnoun, M.; Bejar, S.; Daoud, L.; Ayadi, L.; Brini, F.; Saibi, W. Effect of Agave americana L. on the human, and Aspergillus oryzae S2 alpha-amylase inhibitions. Nat. Prod. Res. 2019, 33, 755–758. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Wang, L.; Shao, J.; Jing, H.; Ye, X.; Jiang, C.; Wang, H.; Ma, C. Screening and identifying of alpha-amylase inhibitors from medicine food homology plants: Insights from computational analysis and experimental studies. J. Food Biochem. 2020, 44, e13536. [Google Scholar] [CrossRef]
- Chadt, A.; Al-Hasani, H. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflug. Arch. Eur. J. Phy. 2020, 472, 1273–1298. [Google Scholar] [CrossRef]
- Hsu, F.-L.; Liu, I.M.; Kuo, D.-H.; Chen, W.-C.; Su, H.-C.; Cheng, J.-T. Antihyperglycemic Effect of Puerarin in Streptozotocin-Induced Diabetic Rats. J. Nat. Prod. 2003, 66, 788–792. [Google Scholar] [CrossRef]
- Lee, O.H.; Seo, D.H.; Park, C.S.; Kim, Y.C. Puerarin enhances adipocyte differentiation, adiponectin expression, and antioxidant response in 3T3-L1 cells. Biofactors 2010, 36, 459–467. [Google Scholar] [CrossRef]
- Klip, A.; McGraw, T.E.; James, D.E. Thirty sweet years of GLUT4. J. Biol. Chem. 2019, 294, 11369–11381. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhou, Y. Puerarin improve insulin resistance of adipocyte through activating Cb1 binding protein path. Chin. J. Integr. Med. 2012, 18, 293–298. [Google Scholar] [CrossRef]
- Sharma, M.; Dey, C.S. AKT ISOFORMS-AS160-GLUT4: The defining axis of insulin resistance. Rev. Endocr. Metab. Disord. 2021, 22, 973–986. [Google Scholar] [CrossRef]
- Chen, X.; Wang, L.; Fan, S.; Song, S.; Min, H.; Wu, Y.; He, X.; Liang, Q.; Wang, Y.; Yi, L.; et al. Puerarin acts on the skeletal muscle to improve insulin sensitivity in diabetic rats involving mu-opioid receptor. Eur. J. Pharmacol. 2018, 818, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatting, M.; Tavares, C.D.J.; Sharabi, K.; Rines, A.K.; Puigserver, P. Insulin regulation of gluconeogenesis. Ann. N. Y. Acad. Sci. 2018, 1411, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.J.; Han, H.S.; Kim, M.J.; Koo, S.H. CREB and FoxO1: Two transcription factors for the regulation of hepatic gluconeogenesis. Bmb. Rep. 2013, 46, 567–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, B.; Zhao, Y.; Qiang, G.; Yang, X.; Xu, C.; Chen, X.; Liu, C.; Wang, X.; Zhang, L.; Du, G. Puerarin Mitigates Diabetic Hepatic Steatosis and Fibrosis by Inhibiting TGF-β Signaling Pathway Activation in Type 2 Diabetic Rats. Oxidative Med. Cell Longev. 2018, 2018, 4545321. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Gan, L.; Pan, H.; Guo, S.; He, X.; Olson, S.T.; Mesecar, A.; Adam, S.; Unterman, T.G. Phosphorylation of serine 256 suppresses transactivation by FKHR (FOXO1) by multiple mechanisms. Direct and indirect effects on nuclear/cytoplasmic shuttling and DNA binding. J. Biol. Chem. 2002, 277, 45276–45284. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Yang, F.J.; Shang, L.C.; Zhang, Y.H.; Zhou, Y.; Shi, X.L. Puerarin protects against high-fat high-sucrose diet-induced non-alcoholic fatty liver disease by modulating PARP-1/PI3K/AKT signaling pathway and facilitating mitochondrial homeostasis. Phytother. Res. 2019, 33, 2347–2359. [Google Scholar] [CrossRef]
- Xu, D.X.; Guo, X.X.; Zeng, Z.; Wang, Y.; Qiu, J. Puerarin improves hepatic glucose and lipid homeostasis in vitro and in vivo by regulating the AMPK pathway. Food Funct. 2021, 12, 2726–2740. [Google Scholar] [CrossRef]
- Seino, S.; Shibasaki, T.; Minami, K. Pancreatic beta-cell signaling: Toward better understanding of diabetes and its treatment. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2010, 86, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Yao, D.; Yang, H.; Wei, Y.; Peng, Y.; Ding, Y.; Shu, L. Puerarin Protects Pancreatic beta-Cells in Obese Diabetic Mice via Activation of GLP-1R Signaling. Mol. Endocrinol. 2016, 30, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Liang, T.; Xu, X.; Ye, D.; Chen, W.; Gao, B.; Huang, Y. Caspase/AIF/apoptosis pathway: A new target of puerarin for diabetes mellitus therapy. Mol. Biol. Rep. 2019, 46, 4787–4797. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yao, J.; Ju, L.; Wen, X.; Shu, L. Puerarin ameliorates hyperglycemia in HFD diabetic mice by promoting beta-cell neogenesis via GLP-1R signaling activation. Phytomedicine 2020, 70, 153222. [Google Scholar] [CrossRef] [PubMed]
- Rorsman, P.; Braun, M. Regulation of insulin secretion in human pancreatic islets. Annu. Rev. Physiol. 2013, 75, 155–179. [Google Scholar] [CrossRef] [PubMed]
- Jitrapakdee, S.; Wutthisathapornchai, A.; Wallace, J.C.; MacDonald, M.J. Regulation of insulin secretion: Role of mitochondrial signalling. Diabetologia 2010, 53, 1019–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, K.; Kim, Y.B. Molecular mechanism of insulin resistance in obesity and type 2 diabetes. Korean J. Intern. Med. 2010, 25, 119–129. [Google Scholar] [CrossRef]
- Snel, M.; Jonker, J.T.; Schoones, J.; Lamb, H.; de Roos, A.; Pijl, H.; Smit, J.W.; Meinders, A.E.; Jazet, I.M. Ectopic fat and insulin resistance: Pathophysiology and effect of diet and lifestyle interventions. Int. J. Endocrinol. 2012, 2012, 983814. [Google Scholar] [CrossRef]
- Amanda, R.M.; Renato, T.N.; Renata, G.; Marco, A.V.; William, T.F.; Rafael, H.L.; Maria, F.C.-B.; Leonardo, R.S.; Rui, C.; Sandro, M.H. Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: Importance of the mitochondrial function. Lipids Health Dis. 2012, 11, 30. [Google Scholar]
- Rachdaoui, N. Insulin: The Friend and the Foe in the Development of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 1770. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Liang, T.; Duan, X.; Xu, L.; Zhang, K.; Li, R. Anti-diabetic effects of puerarin, isolated from Pueraria lobata (Willd.), on streptozotocin-diabetogenic mice through promoting insulin expression and ameliorating metabolic function. Food Chem. Toxicol. 2013, 60, 341–347. [Google Scholar] [CrossRef]
- She, S.; Liu, W.; Li, T.; Hong, Y. Effects of puerarin in STZ-induced diabetic rats by oxidative stress and the TGF-beta1/Smad2 pathway. Food Funct. 2014, 5, 944–950. [Google Scholar] [CrossRef]
- Zheng, G.; Lin, L.; Zhong, S.; Zhang, Q.; Li, D. Effects of puerarin on lipid accumulation and metabolism in high-fat diet-fed mice. PLoS ONE. 2015, 10, e0122925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.F.; Wang, L.; Wu, Y.Z.; Song, S.Y.; Min, H.Y.; Yang, Y.; He, X.; Liang, Q.; Yi, L.; Wang, Y.; et al. Effect of puerarin in promoting fatty acid oxidation by increasing mitochondrial oxidative capacity and biogenesis in skeletal muscle in diabetic rats. Nutr. Diabetes 2018, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Kristensen, K.K.; Ploug, M.; Winther, A.L. The Importance of Lipoprotein Lipase Regulation in Atherosclerosis. Biomedicines 2021, 9, 782. [Google Scholar] [CrossRef]
- Desvergne, B.; Michalik, L.; Wahli, W. Transcriptional regulation of metabolism. Physiol. Rev. 2006, 86, 465–514. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Wang, X.L.; Cheng, W.X.; Cao, H.J.; Zhang, P.; Qin, L. Puerarin promotes osteogenesis and inhibits adipogenesis in vitro. Chin. Med. 2013, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Ulug, E.; Nergiz-Unal, R. Dietary fatty acids and CD36-mediated cholesterol homeostasis: Potential mechanisms. Nutr. Res. Rev. 2021, 34, 64–77. [Google Scholar] [CrossRef]
- Guillou, H.; Martin Pascal, G.P.; Pineau, T. Transcriptional Regulation of Hepatic Fatty Acid Metabolism. Sub-Cell. Biochem. 2008, 49, 3–47. [Google Scholar]
- Russo, G.L.; Russo, M.; Ungaro, P. AMP-activated protein kinase: A target for old drugs against diabetes and cancer. Biochem. Pharmacol. 2013, 86, 339–350. [Google Scholar] [CrossRef]
- Nguyen, P.; Leray, V.; Diez, M.; Serisier, S.; Le Bloc’h, J.; Siliart, B.; Dumon, H. Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr. 2008, 92, 272–283. [Google Scholar] [CrossRef]
- Jung, H.W.; Kang, A.N.; Kang, S.Y.; Park, Y.K.; Song, M.Y. The Root Extract of Pueraria lobata and Its Main Compound, Puerarin, Prevent Obesity by Increasing the Energy Metabolism in Skeletal Muscle. Nutrients 2017, 9, 33. [Google Scholar] [CrossRef]
- Kang, O.H.; Kim, S.B.; Mun, S.H.; Seo, Y.S.; Hwang, H.C.; Lee, Y.M.; Lee, H.S.; Kang, D.G.; Kwon, D.Y. Puerarin ameliorates hepatic steatosis by activating the PPARalpha and AMPK signaling pathways in hepatocytes. Int. J. Mol. Med. 2015, 35, 803–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Q.; Wang, Q.; Fu, J.; Ren, R. Polysaccharides derived from natural sources regulate triglyceride and cholesterol metabolism: A review of the mechanisms. Food Funct. 2019, 10, 2330–2339. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, G.; Zhang, C.; Wang, N.; Feng, Y. Gallic Acid and Diabetes Mellitus: Its Association with Oxidative Stress. Molecules 2021, 26, 7115. [Google Scholar] [CrossRef]
- Ipsen, D.H.; Lykkesfeldt, J.; Tveden-Nyborg, P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell. Mol. Life Sci. 2018, 75, 3313–3327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, B.-Y.; Zhao, Y.-R.; Ma, P.; Xu, C.-Y.; He, P.; Yang, X.-Y.; Zhang, L.; Qiang, G.-F.; Du, G.-H. Hypoglycemic activity of puerarin through modulation of oxidative stress and mitochondrial function via AMPK. Chin. J. Nat. Med. 2020, 18, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Qian, L.; Wang, B.; Zhang, Z.; Liu, H.; Zhang, Y.; Liu, J. Synergistic Hypoglycemic Effects of Pumpkin Polysaccharides and Puerarin on Type II Diabetes Mellitus Mice. Molecules 2019, 24, 955. [Google Scholar] [CrossRef] [Green Version]
- Anukunwithaya, T.; Poo, P.; Hunsakunachai, N.; Rodsiri, R.; Malaivijitnond, S.; Khemawoot, P. Absolute oral bioavailability and disposition kinetics of puerarin in female rats. BMC Pharmacol. Toxicol. 2018, 19, 25. [Google Scholar] [CrossRef]
- Tang, T.T.; Hu, X.B.; Liao, D.H.; Liu, X.Y.; Xiang, D.X. Mechanisms of microemulsion enhancing the oral bioavailability of puerarin: Comparison between oil-in-water and water-in-oil microemulsions using the single-pass intestinal perfusion method and a chylomicron flow blocking approach. Int. J. Nanomed. 2013, 8, 4415–4426. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.Y.; Li, Y.J.; Han, M.; Hu, X.B.; Yang, L.; Wang, J.M.; Xiang, D.X. A microemulsion of puerarin-phospholipid complex for improving bioavailability: Preparation, in vitro and in vivo evaluations. Drug Dev. Ind. Pharm. 2018, 44, 1336–1341. [Google Scholar] [CrossRef]
- Liao, D.; Liu, X.; Dai, W.; Tang, T.; Ou, G.; Zhang, K.; Han, M.; Kang, R.; Yang, S.; Xiang, D. N-trimethyl chitosan (TMC)-modified microemulsions for improved oral bioavailability of puerarin: Preparation and evaluation. Drug Deliv. 2015, 22, 516–521. [Google Scholar] [CrossRef] [Green Version]
- Yi, T.; Zhang, J. Effects of Hydrophilic Carriers on Structural Transitions and In Vitro Properties of Solid Self-Microemulsifying Drug Delivery Systems. Pharmaceutics 2019, 11, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, G.; Hu, R.; Ye, L.; Wang, B.; Gui, Y.; Gao, S.; Li, X.; Tang, J. Preparation and In Vitro/In Vivo Evaluation of Puerarin Solid Self-Microemulsifying Drug Delivery System by Spherical Crystallization Technique. AAPS PharmSciTech 2016, 17, 1336–1346. [Google Scholar] [CrossRef] [PubMed]
- Yi, T.; Tang, D.; Wang, F.; Zhang, J.; Zhang, J.; Wang, J.; Xu, X.; Zhang, J. Enhancing both oral bioavailability and brain penetration of puerarin using borneol in combination with preparation technologies. Drug Deliv. 2017, 24, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Chen, K.; Su, C.; Liu, X.; Luo, X. Puerarin Loaded PLGA Nanoparticles: Optimization Processes of Preparation and Anti-alcohol Intoxication Effects in Mice. AAPS PharmSciTech 2021, 22, 217. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Guan, Z.Y.; Zhu, W.F.; Zhong, L.Y.; Qiu, Z.Q.; Yue, P.F.; Wu, W.T.; Liu, J.; Huang, X. Preparation of Puerarin Chitosan Oral Nanoparticles by Ionic Gelation Method and Its Related Kinetics. Pharmaceutics 2020, 12, 216. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Liu, W.; Xiong, S.; Li, D.; Fang, S.; Wu, Z.; Wang, Q.; Chen, X. Nanoparticles Mediating the Sustained Puerarin Release Facilitate Improved Brain Delivery to Treat Parkinson’s Disease. ACS Appl. Mater. Interfaces 2019, 11, 45276–45289. [Google Scholar] [CrossRef]
- Cheng, M.; Yuan, F.; Liu, J.; Liu, W.; Feng, J.; Jin, Y.; Tu, L. Fabrication of Fine Puerarin Nanocrystals by Box-Behnken Design to Enhance Intestinal Absorption. AAPS PharmSciTech 2020, 21, 90. [Google Scholar] [CrossRef]
- Xiong, S.; Liu, W.; Li, D.; Chen, X.; Liu, F.; Yuan, D.; Pan, H.; Wang, Q.; Fang, S.; Chen, T. Oral Delivery of Puerarin Nanocrystals to Improve Brain Accumulation and Anti-Parkinsonian Efficacy. Mol. Pharm. 2019, 16, 1444–1455. [Google Scholar] [CrossRef]
- Tu, L.; Cheng, M.; Sun, Y.; Fang, Y.; Liu, J.; Liu, W.; Feng, J.; Jin, Y. Fabrication of ultra-small nanocrystals by formation of hydrogen bonds: In vitro and in vivo evaluation. Int. J. Pharm. 2020, 573, 118730. [Google Scholar] [CrossRef]
- Nunez-Lopez, G.; Morel, S.; Hernandez, L.; Musacchio, A.; Amaya-Delgado, L.; Gschaedler, A.; Remaud-Simeon, M.; Arrizon, J. One-pot bi-enzymatic cascade synthesis of puerarin polyfructosides. Carbohydr. Polym. 2020, 247, 116710. [Google Scholar] [CrossRef]
- Huang, W.; He, Q.; Zhou, Z.R.; He, H.B.; Jiang, R.W. Enzymatic Synthesis of Puerarin Glucosides Using Cyclodextrin Glucanotransferase with Enhanced Antiosteoporosis Activity. ACS Omega 2020, 5, 12251–12258. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Chu, J.; Xu, T.; He, B. Isolation, identification and pharmacokinetic analysis of fructosyl puerarins from enzymatic glycosylation. J. Chromatogr. B 2013, 935, 70–74. [Google Scholar] [CrossRef] [PubMed]
Model | Administration | Results | Reference |
---|---|---|---|
HFD/STZ-induced diabetic rats | oral administration of puerarin at 300 mg/kg/day for 4 weeks | ↓ body weight ↓ blood glucose ↑ insulin ↓ HbA1C ↓ IPGTT ↓ IPPTT ↓ TG ↑ pFOXO1/FOXO1 ↓ mRNA and protein expression of PEPCK, G6Pase in liver ↑ protein expression of PI3K in liver ↑ pAkt/Akt | [20] |
PA-treated HepG2 cells | incubation with 100 μmol/L puerarin | ↑ protein expression of PI3K ↑ pAkt/Akt ↑ pFOXO1/FOXO1 ↓ protein expression of PEPCK, G6Pase | [20] |
HFD-fed rats | intraperitoneal administration of puerarin at 100 and 200 mg/kg/day for 8 weeks | ↓ body weight ↓ OGTT ↓ ITT ↓ serum leptin and resistin ↓ mRNA expression of leptin, resistin in adipose tissue | [21] |
high-glucose-induced IR adipocytes | incubation with puerarin (10, 30 μg/mL) | ↑ glucose uptake | [22] |
STZ-induced diabetic rats | intravenous injection of puerarin at 15 mg/kg three times daily for 3 days | ↓ plasma glucose ↓ IVGCT ↑ glucose uptake in muscle ↑ mRNA and protein expression of GLUT4 | [23] |
3T3-L1 adipocytes | incubation with puerarin (10, 100 μM) | ↑ mRNA expression of PPARγ and FABP ↑ mRNA expression of GLUT4 ↑ mRNA expression of adiponectin ↑ mRNA expression and enzyme activity of G6PDH ↑ mRNAs expression of GR and CAT ↓ ROS | [24] |
FFA-induced IR 3T3-L1 lipocyte | incubation with puerarin (1.5, 0.75 mg/mL) for 48 h | ↑ glucose transportation ↑ GLUT4 transposition ↓ mRNA expression of PPARγ | [25] |
HFD/STZ-induced diabetic rats | intraperitoneal injection of puerarin (100 mg/kg) for 4 weeks | ↓ IPGTT ↓ FBG, GSP ↑ plasma insulin ↑ protein expression of IRS-1 in muscle ↑ pIR/IR, pIRS-1/IRS-1, pAkt/Akt ↑ p AS160/AS160 ↑ total and membrane GLUT4 | [26] |
palmitate-induced IR L6 myotubes | incubation with 0.3 mM puerarin for 24 h | ↑ glucose uptake ↑ pAkt/Akt ↑ pAS160/AS160 ↑ membrane GLUT4 ↑ protein expression of IRS-1 | [26] |
HFHS/STZ-induced diabetic rats | oral administration of puerarin at 100 mg/kg/day | ↓ FBG, fructosamine ↓ ALT, AST ↓ serum TG, TC, LDL ↓ mRNA expression of PEPCK, G6Pase in liver ↑ hepatic lipase activity in liver ↓ mRNA expression of SREBP1c, SCD1 in liver ↓ serum MDA, 8-OHdG ↑ T-AOC, CAT in liver ↑ serum SOD ↓ mRNA expression of IL-1β, IL-6, TNF-α, MCP-1 in liver | [27] |
HFD-fed mice | oral administration of puerarin at 150 mg/kg daily for 35 days | ↓ body weight ↓ FBG ↓ IPGTT ↑ serum insulin ↑ β-cell mass ↓ serum TC ↓ serum leptin | [28] |
db/db mice | oral administration of puerarin at 150 mg/kg daily for 55 days | ↓ body weight ↓ FBG ↓ IPGTT ↑ serum insulin ↑ β-cell mass ↓ serum TG, TC ↑ serum adiponectin | [28] |
high-glucose-cultured mouse islets | treatment with puerarin (50 μM) | ↑ mRNA expression of GLP-1R, TCF7L2, PDX-1, insulin ↑ GSIS ↑ protein expression of GLP-1R, PDX-1 ↓ protein expression of caspase-3 ↑ p-FOXO1, p-Akt | [28] |
high-glucose-treated Min6 cells | treatment with puerarin | ↑ membrane/cytosolic ratio of GLP-1R | [28] |
HFD/STZ-induced diabetic mice | oral administration of puerarin at 80 mg/kg for 15 days | ↓ FBG ↓ serum insulin ↓ serum TC, TG, LDL ↑ serum HDL ↓ TUNEL-positive cells in pancreas ↓ protein expression of caspase-3, 8, 9 and AIF in pancreas | [29] |
HFD-fed mice | oral administration of puerarin at 150 and 300 mg/kg/day for 20 days | ↓ FBG ↓ body weight ↓ OGTT ↑ serum insulin ↓ serum glucagon ↓ HOMA-IR ↑ HOMA-β ↑ Ki-67 positive β-cells ↑ positive PDX-1 and Ngn3 expressions ↑ protein expression of GLP-1R in isolated cultured mouse pancreatic ductal cells | [30] |
STZ-induced diabetic mice | oral administration of puerarin at 20, 40, 80 mg/kg for 14 days | ↑ body weight ↓ FBG ↑ serum insulin ↓ serum TC, TG, LDL ↑ serum HDL ↑ protein expression of IRS-1, GLP-1R in pancreas ↑ mRNAs expression of InsR, PPARa | [31] |
STZ-induced diabetic rats | treatment with puerarin (140, 200 mg/kg/day) | ↑ body weight ↓ FBG ↑ serum insulin ↓ serum TC, TG ↑ SOD, CAT, GSH-Px in kidneys ↓ MDA, NO in kidneys ↓ plasma IFN-γ ↑ plasma IL-4 | [32] |
HFD-fed mice | 0.2%, 0.4%, or 0.8% puerarin-supplemented HFD | ↓ body weight ↓ serum TG, TC, and leptin ↓ hepatic TG ↓ FAS activity in liver ↑ CAT, HSL, and AMPK activity in liver ↓ mRNA expression of PPARγ in liver ↑ mRNA expression of CAT, HSL, ACO in liver ↓ protein expressions of PPARγ in liver ↑ protein expressions of p-AMPK, HSL, and p-HSL in liver | [33] |
HFD/STZ-induced diabetic rats | intraperitoneal injection of puerarin (100 mg/kg) for 4 weeks | ↓ body weight ↓ serum TC, TG ↑ serum SOD ↓ serum MDA ↓ membrane CD36 in skeletal muscle ↑ protein expressions of CPT-1 in skeletal muscle ↑ p-AMPK/AMPK, p-ACC/ACC ↑ mRNA expressions of LCAD, ACOX, PPARδ in skeletal muscle ↑ number of mitochondria | [34] |
0.75 mM palmitate-cultured (24 h) L6 myotubes | incubation with puerarin (0.3 mM) for 24 h | ↑ pAkt/Akt ↓ membrane CD36 ↑ mRNA expressions of ACSL, LACD ↑ p-ACC/ACC ↓ FFA | [34] |
3T3-L1 cells with adipocyte differentiation induction | treatment with puerarin (10 and 20 μM) | ↓ lipid accumulation ↓ mRNA expressions of PPARγ, C/ebpα, LPL, Fabp4 ↓ protein expressions of PPARγ, C/EBPα, FABP4 ↑ p-GSK-3β/GSK-3β, p-Akt/Akt | [35] |
HFHS-induced NAFLD mice | oral administration of puerarin at 0.2, 0.4 g/kg for 18 weeks | ↓ body weight ↓ ALT, AST in liver ↓ IFN-γ, IL-1β, IL-6 in liver ↑ p-PI3K, p-Akt in liver ↓ mRNA expressions of SREBP-1, ACC, FAS in liver ↑ mRNA and protein expression of PPARα in liver ↑ NAD+, ATP in liver ↑ mRNA expression of ACOX, CPT-1, MCAD | [36] |
differentiated C2C12 myotubes | treatment with puerarin (10 or 20 µM) for 24 h | ↑ p-AMPK/AMPK, p-ACC/ACC ↑ ATP | [37] |
high-fat and -fructose diet-fed rats | 0.2% puerarin-supplemented high-fat and -fructose diet for 16 weeks | ↓ body weight ↓ serum TC, TG, LDL ↑ serum HDL ↓ hepatic TC, TG ↓ FBG, insulin ↓ OGTT, ITT ↑ serum T-AOC ↓ serum MDA ↑ p-AMPK/AMPK, p-Akt/Akt ↑ protein expression of PI3K in liver | [38] |
HepG2 cells cultured with 10 mM glucose, 15 mM fructose, and 0.5 mM of FFA | induction with puerarin (75 μM and 150 μM) for 24 h | ↓ TG ↑ p-AMPK/AMPK, p-ACC/ACC ↓ mRNA expression of SREBP1c, FAS, SCD, HMGCR ↑ glucose uptake ↑ mRNA expression of GLUT4 ↑ protein expression of PI3K ↑ p-Akt/Akt ↑ CAT | [38] |
oleic acid-treated HepG2 cells | pre-treatment with puerarin (25, 50 and 100 µM) for 1 h | ↓ TG, TC ↓ mRNA and protein expression of SREBP-1 and FAS ↑ mRNA and protein expression of PPARα ↑ p-AMPK/AMPK | [39] |
STZ-induced diabetic mice | oral administration of puerarin at 100, 200, 400 mg/kg/day for 3 weeks | ↑ body weight ↓ FBG, OGTT, fructosamine ↓ plasma MDA ↑ plasma SOD, GSH | [40] |
HepG2 cells treated with insulin (3 × 10−8 mol/L) | treatment with 1 μmol/L puerarin | ↑ glucose consumption ↑ p-AMPK/AMPK | [40] |
HFD/STZ-induced diabetic mice | oral administration of puerarin at 200 mg/kg/day for 8 weeks | ↑ body weight ↓ OGTT ↓ FBG, insulin ↓ serum TG, TC, LDL, FFA ↑ serum HDL ↑ SOD, GSH in liver ↓ MDA, ROS in liver ↑ protein expression of Nrf2, HO-1 ↑ protein expression of PI3K | [41] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, X.; Zhou, J.; Zhang, N.; Zhao, L.; Wang, S.; Zhang, L.; Zhou, F. A Review of the Effects of Puerarin on Glucose and Lipid Metabolism in Metabolic Syndrome: Mechanisms and Opportunities. Foods 2022, 11, 3941. https://doi.org/10.3390/foods11233941
Jing X, Zhou J, Zhang N, Zhao L, Wang S, Zhang L, Zhou F. A Review of the Effects of Puerarin on Glucose and Lipid Metabolism in Metabolic Syndrome: Mechanisms and Opportunities. Foods. 2022; 11(23):3941. https://doi.org/10.3390/foods11233941
Chicago/Turabian StyleJing, Xiaoxuan, Jingxuan Zhou, Nanhai Zhang, Liang Zhao, Shiran Wang, Liebing Zhang, and Feng Zhou. 2022. "A Review of the Effects of Puerarin on Glucose and Lipid Metabolism in Metabolic Syndrome: Mechanisms and Opportunities" Foods 11, no. 23: 3941. https://doi.org/10.3390/foods11233941
APA StyleJing, X., Zhou, J., Zhang, N., Zhao, L., Wang, S., Zhang, L., & Zhou, F. (2022). A Review of the Effects of Puerarin on Glucose and Lipid Metabolism in Metabolic Syndrome: Mechanisms and Opportunities. Foods, 11(23), 3941. https://doi.org/10.3390/foods11233941