Microbiological Safety of Cut Melons Sold in Portuguese Retail Markets: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Microbial Enumeration and Detection of Pre-Cut Melons
2.3. Identification of Staphylococci by Sanger Sequencing of the 16S rRNA
2.4. Effect of Cutting and Storage Temperature of Contaminated Melons on Pathogen Survival
2.4.1. Preparation of Pathogen Inocula and Artificial Contamination of Melons
2.4.2. Microbiological Analysis of Artificially Contaminated Melons
2.5. Statistical Analysis
3. Results
3.1. Microbial Enumeration and Detection of Pre-Cut Melons
3.2. Identification of Staphylococci by Sanger Sequencing of 16S rRNA
3.3. Effect of Cutting and Storage Temperature of Contaminated Melons on Pathogens Survival
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graça, A.; Esteves, E.; Nunes, C.; Abadias, M.; Quintas, C. Microbiological quality and safety of minimally processed fruits in the marketplace of southern Portugal. Food Control. 2017, 73, 775–783. [Google Scholar] [CrossRef]
- Boyaci, D.; Iorio, G.; Sözbilen, G.S.; Alkan, D.; Trabattoni, S.; Pucillo, F.; Farris, S.; Yemenicioglu, A. Development of flexible antimicrobial zein coatings with essential oils for the inhibition of critical pathogens on the surface of whole fruits: Test of coatings on inoculated melons. Food Packag. Shelf Life 2019, 20, 100316. [Google Scholar] [CrossRef]
- Gagliardi, J.V.; Millner, P.D.; Lester, G.; Ingram, D. On-farm and postharvest processing sources of bacterial contamination to melon rinds. J. Food Prot. 2003, 66, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Outbreak of Salmonella Infections Linked to Pre-Cut Melons. Available online: https://www.cdc.gov/salmonella/Carrau-04-19/index.html (accessed on 21 July 2022).
- Heiman, K.E.; Mody, R.K.; Johnson, S.D.; Griffin, P.M.; Gould, L.H. Escherichia coli O157 outbreaks in the United States, 2003–2012. Emerg. Infect. Dis. 2015, 21, 1293–1301. [Google Scholar] [CrossRef]
- Walsh, K.A.; Bennett, S.D.; Mahovic, M.; Gould, L.H. Outbreaks associated with cantaloupe, watermelon, and honeydew in the United States, 1973–2011. Foodborne Pathog. Dis. 2014, 11, 945–952. [Google Scholar] [CrossRef] [Green Version]
- Elias, S.O.; Decol, L.; Tondo, E. Foodborne outbreaks in Brazil associated with fruits and vegetables: 2008 through 2014. Food Qual. Saf. 2018, 2, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention (CDC). Multistate Outbreak of Listeriosis Linked to Whole Cantaloupes from Jensen Farms, Colorado. Available online: https://www.cdc.gov/listeria/outbreaks/cantaloupes-jensen-farms/index.html (accessed on 24 October 2022).
- Food and Drug Administration. Available online: https://www.fda.gov/food/outbreaks-foodborne-illness/outbreak-investigation-salmonella-carrau-pre-cut-melons-april-2019 (accessed on 4 August 2022).
- European Food Safety Authority/European Center for Disease Control and Preventions. Multi-Country Outbreak of Salmonella Braenderup, Presumed to be Linked to Imported Melons. Available online: https://www.efsa.europa.eu/en/supporting/pub/en-6807 (accessed on 2 August 2022).
- Zhang, H.; Yamamoto, E.; Murphy, J.; Locas, A. Microbiological safety of ready-to-eat fresh-cut fruits and vegetables sold on the Canadian retail market. Int. J. Food Microbiol. 2020, 335, 108855. [Google Scholar] [CrossRef]
- Luciano, W.; Griffin, S.; Pedrosa, G.; Alvarenga, V.; Valdramidis, V.; Magnani, M. Growth behavior of low populations of Listeria monocytogenes on fresh-cut mango, melon and papaya under different storage temperatures. Food Microbiol. 2022, 102, 103930. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific Opinion on the Risk Posed by Pathogens in Food of Non-Animal Origin. Part 2 (Salmonella in Melons). Available online: https://www.efsa.europa.eu/en/efsajournal/pub/3831 (accessed on 1 August 2022).
- Jung, Y.; Gao, J.; Jang, H.; Guo, M.; Matthews, K. Sanitizer efficacy in preventing cross-contamination during retail preparation of whole and fresh-cut cantaloupe. Food Control. 2017, 75, 228–235. [Google Scholar] [CrossRef]
- ISO 4833-1; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 Degrees C by the Pour Plate Technique. ISO: Geneva, Switzerland, 2013.
- ISO 16649-2; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Beta-Glucuronidase-Positive Escherichia coli—Part 2: Colony-Count Technique at 44 Degrees C Using 5-Bromo-4-Chloro-3-Indolyl Beta-D-Glucuronide. ISO: Geneva, Switzerland, 2001.
- ISO 11290-2; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 2: Enumeration Method. ISO: Geneva, Switzerland, 2017.
- ISO 6888-1; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and Other Species)—Part 1: Technique Using Baird-Parker Agar Medium. ISO: Geneva, Switzerland, 1999.
- ISO 11290-1; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 1: Detection Method. ISO: Geneva, Switzerland, 2017.
- ISO 6579-1; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. ISO: Geneva, Switzerland, 2017.
- da Silva, M.F.; Vaz-Moreira, I.; Gonzalez-Pajuelo, M.; Nunes, O.C.; Manaia, C.M. Antimicrobial resistance patterns in Enterobacteriaceae isolated from an urban wastewater treatment plant. FEMS Microbiol. Ecol. 2007, 60, 166–176. [Google Scholar] [CrossRef]
- Altschul, S. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ukuku, D.O. Effect of hydrogen peroxide treatment on microbial quality and appearance of whole and fresh-cut melons contaminated with Salmonella spp. Int. J. Food Microbiol. 2004, 95, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Ukuku, D.O.; Sapers, G.M. Effect of time before storage and storage temperature on survival of Salmonella inoculated on fresh-cut melons. Food Microbiol. 2007, 24, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Food Safety Authority of Ireland. Guidelines for the Interpretation of Results of Microbiological Analysis of Some Ready-to-Eat Foods Sampled at Point of Sale; Food Safety Authority of Ireland: Dublin, Ireland, 2019; Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiP9JyGpu75AhUn5IUKHTKvA80QFnoECAgQAQ&url=https%3A%2F%2Fwww.fsai.ie%2FWorkArea%2FDownloadAsset.aspx%3Fid%3D16771&usg=AOvVaw3Sf_6Ml5E-F73fvStL8lFU (accessed on 15 July 2022).
- Ukuku, D.O.; Geveke, D.J.; Chau, L.; Niemira, B.A. Microbial safety and overall quality of cantaloupe fresh-cut pieces prepared from whole fruit after wet steam treatment. Int. J. Food Microbiol. 2016, 231, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Castillo, A.; Martínez-Téllez, M.A.; Rodríguez-García, M.O. Melons. In The Produce Contamination Problem, 2nd ed.; Matthews, K.R., Saper, G.M., Gerba, C.P., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 207–236. [Google Scholar] [CrossRef]
- Abadias, M.; Alegre, I.; Oliveira, M.; Altisent, R.; Vinas, I. Growth potential of Escherichia coli O157:H7 on fresh-cut fruits (melon and pineapple) and vegetables (carrot and escarole) stored under different conditions. Food Control. 2012, 27, 37–44. [Google Scholar] [CrossRef]
- Park, K.H.; Yun, H.J.; Kim, W.I.; Kang, J.W.; Millner, P.D.; Micallef, S.A.; Kim, B.S. Analysis of microbiological contamination in cultivation and distribution stage of melon. Korean J. Soil Sci. Fert. 2013, 46, 615–622. [Google Scholar] [CrossRef] [Green Version]
- Commission of the European Communities. Commission Regulation (EC) No 1441/2007 of 5 December 2007 Amending Regulation (EC) No 2073/2005 on Microbiological Criteria for Foodstuffs. Off. J. Eur. Union 2007, 322, 12–29. [Google Scholar]
- Ukuku, D.O.; Fett, W. Behavior of Listeria monocytogenes inoculated on cantaloupe surfaces and efficacy of washing treatments to reduce transfer from rind to fresh-cut pieces. J. Food Prot. 2002, 65, 924–930. [Google Scholar] [CrossRef]
- Nyarko, E.; Kniel, K.E.; Reynnells, R.; East, C.; Handy, E.T.; Luo, Y.; Sharma, M. Survival and growth of Listeria monocytogenes on fresh-cut “Athena” and “Rocky Ford” Cantaloupes during storage at 4 °C and 10 °C. Foodborne Pathog. Dis. 2016, 13, 587–591. [Google Scholar] [CrossRef]
- Rosenstein, R. Staphylococcal lipases: Biochemical and molecular characterization. Biochimie 2000, 82, 1005–1014. [Google Scholar] [CrossRef]
- Morot-Bizot, S.; Talon, R.; Leroy-Setrin, S. Development of specific PCR primers for a rapid and accurate identification of Staphylococcus xylosus, a species used in food fermentation. J. Microbiol. Methods 2003, 55, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Dordet-Frisoni, E.; Dorchies, G.; de Araujo, C.; Talon, R.; Leroy, S. Genomic diversity in Staphylococcus xylosus. Appl. Environ. Microbiol. 2007, 73, 7199–7209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siqueira, J.; Lima, K. Staphylococcus epidermidis and Staphylococcus xylosus in a secondary root canal infection with persistent symptoms: A case report. Aust. Endod. J. 2002, 28, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Fangio, M.F.; Roura, S.I.; Fritz, R. Isolation and identification of Bacillus spp. and related genera from different starchy foods. J. Food Sci. 2010, 75, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Venkateswaran, K.; Kempf, M.; Chen, F.; Satomi, M.; Nicholson, W.; Kern, R. Bacillus nealsonii sp. nov.; isolated from a spacecraft-assembly facility, whose spores are γ-radiation resistant. Int. J. Syst. Evol. Microbiol. 2003, 53, 165–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alebouyeh, M.; Gooran Orimi, P.; Azimi-Rad, M.; Tajbakhsh, M.; Tajeddin, E.; Jahani Sherafat, S.; Nazemalhosseini Mojarad, E.; Zali, M. Fatal sepsis by Bacillus circulans in an immunocompromised patient. Iran J. Microbiol. 2011, 3, 156–158. [Google Scholar]
- Granum, P.E.; Lindbäck, T. Bacillus cereus. In Food Microbiology: Fundamentals and Frontiers, 4th ed.; Doyle, M.P., Buchanan, R.L., Eds.; ASM Press: Washington, DC, USA, 2014; pp. 491–502. [Google Scholar] [CrossRef]
- Liu, Y.; Lai, Q.; Du, J.; Shao, Z. Bacillus zhangzhouensis sp. nov. and Bacillus australimaris sp. nov. J. Syst. Evol. Microbiol. 2016, 66, 1193–1199. [Google Scholar] [CrossRef] [Green Version]
- Moridshahi, R.; Bahreini, M.; Sharifmoghaddam, M.; Asoodeh, A. Biochemical characterization of an alkaline surfactant-stable keratinase from a new keratinase producer, Bacillus zhangzhouensis. Extremophiles 2020, 24, 693–704. [Google Scholar] [CrossRef]
- Nguyen, V.K.; Choi, W.; Ha, Y.; Gu, Y.; Lee, C.; Park, J.; Jang, G.; Shin, C.; Cho, S. Microbial tellurite reduction and production of elemental tellurium nanoparticles by novel bacteria isolated from wastewater. J. Ind. Eng. Chem. 2019, 78, 246–256. [Google Scholar] [CrossRef]
- Gneiding, K.; Frodl, R.; Funke, G. Identities of Microbacterium spp. encountered in human clinical specimens. J. Clin. Microbiol. 2008, 46, 3646–3652. [Google Scholar] [CrossRef]
- Funke, G.; Haase, G.; Schnitzler, N.; Schrage, N.; Reinert, R.R. Endophthalmitis due to Microbacterium species: Case report and review of Microbacterium infections. Clin. Infect. Dis. 1997, 24, 713–716. [Google Scholar] [CrossRef]
- Brown, J.M.; Steigerwalt, A.G.; Morey, R.E.; Daneshvar, M.I.; Romero, L.J.; McNeil, M.M. Characterization of clinical isolates previously identified as Oerskovia turbata: Proposal of Cellulosimicrobium funkei sp. nov. and emended description of the genus Cellulosimicrobium. Int. J. Syst. Evol. Microbiol. 2006, 56, 801–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petkar, H.; Li, A.; Bunce, N.; Duffy, K.; Malnick, H.; Shah, J.J. Cellulosimicrobium funkei: First report of infection in a non-immunocompromised patient and useful phenotypic tests for differentiation from Cellulosimicrobium cellulans and Cellulosimicrobium terreum. J. Clin. Microbiol. 2011, 49, 1175–1178. [Google Scholar] [CrossRef] [Green Version]
- Kämpfer, P.; Glaeser, S.P.; Kloepper, J.W.; Hu, C.H.; McInroy, J.A.; Martin, K.; Busse, H.J. Isoptericola cucumis sp. nov.; isolated from the root tissue of cucumber (Cucumis sativus). Int. J. Syst. Evol. Microbiol. 2016, 66, 2784–2788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samadi, A.; Sharifi, H.; Ghobadi Nejad, Z.; Hasan-Zadeh, A.; Yaghmaei, S. Biodegradation of 4-Chlorobenzoic Acid by Lysinibacillus macrolides DSM54T and Determination of Optimal Conditions. Int. J. Environ. Res. 2020, 14, 145–154. [Google Scholar] [CrossRef]
- Felis, G.E. Reclassification of Pediococcus urinaeequi (ex Mees 1934) Garvie 1988 as Aerococcus urinaeequi comb. nov. Int. J. Syst. Evol. Microbiol. 2005, 55, 1325–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, M. Aerococcus: An increasingly acknowledged human pathogen. Clin. Microbiol. Infect. 2016, 22, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Otto, M. Staphylococcus epidermidis—The “accidental” pathogen. Nat. Rev. Microbiol. 2009, 7, 555–567. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, M.; Schraft, H. Bacillus cereus food poisoning. In Foodborne Diseases, 3rd ed.; Dodd, C.E.R., Aldsworth, T., Stein, R.A., Cliver, D.O., Riemann, H.P., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 395–405. [Google Scholar] [CrossRef]
- Selma, M.V.; Ibáñez, A.M.; Allende, A.; Cantwell, M.; Suslow, T. Effect of gaseous ozone and hot water on microbial and sensory quality of cantaloupe and potential transference of Escherichia coli O157:H7 during cutting. Food Microbiol. 2008, 25, 162–168. [Google Scholar] [CrossRef]
- Public Health Agency of Canada. Pathogen Safety Data Sheets: Infectious Substances—Salmonella enterica spp.—Canada.ca. Available online: https://www.canada.ca/en/public-health/services/laboratory-biosafety-biosecurity/pathogen-safety-data-sheets-risk-assessment/salmonella-enterica.html#note7 (accessed on 21 June 2022).
- Rakic Martinez, M.; Ferguson, M.; Datta, A.R. Virulence assessment of Listeria monocytogenes grown in different foods using a Galleria mellonella model. PLoS ONE 2020, 15, e0232485. [Google Scholar] [CrossRef]
- Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Fernández Escámez, P.S.; Lindqvist, R. Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA J. 2018, 16, 1–173. [Google Scholar] [CrossRef]
Sample | Store | Area | Total Microorganisms | E. coli | Coagulase-Negative Staphylococci | Coagulase-Positive Staphylococci |
---|---|---|---|---|---|---|
1 | A | flesh | 6.04 ± 0.06 abcA | <1.00 ± 0.00 aA | 3.00 ± 0.10 cA | 2.45 ± 0.31 bA |
peel | 7.03 ± 0.09 abcA | <1.00 ± 0.00 aA | 4.05 ± 0.20 cA | 3.84 ± 0.46 bA | ||
2 | A | flesh | 4.69 ± 0.30 abcA | <1.00 ± 0.00 aA | >3.72 ± 0.65 cA | <1.00 ± 0.00 aA |
peel | 4.74 ± 1.04 abcA | <1.00 ± 0.00 aA | 4.19 ± 0.16 cA | 1.00 E ± 1.41 aA | ||
3 | A | flesh | 3.62 ± 0.87 abcA | <1.00 ± 0.00 aA | 0.95 E ± 1.35 cA | <1.00 ± 0.00 aA |
peel | 3.77 ± 0.47 abcA | <1.00 ± 0.00 aA | 1.00 E ± 1.41 cA | <1.00 ± 0.00 aA | ||
4 | A | flesh | >8.48 ± 0.00 abcA | <1.00 ± 0.00 aA | 3.96 ± 0.05 cA | 0.50 E ± 0.71 aA |
peel | 8.47 ± 0.16 abcA | <1.00 ± 0.00 aA | 3.69 ± 0.55 cA | 1.24 ± 0.34 aA | ||
5 | A | flesh | 8.55 ± 0.09 abcA | <1.00 ± 0.00 aA | 3.08 ± 0.05 cA | 1.00 E ± 1.41 aA |
peel | >8.48 ± 0.00 abcA | <1.00 ± 0.00 aA | 4.13 ± 1.02 cA | 2.90 ± 0.85 bA | ||
6 | A | flesh | 8.72 ± 0.39 abcA | <1.00 ± 0.00 aA | 4.83 ± 0.21 cA | 3.59 ± 0.14 bA |
peel | 7.65 ± 0.11 abcA | <1.00 ± 0.00 aA | 4.18 ± 0.05 cA | 2.82 ± 0.20 * bA | ||
7 | B | flesh | 4.76 ± 0.71 abcA | <1.00 ± 0.00 aA | 4.10 ± 0.15 bcA | 2.30 ± 0.00 bA |
peel | 5.17 ± 0.98 abcA | <1.00 ± 0.00 aA | 4.02 ± 0.03 bcA | 3.12 ± 0.23 bA | ||
8 | B | flesh | 7.26 ± 0.26 abcA | <1.00 ± 0.00 aA | 3.29 ± 0.46 bcA | <1.00 ± 0.00 aA |
peel | 6.86 ± 0.91 abcA | <1.00 ± 0.00 aA | 3.38 ± 0.24 bcA | <1.00 ± 0.00 aA | ||
9 | B | flesh | 7.69 ± 0.18 abcA | <1.00 ± 0.00 aA | 3.28 ± 0.18 bcA | <1.00 ± 0.00 aA |
peel | 6.45 ± 0.21 abcA | <1.00 ± 0.00 aA | 3.12 ± 0.18 bcA | 0.65 E ± 0.92 aA | ||
10 | C | flesh | 6.98 ± 0.63 abcA | <1.00 ± 0.00 aA | >4.94 ± 0.35 abA | <1.00 ± 0.00 aA |
peel | 7.39 ± 0.20 abcA | <1.00 ± 0.00 aA | >5.05 ± 0.18 abA | 3.50 ± 0.28 aA | ||
11 | C | flesh | 7.41 ± 0.63 abcA | <1.00 ± 0.00 aA | 3.57 ± 0.54 abA | <1.00 ± 0.00 aA |
peel | 5.82 ± 0.04 abcA | <1.00 ± 0.00 aA | 3.26 ± 0.21 * abA | <1.00 ± 0.00 aA | ||
12 | C | flesh | 6.89 ± 0.68 abcA | <1.00 ± 0.00 aA | 4.85 ± 0.03 abA | 2.80 ± 1.13 aA |
peel | 6.45 ± 0.36 abcA | <1.00 ± 0.00 aA | 4.20 ± 0.11 abA | >3.09 ± 0.13 aA | ||
13 | C | flesh | 6.87 ± 0.32 abcA | 2.13 ± 1.59 bB | >5.18 ± 0.00 abA | >4.82 ± 0.51 aA |
peel | 6.45 ± 0.17 abcA | 1.43 ± 0.60 bA | >5.18 ± 0.00 abA | >4.59 ± 0.83 aA | ||
14 | D | flesh | 8.77 ± 0.06 abcA | 1.39 ± 0.55 bA | >5.18 ± 0.00 abcA | 3.52 ± 0.31 * bA |
peel | 6.95 ± 0.06 abcA | <1.00 ± 0.00 aA | 4.17 ± 0.24 abcA | 2.75 ± 0.16 * bA | ||
15 | D | flesh | 6.70 ± 0.23 abcA | 3.85 ± 0.78 cB | 4.09 ± 0.4 abcA | 1.15 ± 0.21 aA |
peel | 6.60 ± 0.03 abcA | 2.45 ± 2.05 bC | 3.97 ± 0.13 abcA | 2.01 ± 0.75 aA | ||
16 | E | flesh | 5.44 ± 0.46 abcA | <1.00 ± 0.00 aA | >5.24 ± 0.08 aA | 2.30 ± 0.99 aA |
peel | 6.34 ± 0.03 abcA | <1.00 ± 0.00 aA | >5.15 ± 0.04 aA | 1.74 ± 2.46 aA | ||
17 | E | flesh | >8.48 ± 0.00 abcA | <1.00 ± 0.00 aA | >5.18 ± 0.00 aA | <1.00 ± 0.00 aA |
peel | 8.06 ± 0.27 abcA | <1.00 ± 0.00 aA | >5.18 ± 0.00 aA | <1.00 ± 0.00 aA | ||
18 | E | flesh | 5.88 ± 0.07 abcA | <1.00 ± 0.00 aA | 5.31 ± 0.19 aA | 2.21 ± 3.12 aA |
peel | 7.22 ± 1.56 abcA | <1.00 ± 0.00 aA | 5.61 ± 0.30 aA | <1.00 ± 0.00 aA | ||
19 | E | flesh | 5.21 ± 0.07 abcA | <1.00 ± 0.00 aA | 5.81 ± 0.11 aA | <1.00 ± 0.00 aA |
peel | 5.17 ± 0.09 abcA | <1.00 ± 0.00 aA | 5.40 ± 0.27 aA | <1.00 ± 0.00 aA | ||
20 | F | flesh | 7.95 ± 0.07 aA | <1.00 ± 0.00 aA | 3.60 ± 0.08 bcA | 2.54 ± 0.76 * aA |
peel | 7.46 ± 0.16 aA | <1.00 ± 0.00 aA | 4.04 ± 0.23 bcA | 2.96 ± 0.06 aA | ||
21 | F | flesh | 8.83 ± 0.20 aA | <1.00 ± 0.00 aA | 4.13 ± 0.98 bcA | 3.07 ± 0.10 * bA |
peel | 8.92 ± 0.15 aA | <1.00 ± 0.00 aA | 4.08 ± 0.23 bcA | 1.80 ± 0.28 * aB | ||
22 | G | flesh | 4.58 ± 0.07 bcA | 1.00 E ± 0.00 aA | 3.01 ± 0.38 bcA | >1.59 ± 2.25 aA |
peel | 5.42 ± 0.06 bcA | <1.00 ± 0.00 aA | >4.15 ± 0.04 bcA | <1.00 ± 0.00 aA | ||
23 | H | flesh | 7.56 ± 0.15 abA | <1.00 ± 0.00 aA | 3.25 ± 0.84 bcA | 1.09 ± 1.54 aA |
peel | >8.22 ± 0.36 abA | <1.00 ± 0.00 aA | 3.55 ± 0.84 bcA | >2.63 ± 0.78 aA | ||
24 | I | flesh | 5.41 ± 0.77 bcA | <1.00 ± 0.00 aA | 3.86 ± 0.65 abcA | >1.59 ± 2.25 * aA |
peel | 5.40 ± 0.46 bcA | <1.00 ± 0.00 aA | 4.30 ± 0.86 abcA | >3.18 ± 0.00 aB | ||
25 | J | flesh | 6.69 ± 0.34 abcA | <1.00 ± 0.00 aA | 5.75 ± 0.53 aA | <1.00 ± 0.00 aA |
peel | 6.57 ± 0.04 abcA | <1.00 ± 0.00 aA | >5.94 ± 0.33 aA | <1.00 ± 0.00 aA | ||
26 | K | flesh | 4.95 ± 0.72 cA | <1.00 ± 0.00 aA | 3.87 ± 0.01 abcA | <1.00 ± 0.00 aA |
peel | 4.42 ± 0.35 cA | <1.00 ± 0.00 aA | 4.15 ± 0.60 abcA | <1.00 ± 0.00 aA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseng, Y.H.; Barbosa, J.; de Carvalho, T.B.; Teixeira, P. Microbiological Safety of Cut Melons Sold in Portuguese Retail Markets: A Pilot Study. Foods 2022, 11, 4010. https://doi.org/10.3390/foods11244010
Tseng YH, Barbosa J, de Carvalho TB, Teixeira P. Microbiological Safety of Cut Melons Sold in Portuguese Retail Markets: A Pilot Study. Foods. 2022; 11(24):4010. https://doi.org/10.3390/foods11244010
Chicago/Turabian StyleTseng, Yu Hsuan, Joana Barbosa, Teresa Bento de Carvalho, and Paula Teixeira. 2022. "Microbiological Safety of Cut Melons Sold in Portuguese Retail Markets: A Pilot Study" Foods 11, no. 24: 4010. https://doi.org/10.3390/foods11244010
APA StyleTseng, Y. H., Barbosa, J., de Carvalho, T. B., & Teixeira, P. (2022). Microbiological Safety of Cut Melons Sold in Portuguese Retail Markets: A Pilot Study. Foods, 11(24), 4010. https://doi.org/10.3390/foods11244010