The Structural and Functional Differences between Three Species of Fish Scale Gelatin and Pigskin Gelatin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Fish Scale Gelatins
2.3. The Gelatins Composition
2.4. Determination of Color
2.5. Turbidity
2.6. Solubility
2.7. Chemical Structure
2.7.1. Sodium Dodecyl Sulfate—Polyacrylamide Gel Electrophoresis (SDS-PAGE) Research
2.7.2. Amino Acid Composition
2.7.3. FTIR Spectrum Analysis
2.7.4. Determination of Endogenous Fluorescence Spectroscopy
2.7.5. Determination of Surface Hydrophobicity Index (H0)
2.8. Functional Properties
2.8.1. Gelatin Gel Strength and Texture Profile Analysis (TPA)
Determination of Gelatin Gel Strength
Texture Profile Analysis
2.8.2. Determination of Emulsifying Properties
Emulsifying Activity Index (EAI) and Emulsifying Stability Index (ESI) Analysis
Particle Size and ζ-Potential Analysis of Emulsions
Creaming Index (CI) Analysis
2.8.3. Foaming Properties Analysis
2.8.4. Water Holding Capacity (WHC) and Fat Binding Capacity (FBC) Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Gelatin Compositions
3.2. Physical Properties
3.2.1. Color Value Analysis
3.2.2. Solubility Analysis
3.2.3. Turbidity Analysis
3.3. Chemical Structure
3.3.1. SDS-PAGE
3.3.2. Amino Acid Composition
3.3.3. ATR-FTIR
3.3.4. Fluorescence Spectroscopy
3.3.5. Surface Hydrophobicity Index (H0)
3.4. Gel Properties
3.5. Emulsifying Properties
3.6. Foaming Properties
3.7. WHC and FBC
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Shi, P.; Fan, F.; Chen, H.; Wu, C.; Xu, X.; Wang, Z.; Du, M. Hofmeister effect-assisted one step fabrication of fish gelatin hydrogels. LWT 2020, 121, 108973. [Google Scholar] [CrossRef]
- Lv, L.-C.; Huang, Q.-Y.; Ding, W.; Xiao, X.-H.; Zhang, H.-Y.; Xiong, L.-X. Fish gelatin: The novel potential applications. J. Funct. Foods 2019, 63, 103581. [Google Scholar] [CrossRef]
- Karim, A.A.; Bhat, R. Fish gelatin: Properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll. 2009, 23, 563–576. [Google Scholar] [CrossRef]
- Huang, T.; Tu, Z.C.; Wang, H.; Liu, W.; Zhang, L.; Zhang, Y.; ShangGuan, X.C. Comparison of rheological behaviors and nanostructure of bighead carp scales gelatin modified by different modification methods. J. Food Sci. Technol. 2017, 54, 1256–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Xu, J.; Zhang, Y.; Wang, X.; Lorenzo, J.M.; Zhong, J. Gelatins as emulsifiers for oil-in-water emulsions: Extraction, chemical composition, molecular structure, and molecular modification. Trends Food Sci. Technol. 2020, 106, 113–131. [Google Scholar] [CrossRef]
- Yang, M.; Yang, L.; Xu, J.; Nie, Y.; Wu, W.; Zhang, T.; Wang, X.; Zhong, J. Comparison of silver carp fin gelatins extracted by three types of methods: Molecular characteristics, structure, function, and pickering emulsion stabilization. Food Chem. 2022, 368, 130818. [Google Scholar] [CrossRef]
- Huang, T.; Tu, Z.C.; Wang, H.; Shangguan, X.; Zhang, L.; Zhang, N.H.; Bansal, N. Pectin and enzyme complex modified fish scales gelatin: Rheological behavior, gel properties and nanostructure. Carbohydr. Polym. 2017, 156, 294–302. [Google Scholar] [CrossRef] [Green Version]
- Shyni, K.; Hema, G.S.; Ninan, G.; Mathew, S.; Joshy, C.G.; Lakshmanan, P.T. Isolation and characterization of gelatin from the skins of skipjack tuna (Katsuwonus pelamis), dog shark (Scoliodon sorrakowah), and rohu (Labeo rohita). Food Hydrocoll. 2014, 39, 68–76. [Google Scholar] [CrossRef]
- Derkach, S.R.; Voron’ko, N.G.; Kuchina, Y.A.; Kolotova, D.S. Modified Fish Gelatin as an Alternative to Mammalian Gelatin in Modern Food Technologies. Polymers 2020, 12, 3051. [Google Scholar] [CrossRef]
- Renuka, V.; Rao Ravishankar, C.N.; Zynudheen, A.A.; Bindu, J.; Joseph, T.C. Characterization of gelatin obtained from unicorn leatherjacket (Aluterus monoceros) and reef cod (Epinephelus diacanthus) skins. LWT 2019, 116, 108586. [Google Scholar] [CrossRef]
- Sha, X.-M.; Tu, Z.-C.; Liu, W.; Wang, H.; Shi, Y.; Huang, T.; Man, Z.-Z. Effect of ammonium sulfate fractional precipitation on gel strength and characteristics of gelatin from bighead carp (Hypophthalmichthys nobilis) scale. Food Hydrocoll. 2014, 36, 173–180. [Google Scholar] [CrossRef]
- Sha, X.-M.; Hu, Z.-Z.; Tu, Z.-C.; Zhang, L.-Z.; Duan, D.-L.; Huang, T.; Wang, H.; Zhang, L.; Li, X.; Xiao, H. Influence of dynamic high pressure microfluidization on functional properties and structure of gelatin from bighead carp (Hypophthalmichthys nobilis) scale. J. Food Process. Preserv. 2018, 42, e13607. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, T.; Zhang, Y.; Yang, L.; Nie, Y.; Tao, N.; Wang, X.; Zhong, J. Silver carp scale gelatins for the stabilization of fish oil-loaded emulsions. Int. J. Biol. Macromol. 2021, 186, 145–154. [Google Scholar] [CrossRef]
- Tkaczewska, J.; Morawska, M.; Kulawik, P.; Zając, M. Characterization of carp (Cyprinus carpio) skin gelatin extracted using different pretreatments method. Food Hydrocoll. 2018, 81, 169–179. [Google Scholar] [CrossRef]
- Chandra, M.V.; Shamasundar, B.A. Texture Profile Analysis and Functional Properties of Gelatin from the Skin of Three Species of Fresh Water Fish. Int. J. Food Prop. 2014, 18, 572–584. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, R.; Ding, M.; Li, L.; Tao, N.; Wang, X.; Zhong, J. Commercial cold-water fish skin gelatin and bovine bone gelatin: Structural, functional, and emulsion stability differences. LWT 2020, 125, 109207. [Google Scholar] [CrossRef]
- Díaz-Calderón, P.; Flores, E.; González-Muñoz, A.; Pepczynska, M.; Quero, F.; Enrione, J. Influence of extraction variables on the structure and physical properties of salmon gelatin. Food Hydrocoll. 2017, 71, 118–128. [Google Scholar] [CrossRef]
- Sila, A.; Martinez-Alvarez, O.; Krichen, F.; Gómez-Guillén, M.C.; Bougatef, A. Gelatin prepared from European eel (Anguilla anguilla) skin: Physicochemical, textural, viscoelastic and surface properties. Colloids Surf. A 2017, 529, 643–650. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Zhang, J.; Guo, X.; Deng, X.; Kang, S.; Zhu, X.; Guo, X. Effect of Phosphorylation on the Structure and Emulsification Properties of Different Fish Scale Gelatins. Foods 2022, 11, 804. [Google Scholar] [CrossRef]
- Zhao, H.; Kang, X.; Zhou, X.; Tong, L.; Yu, W.; Zhang, J.; Yang, W.; Lou, Q.; Huang, T. Glycosylation fish gelatin with gum Arabic: Functional and structural properties. LWT 2021, 139, 110634. [Google Scholar] [CrossRef]
- Nagarajan, M.; Benjakul, S.; Prodpran, T.; Songtipya, P.; Kishimura, H. Characteristics and functional properties of gelatin from splendid squid (Loligo formosana) skin as affected by extraction temperatures. Food Hydrocoll. 2012, 29, 389–397. [Google Scholar] [CrossRef]
- Huang, T.; Tu, Z.C.; Shangguan, X.; Wang, H.; Sha, X.; Bansal, N. Rheological behavior, emulsifying properties and structural characterization of phosphorylated fish gelatin. Food Chem. 2018, 246, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Salem, A.; Fakhfakh, N.; Jridi, M.; Abdelhedi, O.; Nasri, M.; Debeaufort, F.; Zouari, N. Microstructure and characteristic properties of dogfish skin gelatin gels prepared by freeze/spray-drying methods. Int. J. Biol. Macromol. 2020, 162, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jellouli, K.; Balti, R.; Bougatef, A.; Hmidet, N.; Barkia, A.; Nasri, M. Chemical composition and characteristics of skin gelatin from grey triggerfish (Balistes capriscus). LWT-Food Sci. Technol. 2011, 44, 1965–1970. [Google Scholar] [CrossRef]
- GB6783-2013; Food Additive: Gelatin. Chinese National Standard: Beijing, China, 2013.
- Alfaro, A.d.T.; Balbinot, E.; Weber, C.I.; Tonial, I.B.; Machado-Lunkes, A. Fish Gelatin: Characteristics, Functional Properties, Applications and Future Potentials. Food Eng. Rev. 2014, 7, 33–44. [Google Scholar] [CrossRef]
- Chandra, M.V.; Shamasundar, B.A. Rheological properties of gelatin prepared from the swim bladders of freshwater fish Catla catla. Food Hydrocoll. 2015, 48, 47–54. [Google Scholar] [CrossRef]
- Huang, T.; Tu, Z.-C.; Shangguan, X.; Sha, X.; Wang, H.; Zhang, L.; Bansal, N. Fish gelatin modifications: A comprehensive review. Trends Food Sci. Technol. 2019, 86, 260–269. [Google Scholar] [CrossRef]
- Yan, S.; Xu, J.; Zhang, S.; Li, Y. Effects of flexibility and surface hydrophobicity on emulsifying properties: Ultrasound-treated soybean protein isolate. LWT 2021, 142, 110881. [Google Scholar] [CrossRef]
- He, S.; Zhao, J.; Cao, X.; Ye, Y.; Wu, Z.; Yue, J.; Yang, L.; Jin, R.; Sun, H. Low pH-shifting treatment would improve functional properties of black turtle bean (Phaseolus vulgaris L.) protein isolate with immunoreactivity reduction. Food Chem. 2020, 330, 127217. [Google Scholar] [CrossRef]
- Tamnak, S.; Mirhosseini, H.; Tan, C.P.; Ghazali, H.M.; Muhammad, K. Physicochemical properties, rheological behavior and morphology of pectin-pea protein isolate mixtures and conjugates in aqueous system and oil in water emulsion. Food Hydrocoll. 2016, 56, 405–416. [Google Scholar] [CrossRef]
- Feng, X.; Dai, H.; Zhu, J.; Ma, L.; Yu, Y.; Zhu, H.; Wang, H.; Sun, Y.; Tan, H.; Zhang, Y. Improved solubility and interface properties of pigskin gelatin by microwave irradiation. Int. J. Biol. Macromol. 2021, 171, 1–9. [Google Scholar] [CrossRef]
- Sow, L.C.; Toh, N.Z.Y.; Wong, C.W.; Yang, H. Combination of sodium alginate with tilapia fish gelatin for improved texture properties and nanostructure modification. Food Hydrocoll. 2019, 94, 459–467. [Google Scholar] [CrossRef]
- Surh, J.; Decker, E.; McClements, D. Properties and stability of oil-in-water emulsions stabilized by fish gelatin. Food Hydrocoll. 2006, 20, 596–606. [Google Scholar] [CrossRef]
- Boran, G.; Regenstein, J.M. Chapter 5: Fish Gelatin. In Advances in Food and Nutrition Research; Taylor, S.L., Ed.; Academic Press: Cambridge, MA, USA, 2010; Volume 60, pp. 119–143. [Google Scholar]
- Gómez-Guillén, M.C.; Turnay, J.; Fernández-Díaz, M.D.; Ulmo, N.; Lizarbe, M.A.; Montero, P. Structural and physical properties of gelatin extracted from different marine species: A comparative study. Food Hydrocoll. 2002, 16, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.R.; Yuhi, T.; Meng, D.; Yoshioka, T.; Ogata, Y.; Ura, K.; Takagi, Y. Purity and properties of gelatins extracted from the head tissue of the hybrid kalamtra sturgeon. LWT 2021, 142, 110944. [Google Scholar] [CrossRef]
- Li, J.; Yu, X.; Tang, W.; Wan, C.; Lu, Y.; Dong, N.; Chen, Z.; Lei, Z.; Ren, T.; Wang, Z.; et al. Characterization of food gels prepared from the water extract of fish (Cyprinus carpio L.) scales: From molecular components to sensory attributes. Food Hydrocoll. 2021, 112, 106263. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Liu, C.; Luo, L.; Chen, J.; Luo, S.; McClements, D.J.; Wu, L. Effect of limited enzymatic hydrolysis on structure and emulsifying properties of rice glutelin. Food Hydrocoll. 2016, 61, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.-C.; Karim, A.A.; Uthumporn, U.; Ghazali, F.C. Effect extraction temperature on the emulsifying properties of gelatin from black tilapia (Oreochromis mossambicus) skin. Food Hydrocoll. 2020, 108, 106024. [Google Scholar] [CrossRef]
- Jeya Shakila, R.; Jeevithan, E.; Varatharajakumar, A.; Jeyasekaran, G.; Sukumar, D. Functional characterization of gelatin extracted from bones of red snapper and grouper in comparison with mammalian gelatin. LWT-Food Sci. Technol. 2012, 48, 30–36. [Google Scholar] [CrossRef]
- Kaewruang, P.; Benjakul, S.; Prodpran, T. Effect of phosphorylation on gel properties of gelatin from the skin of unicorn leatherjacket. Food Hydrocoll. 2014, 35, 694–699. [Google Scholar] [CrossRef]
- Cen, S.; Zhang, L.; Liu, L.; Lou, Q.; Wang, C.; Huang, T. Phosphorylation modification on functional and structural properties of fish gelatin: The effects of phosphate contents. Food Chem. 2022, 380, 132209. [Google Scholar] [CrossRef] [PubMed]
- Aksun Tumerkan, E.T.; Cansu, U.; Boran, G.; Regenstein, J.M.; Ozogul, F. Physiochemical and functional properties of gelatin obtained from tuna, frog and chicken skins. Food Chem. 2019, 287, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Zhang, M.; Ma, M. Emulsifying properties of ovalbumin: Improvement and mechanism by phosphorylation in the presence of sodium tripolyphosphate. Food Hydrocoll. 2016, 60, 29–37. [Google Scholar] [CrossRef]
- O’Sullivan, J.; Murray, B.; Flynn, C.; Norton, I. The effect of ultrasound treatment on the structural, physical and emulsifying properties of animal and vegetable proteins. Food Hydrocoll. 2016, 53, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Wen, C.; Zhang, J.; Qin, W.; Gu, J.; Zhang, H.; Duan, Y.; Ma, H. Structure and functional properties of soy protein isolate-lentinan conjugates obtained in Maillard reaction by slit divergent ultrasonic assisted wet heating and the stability of oil-in-water emulsions. Food Chem. 2020, 331, 127374. [Google Scholar] [CrossRef]
- Karayannakidis, P.D.; Zotos, A. Fish Processing By-Products as a Potential Source of Gelatin: A Review. J. Aquat. Food Prod. Technol. 2014, 25, 65–92. [Google Scholar] [CrossRef]
FG | CPG | CG | BCG | |
---|---|---|---|---|
Yield (%) | - | 14.92 ± 0.68 c | 28.05 ± 0.47 a | 24.17 ± 0.96 b |
Solubility (%) | 89.47 ± 0.26 b | 94.19 ± 1.09 a | 92.23 ± 0.38 ab | 92.07 ± 1.61 ab |
Protein (%) | 86.81 ± 0.05 b | 93.61 ± 0.63 a | 92.55 ± 0.36 a | 92.45 ± 0.19 a |
Moisture (%) | 8.82 ± 0.06 a | 4.35 ± 0.20 d | 4.83 ± 0.03 c | 5.33 ± 0.02 b |
Ash (%) | 1.99 ± 0.08 a | 0.79 ± 0.04 b | 0.43 ± 0.02 c | 0.37 ± 0.00 c |
Fat (%) | 0.13 ± 0.01 b | 0.13 ± 0.02 b | 0.39 ± 0.01 a | 0.14 ± 0.02 b |
L* | 88.17 ± 0.17 b | 87.74 ± 0.81 b | 90.19 ± 0.23 a | 89.74 ± 0.23 a |
A* | 1.21 ± 0.05 a | –0.92 ± 0.07 b | −1.05 ± 0.01 b | −1.02 ± 0.02 b |
B* | 14.38 ± 0.22 a | 6.91 ± 0.09 b | 5.23 ± 0.01 c | 5.47 ± 0.04 c |
Amino Acids | FG | CPG | CG | BCG |
---|---|---|---|---|
Asp | 5.74 | 6.73 | 5.87 | 5.89 |
Thr | 2.00 | 2.37 | 2.70 | 2.76 |
Ser | 2.92 | 5.21 | 3.88 | 3.50 |
Glu | 10.80 | 10.86 | 10.07 | 10.41 |
Gly | 24.56 | 26.33 | 23.83 | 24.27 |
Ala | 9.91 | 10.23 | 10.86 | 11.10 |
Val | 2.43 | 2.02 | 2.15 | 2.04 |
Met | 0.27 | 2.07 | 1.62 | 1.66 |
Ile | 1.46 | 1.24 | 1.17 | 1.13 |
Leu | 2.98 | 2.37 | 2.69 | 2.52 |
Tyr | 0.21 | 0.19 | 0.26 | 0.26 |
Phe | 2.06 | 2.22 | 2.19 | 2.27 |
Lys | 3.91 | 3.77 | 3.77 | 3.90 |
His | 0.71 | 1.39 | 0.71 | 0.55 |
Arg | 8.61 | 9.11 | 8.91 | 9.08 |
Pro | 11.96 | 9.59 | 10.50 | 11.05 |
Total | 90.53 | 95.70 | 91.19 | 92.39 |
FG | CPG | CG | BCG | |
---|---|---|---|---|
Amide A | 3294.22 | 3309.80 | 3305.47 | 3296.10 |
Amide B | 3077.32 | 3080.68 | 3078.83 | 3080.05 |
Amide-I | 1660.35 | 1663.11 | 1661.95 | 1657.27 |
Amide-II | 1537.29 | 1547.43 | 1547.06 | 1542.57 |
Amide-III | 1239.54 | 1239.90 | 1239.96 | 1240.55 |
FG | CPG | CG | BCG | |
---|---|---|---|---|
Gel strength (g) | 726.76 ± 10.01 a | 334.77 ± 11.31 c | 643.28 ± 8.42 b | 658.16 ± 5.85 b |
Hardness (g) | 509.18 ± 15.18 a | 163.48 ± 15.85 c | 363.79 ± 7.22 b | 384.88 ± 5.13 b |
Springiness | 0.95 ± 0.02 a | 0.94 ± 0.00 a | 0.95 ± 0.02 a | 0.95 ± 0.03 a |
Cohesiveness | 0.90 ± 0.01 a | 0.71 ± 0.03 b | 0.91 ± 0.01 a | 0.85 ± 0.03 a |
Gumminess (g) | 445.86 ± 12.72 a | 115.54 ± 9.45 c | 330.94 ± 6.84 b | 328.34 ± 5.23 b |
Chewiness (g) | 424.81 ± 13.43 a | 109.10 ± 9.29 c | 312.62 ± 11.90 b | 311.84 ± 14.97 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Zhang, J.; Xu, Y.; Ma, Y.; Guo, X. The Structural and Functional Differences between Three Species of Fish Scale Gelatin and Pigskin Gelatin. Foods 2022, 11, 3960. https://doi.org/10.3390/foods11243960
He J, Zhang J, Xu Y, Ma Y, Guo X. The Structural and Functional Differences between Three Species of Fish Scale Gelatin and Pigskin Gelatin. Foods. 2022; 11(24):3960. https://doi.org/10.3390/foods11243960
Chicago/Turabian StyleHe, Jinmeng, Jian Zhang, Yingjie Xu, Yigang Ma, and Xiaobing Guo. 2022. "The Structural and Functional Differences between Three Species of Fish Scale Gelatin and Pigskin Gelatin" Foods 11, no. 24: 3960. https://doi.org/10.3390/foods11243960
APA StyleHe, J., Zhang, J., Xu, Y., Ma, Y., & Guo, X. (2022). The Structural and Functional Differences between Three Species of Fish Scale Gelatin and Pigskin Gelatin. Foods, 11(24), 3960. https://doi.org/10.3390/foods11243960