The Formation of 3-Monochloropropanediol Esters and Glycidyl Esters during Heat-Induced Processing Using an Olive-Based Edible Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Crackers
2.3. Intermittent Frying Condition
2.4. Physico-Chemical Characteristics
2.5. Determination of 3-MCPDE and GE
2.6. Statistical Analyses
3. Results
3.1. Physico-Chemical Properties of Baking Trial
3.2. Intermittent Frying of Chicken
3.3. The Effects of Salt, Duration, Temperature and DAG Content on 3-MCPDE and GE Content in Baking and Frying
3.4. Effect of Temperature, Duration and DAG Content on 3-MCPDE and GE
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hori, K.; Hashimoto, Y.; Itani, A.; Okada, T.; Tsumura, K. Effects of neutralization combined with steam distillation on the formation of monochloropropanediol esters and glycidyl esters in palm oil under laboratory-scale conditions. LWT 2020, 139, 110783. [Google Scholar] [CrossRef]
- Cheng, W.-W.; Liu, G.-Q.; Wang, L.-Q.; Liu, Z.-S. Glycidyl Fatty Acid Esters in Refined Edible Oils: A Review on Formation, Occurrence, Analysis, and Elimination Methods. Compr. Rev. Food Sci. Food Saf. 2017, 16, 263–281. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA J. 2016, 14, e04426. [Google Scholar] [CrossRef]
- Aniołowska, M.; Kita, A. The effect of frying on glycidyl esters content in palm oil. Food Chem. 2016, 203, 95–103. [Google Scholar] [CrossRef]
- Goh, K.M.; Wong, Y.H.; Tan, C.P.; Nyam, K.L. A summary of 2-, 3-MCPD esters and glycidyl ester occurrence during frying and baking processes. Curr. Res. Food Sci. 2021, 4, 460–469. [Google Scholar] [CrossRef]
- Arisseto, A.P.; Silva, W.C.; Marcolino, P.F.C.; Scaranelo, G.R.; Berbari, S.A.G.; Miguel, A.M.R.D.O.; Vicente, E. Influence of potato cultivar, frying oil and sample pre-treatments on the contamination of French fries by 3-monochloropropane-1,2-diol fatty acid esters. Food Res. Int. 2018, 124, 43–48. [Google Scholar] [CrossRef]
- Tarmizi, A.H.A.; Kuntom, A. The occurrence of 3-monochloropropane-1,2-diol esters and glycidyl esters in vegetable oils during frying. Crit. Rev. Food Sci. Nutr. 2021, 62, 3403–3419. [Google Scholar] [CrossRef]
- Belkova, B.; Hradecky, J.; Hurkova, K.; Forstova, V.; Vaclavik, L.; Hajslova, J. Impact of vacuum frying on quality of potato crisps and frying oil. Food Chem. 2018, 241, 51–59. [Google Scholar] [CrossRef]
- Wong, Y.H.; Goh, K.M.; Nyam, K.L.; Cheong, L.Z.; Wang, Y.; Nehdi, I.A.; Mansour, L.; Tan, C.P. Monitoring of heat-induced carcinogenic compounds (3-monochloropropane-1,2-diol esters and glycidyl esters) in fries. Sci. Rep. 2020, 10, 15110. [Google Scholar] [CrossRef]
- Goh, K.M.; Wong, Y.H.; Abas, F.; Lai, O.M.; Yusoff, M.M.; Tan, T.B.; Wang, Y.; Nehdi, I.A.; Tan, C.P. Changes in 3-, 2-Monochloropropandiol and Glycidyl Esters during a Conventional Baking System with Addition of Antioxidants. Foods 2020, 9, 739. [Google Scholar] [CrossRef]
- Yıldırım, A.; Yorulmaz, A. The effect of rosemary extract on 3-MCPD and glycidyl esters during frying. Grasas Aceites 2018, 69, e273. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, M.; Vosmann, K.; Matthäus, B. Generation of 3-monochloro-1,2-propanediol and related materials from tri-, di-, and monoolein at deodorization temperature. Eur. J. Lipid Sci. Technol. 2012, 114, 1268–1273. [Google Scholar] [CrossRef]
- Mogol, B.A.; Pye, C.; Anderson, W.; Crews, C.; Gökmen, V. Formation of Monochloropropane-1,2-diol and Its Esters in Biscuits during Baking. J. Agric. Food Chem. 2014, 62, 7297–7301. [Google Scholar] [CrossRef]
- Stauff, A.; Schneider, E.; Heckel, F. 2-MCPD, 3-MCPD and fatty acid esters of 2-MCPD, 3-MCPD and glycidol in fine bakery wares. Eur. Food Res. Technol. 2020, 246, 1945–1953. [Google Scholar] [CrossRef]
- Yao, Y.; Cao, R.; Liu, W.; Zhou, H.; Li, C.; Wang, S. Molecular Reaction Mechanism for the Formation of 3-Chloropropanediol Esters in Oils and Fats. J. Agric. Food Chem. 2019, 67, 2700–2708. [Google Scholar] [CrossRef]
- Chang, H.; Lee, J. Emulsification and oxidation stabilities of DAG-rich algae oil-in-water emulsions prepared with the selected emulsifiers. J. Sci. Food Agric. 2019, 100, 287–294. [Google Scholar] [CrossRef]
- Devi, B.P.; Gangadhar, K.; Prasad, R.; Sugasini, D.; Rao, Y.P.C.; Lokesh, B. Nutritionally enriched 1,3-diacylglycerol-rich oil: Low calorie fat with hypolipidemic effects in rats. Food Chem. 2018, 248, 210–216. [Google Scholar] [CrossRef]
- Razak, R.A.A.; Tarmizi, A.H.A.; Kuntom, A.; Sanny, M.; Ismail, I.S. Intermittent frying effect on French fries in palm olein, sunflower, soybean and canola oils on quality indices, 3-monochloropropane-1,2-diol esters (3-MCPDE), glycidyl esters (GE) and acrylamide contents. Food Control 2021, 124, 107887. [Google Scholar] [CrossRef]
- Li, D.; In, X.Q.; Sun, B.; Wang, W.; Wang, Y. A Feasible Industrialized Process for Producing High Purity Diacylglycerols with No Contaminants. Eur. J. Lipid Sci. Technol. 2019, 121, 1900039. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists (AACC). Method 10-54: Baking Quality of Cookie Flour; AACC: Washington, DC, USA, 2000. [Google Scholar]
- Goh, K.M.; Wong, Y.H.; Abas, F.; Lai, O.M.; Cheong, L.Z.; Wang, Y.; Wang, Y.; Tan, C.P. Effects of shortening and baking temperature on quality, MCPD ester and glycidyl ester content of conventional baked cake. LWT 2019, 116, 108553. [Google Scholar] [CrossRef]
- AOCS. Official Method Ca 5a-40: Free Fatty Acids in Crude and Refined Fats and Oils; AOCS: Champaign, IL, USA, 2017. [Google Scholar]
- AOCS. Official Method Ja 8-87: Peroxide Value; AOCS: Champaign, IL, USA, 2011. [Google Scholar]
- AOCS. Official Method Cd 29a-13: 2-and 3-MCPD Fatty Acid Esters and Glycidol Fatty Acid Esters in Edible Oils and Fats by Acid Transesterification; AOCS: Champaign, IL, USA, 2011. [Google Scholar]
- Bensmira, M.; Jiang, B.; Nsabimana, C.; Jian, T. Effect of Lavender and Thyme incorporation in sunflower seed oil on its resistance to frying temperatures. Food Res. Int. 2007, 40, 341–346. [Google Scholar] [CrossRef]
- Ali, M.A.; Islam, M.A.; Othman, N.H.; Noor, A.M.; Ibrahim, M. Effect of rice bran oil addition on the oxidative degradation and fatty acid composition of soybean oil during heating. Acta Sci. Pol. Technol. Aliment. 2019, 18, 427–438. [Google Scholar]
- Abdulkarim, S.; Long, K.; Lai, O.; Muhammad, S.; Ghazali, H. Frying quality and stability of high-oleic Moringa oleifera seed oil in comparison with other vegetable oils. Food Chem. 2007, 105, 1382–1389. [Google Scholar] [CrossRef]
- Enríquez-Fernández, B.E.; Álvarez de la Cadena y Yañez, L.; Sosa-Morales, M.E. Comparison of the stability of palm olein and a palm olein/canola oil blend during deep-fat frying of chicken nuggets and French fries. Int. J. Food Sci. Technol. 2011, 46, 1231–1237. [Google Scholar] [CrossRef]
- Bansal, G.; Zhou, W.; Tan, T.-W.; Neo, F.-L.; Lo, H.-L. Analysis of trans fatty acids in deep frying oils by three different approaches. Food Chem. 2009, 116, 535–541. [Google Scholar] [CrossRef]
- Rahn, A.K.K.; Yaylayan, V.A. What do we know about the molecular mechanism of 3-MCPD ester formation? Eur. J. Lipid Sci. Technol. 2010, 113, 323–329. [Google Scholar] [CrossRef]
- Wong, Y.H.; Muhamad, H.; Abas, F.; Lai, O.M.; Nyam, K.L.; Tan, C.P. Effects of temperature and NaCl on the formation of 3-MCPD esters and glycidyl esters in refined, bleached and deodorized palm olein during deep-fat frying of potato chips. Food Chem. 2017, 219, 126–130. [Google Scholar] [CrossRef]
- Merkle, S.; Ostermeyer, U.; Rohn, S.; Karl, H.; Fritsche, J. Mitigation strategies for ester bound 2-/3-MCPD and esterified glycidol in pre-fried breaded and frozen fish products. Food Chem. 2018, 245, 196–204. [Google Scholar] [CrossRef]
- Cichelli, A.; Riciputi, Y.; Cerretani, L.; Caboni, M.F.; D’Alessandro, N. Glycidols Esters, 2-Chloropropane-1,3-Diols, and 3-Chloropropane-1,2-Diols Contents in Real Olive Oil Samples and their Relation with Diacylglycerols. J. Am. Oil Chem. Soc. 2019, 97, 15–23. [Google Scholar] [CrossRef]
FA (%) | Fresh | Oil Extracted from Crackers | Oil Heated in Oven | Fresh | Oil Extracted from Crackers | Oil Heated in Oven |
---|---|---|---|---|---|---|
40%–160 °C | 40%–180 °C | |||||
C16:0 | 10.55 ± 0.07a | 10.63 ± 0.05a | 10.68 ± 0.06a | 10.55 ± 0.04a | 11.50 ± 0.05a | 11.45 ± 0.07a |
C18:0 | 3.12 ± 0.04a | 2.40 ± 0.05b | 2.48 ± 0.05b | 3.21 ± 0.01b | 3.46 ± 0.02a | 3.49 ± 0.01a |
C18:1 | 72.61 ± 0.08a | 72.78 ± 0.07a | 72.71 ± 0.09a | 72.11 ± 0.07a | 72.23 ± 0.07a | 72.07 ± 0.08a |
C18:1t | ND | ND | ND | ND | ND | ND |
C18:2 | 9.57 ± 0.05a | 9.44 ± 0.07a | 9.49 ± 0.05a | 9.97 ± 0.04a | 8.60 ± 0.05b | 8.72 ± 0.02b |
C18:3 | 0.94 ± 0.03a | 1.02 ± 0.01a | 1.01 ± 0.00a | 0.94 ± 0.00b | 1.27 ± 0.00a | 1.30 ± 0.02a |
60%–160 °C | 60%–180 °C | |||||
C16:0 | 11.53 ± 0.05b | 12.05 ± 0.05a | 12.07 ± 0.03a | 11.12 ± 0.01a | 11.19 ± 0.05a | 11.14 ± 0.03a |
C18:0 | 3.15 ± 0.03a | 3.08 ± 0.03a | 3.11 ± 0.02a | 3.13 ± 0.00b | 3.31 ± 0.01a | 3.36 ± 0.01a |
C18:1 | 68.88 ± 0.09a | 68.93 ± 0.08a | 69.00 ± 0.05a | 71.62 ± 0.05a | 71.67 ± 0.08a | 71.66 ± 0.07a |
C18:1t | ND | ND | ND | ND | ND | ND |
C18:2 | 11.72 ± 0.03a | 11.45 ± 0.03b | 11.38 ± 0.04b | 11.14 ± 0.04a | 10.29 ± 0.06b | 10.19 ± 0.04b |
C18:3 | 1.22 ± 0.03b | 1.33 ± 0.02a | 1.30 ± 0.01a | 1.11 ± 0.01a | 1.12 ± 0.00a | 1.14 ± 0.01a |
80%–160 °C | 80%–180 °C | |||||
C16:0 | 11.18 ± 0.02a | 11.12 ± 0.05a | 11.12 ± 0.02a | 11.14 ± 0.02b | 11.94 ± 0.05a | 12.00 ± 0.05a |
C18:0 | 3.08 ± 0.03a | 3.13 ± 0.02a | 3.12 ± 0.01a | 3.06 ± 0.02a | 3.11 ± 0.03a | 3.16 ± 0.02a |
C18:1 | 69.47 ± 0.05a | 69.42 ± 0.07a | 69.51 ± 0.02a | 68.89 ± 0.05a | 68.91 ± 0.06a | 69.00 ± 0.04a |
C18:1t | ND | ND | ND | ND | ND | ND |
C18:2 | 11.67 ± 0.05b | 11.72 ± 0.02a | 11.81 ± 0.05a | 11.68 ± 0.03a | 11.68 ± 0.01a | 11.69 ± 0.05a |
C18:3 | 1.12 ± 0.01a | 1.10 ± 0.00a | 0.99 ± 0.02a | 1.25 ± 0.01a | 1.22 ± 0.02a | 1.21 ± 0.01a |
FA (%) | Day 1 | Day 2 | Day 3 | Day 1 | Day 2 | Day 3 |
---|---|---|---|---|---|---|
40%–160 °C | 40%–180 °C | |||||
C8:0 | ND | ND | 0.47 ± 0.01 | ND | 0.43 ± 0.01 | 0.88 ± 0.01 |
C16:0 | 10.7 ± 0.10c | 11.65 ± 0.14b | 14.09 ± 0.11a | 11.64 ± 0.09c | 13.6 ± 0.10b | 15.96 ± 0.07a |
C18:0 | 2.41 ± 0.02b | 2.67 ± 0.02b | 3.81 ± 0.02a | 3.54 ± 0.03c | 4.09 ± 0.02b | 5.11 ± 0.02a |
C18:1 | 74.69 ± 0.42a | 74.19 ± 0.35a | 69.24 ± 0.44b | 73.72 ± 0.42a | 71.89 ± 0.40a | 65.33 ± 0.58b |
C18:1t | ND | ND | ND | ND | 0.06 ± 0.01 | 0.24 ± 0.01 |
C18:2 | 8.96 ± 0.01a | 6.63 ± 0.00b | 2.49 ± 0.01c | 7.57 ± 0.01a | 3.64 ± 0.01b | 1.18 ± 0.01c |
C18:3 | 0.70 ± 0.00a | 0.40 ± 0.00b | 0.06 ± 0.00c | 0.54 ± 0.00a | 0.13 ± 0.00b | 0.04 ± 0.00b |
60%–160 °C | 60%–180 °C | |||||
C8:0 | ND | ND | 0.37 ± 0.01 | ND | 0.42 ± 0.01 | 1.09 ± 0.01 |
C16:0 | 12.11 ± 0.12b | 12.82 ± 0.15b | 14.71 ± 0.13a | 12.01 ± 0.09c | 14.09 ± 0.10b | 18.35 ± 0.09a |
C18:0 | 3.78 ± 0.01b | 3.26 ± 0.02b | 4.01 ± 0.01a | 3.34 ± 0.02b | 3.92 ± 0.03b | 5.23 ± 0.02a |
C18:1 | 69.33 ± 0.55b | 70.15 ± 0.35a | 69.99 ± 0.43a | 71.86 ± 0.44a | 71.03 ± 0.42a | 59.44 ± 0.59b |
C18:1t | ND | ND | ND | ND | 0.05 ± 0.01 | 0.23 ± 0.01 |
C18:2 | 12.11 ± 0.11a | 10.13 ± 0.01b | 5.65 ± 0.00c | 11.06 ± 0.09a | 4.50 ± 0.05b | 0.71 ± 0.01c |
C18:3 | 1.05 ± 0.00a | 0.73 ± 0.00b | 0.24 ± 0.00c | 0.69 ± 0.01a | 0.17 ± 0.00b | 0.17 ± 0.00b |
80%–160 °C | 80%–180 °C | |||||
C8:0 | ND | ND | 0.38 ± 0.01 | ND | 0.36 ± 0.01 | 0.87 ± 0.01 |
C16:0 | 12.12 ± 0.12c | 13.21 ± 0.15b | 14.79 ± 0.10a | 12.29 ± 0.09c | 13.97 ± 0.11b | 16.87 ± 0.09a |
C18:0 | 3.13 ± 0.01b | 3.46 ± 0.03b | 4.20 ± 0.02a | 3.26 ± 0.03c | 3.70 ± 0.03b | 4.52 ± 0.02a |
C18:1 | 69.42 ± 0.41a | 70.23 ± 0.37a | 66.41 ± 0.54b | 69.99 ± 0.49a | 70.08 ± 0.48a | 63.67 ± 0.50b |
C18:1t | ND | ND | ND | ND | 0.04 ± 0.00 | 0.09 ± 0.01 |
C18:2 | 11.72 ± 0.10a | 8.79 ± 0.10b | 5.25 ± 0.01c | 10.61 ± 0.13a | 6.54 ± 0.10b | 2.25 ± 0.01c |
C18:3 | 1.10 ± 0.00a | 0.60 ± 0.00b | 0.23 ± 0.00c | 0.86 ± 0.00a | 0.33 ± 0.00b | 0.04 ± 0.00c |
3-MCPDE (mg/kg) | GE (mg/kg) | |||||
---|---|---|---|---|---|---|
160 °C | Fresh | oil extracted from crackers | oil heated in the oven | Fresh | oil extracted from crackers | oil heated in the oven |
40% | 1.08 ± 0.01a | 0.97 ± 0.02b | 0.84 ± 0.00c | ND | ND | ND |
60% | 1.23 ± 0.02a | 1.21 ± 0.02a | 1.03 ± 0.07b | ND | ND | ND |
80% | 1.12 ± 0.07a | 0.92 ± 0.05ab | 1.01 ± 0.03a | ND | ND | ND |
180 °C | Fresh | oil extracted from crackers | oil heated in the oven | Fresh | oil extracted from crackers | oil heated in the oven |
40% | 1.08 ± 0.01a | 0.62 ± 0.01b | 0.33 ± 0.01c | ND | ND | ND |
60% | 1.23 ± 0.02a | 1.15 ± 0.05a | 1.04 ± 0.02b | ND | <LOQ | ND |
80% | 1.12 ± 0.07a | 0.69 ± 0.03b | 0.63 ± 0.01b | ND | <LOQ | <LOQ |
Content (mg/kg) | 40%-DAG | 60%-DAG | 80%-DAG | |||
---|---|---|---|---|---|---|
3-MCPDE | GE | 3-MCPDE | GE | 3-MCPDE | GE | |
Fresh | 1.07 ± 0.01a | ND | 1.23 ± 0.02a | ND | 1.21 ± 0.01b | ND |
160 °C | ||||||
Day 1 | 0.67 ± 0.02c | ND | 1.20 ± 0.05a | ND | 1.16 ± 0.01c | ND |
Day 2 | <LOQ | ND | 1.09 ± 0.01b | ND | 0.85 ± 0.02b | ND |
Day 3 | <LOQ | ND | 1.07 ± 0.04b | ND | <LOQ | <LOQ |
160 °C-without chicken | ||||||
Day 1 | 0.79 ± 0.02b | ND | 1.12 ± 0.05a | ND | 1.25 ± 0.01b | ND |
Day 2 | <LOQ | ND | 1.07 ± 0.04b | ND | 1.11 ± 0.02c | <LOQ |
Day 3 | <LOQ | <LOQ | 0.81 ± 0.04c | <LOQ | 0.92± 0.01e | <LOQ |
180 °C | ||||||
Day 1 | 0.71 ± 0.01b | ND | 0.99 ± 0.03b | ND | 1.09 ± 0.01d | ND |
Day 2 | 0.32 ± 0.06e | <LOQ | 0.73 ± 0.01d | ND | 0.91 ± 0.02e | <LOQ |
Day 3 | <LOQ | 0.73 ± 0.02b | <LOQ | <LOQ | 0.86 ± 0.03f | 0.85 ± 0.02b |
180 °C-without chicken | ||||||
Day 1 | 0.72 ± 0.01b | ND | 0.98 ± 0.01b | ND | 1.31± 0.02a | <LOQ |
Day 2 | 0.46 ± 0.06d | <LOQ | 0.51 ± 0.01e | <LOQ | 1.15 ± 0.03c | 0.73 ± 0.02c |
Day 3 | <LOQ | 0.97 ± 0.02a | <LOQ | 0.91 ± 0.03a | 0.87± 0.04f | 1.29 ± 0.05a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Y.; Lan, D.; Wang, W.; Goh, K.M.; Tan, C.P.; Wang, Y. The Formation of 3-Monochloropropanediol Esters and Glycidyl Esters during Heat-Induced Processing Using an Olive-Based Edible Oil. Foods 2022, 11, 4073. https://doi.org/10.3390/foods11244073
Ji Y, Lan D, Wang W, Goh KM, Tan CP, Wang Y. The Formation of 3-Monochloropropanediol Esters and Glycidyl Esters during Heat-Induced Processing Using an Olive-Based Edible Oil. Foods. 2022; 11(24):4073. https://doi.org/10.3390/foods11244073
Chicago/Turabian StyleJi, Yingrui, Dongming Lan, Weifei Wang, Kok Ming Goh, Chin Ping Tan, and Yonghua Wang. 2022. "The Formation of 3-Monochloropropanediol Esters and Glycidyl Esters during Heat-Induced Processing Using an Olive-Based Edible Oil" Foods 11, no. 24: 4073. https://doi.org/10.3390/foods11244073
APA StyleJi, Y., Lan, D., Wang, W., Goh, K. M., Tan, C. P., & Wang, Y. (2022). The Formation of 3-Monochloropropanediol Esters and Glycidyl Esters during Heat-Induced Processing Using an Olive-Based Edible Oil. Foods, 11(24), 4073. https://doi.org/10.3390/foods11244073