Rapid Screening of High-Yield Gellan Gum Mutants of Sphingomonas paucimobilis ATCC 31461 by Combining Atmospheric and Room Temperature Plasma Mutation with Near-Infrared Spectroscopy Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism and Cultivation
2.2. Growth Curve of Seed Liquid
2.3. Determination of Gellan Gum Yield and Fermentation Broth Viscosity
2.4. ARTP Mutagenesis
2.5. Collection and Model Building of NIRS
2.6. Screening of High-Yield Mutant Strains
2.7. Single-Factor Screening Experiments
2.8. Response Surface Optimization Experiment
2.9. Statistical Analysis
3. Results
3.1. Lethality Rate of S. paucimobilis by ARTP Mutagenesis
3.2. The Construction of NIRS Model for the On-Line Detection of Gellan Gum Yield
3.2.1. Chemical Determination and NIRS Acquisition of Gellan Gum Yield
3.2.2. Establishment and Verification of Optimal NIRS Model by siPLS Regression
3.3. Screening of High-Yield Gellan-Gum-Producing Mutants Using the NIRS Model
3.4. Genetic Stability of the High-Yield Gellan Gum Mutants
3.5. Optimizing Fermentation Conditions of Mutant Strain 519 by Single-Factor Experiments
3.5.1. Different Carbon Sources and Optimum Concentration
3.5.2. Different Nitrogen Sources and Optimum Concentration
3.5.3. Different Inoculation Amounts
3.5.4. Different Initial pH Values
3.5.5. Different Culture Times in Seed Solution
3.5.6. Different Proportions of Fermentation Liquid to Bottle Volume
3.6. Optimizing Fermentation Conditions of Mutant 519 by Response Surface Methodology
3.6.1. Establishment of the Response Surface Model
3.6.2. Prediction and Verification of the Optimal Fermentation Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fialho, A.M.; Martins, L.O.; Donval, M.L.; Leitao, J.H.; Ridout, M.J.; Jay, A.J.; Morris, V.J.; Sa-Correia, I.I. Structures and properties of gellan polymers produced by Sphingomonas paucimobilis ATCC 31461 from lactose compared with those produced from glucose and from cheese whey. Appl. Environ. Microbiol. 1999, 65, 2485–2491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gai, Z.; Wang, X.; Zhang, X.; Su, F.; Wang, X.; Tang, H.; Tai, C.; Tao, F.; Ma, C.; Xu, P. Genome sequence of Sphingomonas elodea ATCC 31461, a highly productive industrial strain of gellan gum. J. Bacteriol. 2011, 193, 7015–7016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansson, P.E.; Lindberg, B.; Sandford, P.A. Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohydr. Res. 1983, 124, 135–139. [Google Scholar] [CrossRef]
- McMaster, L.D.; Kokott, S.A.; Reid, S.J.; Abratt, V.R. Use of traditional African fermented beverages as delivery vehicles for Bifidobacterium lactis DSM 10140. Int. J. Food Microbiol. 2005, 102, 231–237. [Google Scholar] [CrossRef]
- Sun, W.R.; Griffiths, M.W. Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan–xanthan beads. Int. J. Food Microbiol. 2000, 61, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Kamer, D.D.A.; Gumus, T.; Palabiyik, I.; Demirci, A.S.; Oksuz, O. Grape pomace as a promising source for gellan gum production. Food Hydrocolloid. 2021, 114, 106584. [Google Scholar]
- Li, A.; Hu, T.; Luo, H.; Alam, N.U.; Xin, J.; Li, H.; Lin, Y.; Huang, J.; Huang, K.; Meng, Y.; et al. A carotenoid- and poly-β-hydroxybutyrate-free mutant strain of Sphingomonas elodea ATCC 31461 for the commercial production of gellan. mSphere 2019, 4, e00668-19. [Google Scholar] [CrossRef] [Green Version]
- Li, O.; Liu, A.; Lu, C.; Zheng, D.Q.; Qian, C.D.; Wang, P.M.; Jiang, X.H.; Wu, X.C. Increasing viscosity and yields of bacterial exopolysaccharides by repeatedly exposing strains to ampicillin. Carbohydr. Polym. 2014, 110, 203–208. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.F.; Li, H.P.; Wang, L.Y.; Zhang, C.; Xing, X.H.; Bao, C.Y. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Appl. Microbiol. Biotechnol. 2014, 98, 5387–5396. [Google Scholar] [CrossRef]
- Xu, X.; Niu, C.; Liu, C.; Wang, J.; Zheng, F.; Li, Q. A novel approach to develop lager yeast with higher NADH availability to improve the flavor stability of industrial beer. Foods 2021, 10, 3057. [Google Scholar] [CrossRef]
- Nyabako, B.A.; Fang, H.; Cui, F.; Liu, K.; Tao, T.; Zan, X.; Sun, W. Enhanced acid tolerance in Lactobacillus acidophilus by atmospheric and room temperature plasma (ARTP) coupled with adaptive laboratory evolution (ALE). Appl. Biochem. Biotechnol. 2020, 191, 1499–1514. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Wu, Y.; Qi, H.; He, J.; Wu, Z.; Xu, H.; Qiao, M. Improving the level of the tyrosine biosynthesis pathway in Saccharomyces cerevisiae through HTZ1 knockout and atmospheric and room temperature plasma (ARTP) mutagenesis. ACS Synth. Biol. 2021, 10, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, Y.L.; Fu, J.J.; Yang, Q.X.; Feng, L.R. High-throughput screening of lycopene-overproducing mutants of Blakeslea trispora by combining ARTP mutation with microtiter plate cultivation and transcriptional changes revealed by RNA-seq. Biochem. Eng. J. 2020, 161, 107664. [Google Scholar] [CrossRef]
- Tsuchikawa, S.; Ma, T.; Inagaki, T. Application of near-infrared spectroscopy to agriculture and forestry. Anal. Sci. 2022, 38, 635–642. [Google Scholar] [CrossRef]
- Ghidini, F.; Benetti, E.; Zucchetta, P.; Amigoni, A.; Gamba, P.; Castagnetti, M. Transcutaneous near-infrared spectroscopy (NIRS) for monitoring kidney and liver allograft perfusion. Int. J. Clin. Pract. 2021, 75, e14034. [Google Scholar] [CrossRef]
- González-Mohino, A.; Pérez-Palacios, T.; Antequera, T.; Ruiz-Carrascal, J.; Olegario, L.S.; Grassi, S. Monitoring the processing of dry fermented sausages with a portable NIRS device. Foods 2020, 9, 1294. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, W.; Ding, Y.; Chen, Q. Quantitative analysis of yeast fermentation process using Raman spectroscopy: Comparison of CARS and VCPA for variable selection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 228, 117781. [Google Scholar] [CrossRef]
- Puvendran, K.; Anupama, K.; Jayaraman, G. Real-time monitoring of hyaluronic acid fermentation by in situ transflectance spectroscopy. Appl. Microbiol. Biotechnol. 2018, 102, 2659–2669. [Google Scholar] [CrossRef]
- Zhu, L.; Wu, X.; Li, O.; Chen, Y.; Qian, C.; Teng, Y.; Tao, X.; Gao, H. Cloning and knockout of phytoene desaturase gene in Sphingomonas elodea ATCC 31461 for economic recovery of gellan gum. J. Ind. Microbiol. Biotechnol. 2011, 38, 1507–1513. [Google Scholar] [CrossRef]
- Xu, H.; Dai, C.; Tang, Y.; Xu, X.; Umego, E.C.; He, R.; Ma, H. The selective breeding and mutagenesis mechanism of high-yielding surfactin Bacillus subtilis strains with atmospheric and room temperature plasma. J. Sci. Food Agric. 2022, 102, 1851–1861. [Google Scholar] [CrossRef]
- Xing, Z.; Hou, X.; Tang, Y.; He, R.H.; Mintah, B.K.; Dabbour, M.; Ma, H.L. Monitoring of polypeptide content in the solid-state fermentation process of rapeseed meal using NIRS and chemometrics. J. Food Process Eng. 2018, 41, e12853. [Google Scholar] [CrossRef]
- Nørgaard, L.; Saudland, A.; Wagner, J.; Nielsen, J.P.; Munck, L.; Engelsen, S.B. Interval partial least-squares regression (iPLS): A comparative chemometric study with an example from near-infrared spectroscopy. Appl. Spectrosc. 2000, 54, 413–419. [Google Scholar] [CrossRef]
- Zhu, Y.W.; Chen, X.Y.; Wang, S.M.; Liang, S.W.; Chen, C. Simultaneous measurement of contents of liquirtin and glycyrrhizic acid in liquorice based on near infrared spectroscopy. Spectrochim. Acta A 2018, 196, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, C.; Zhou, Q.Q.; Zhang, X.F.; Wang, L.Y.; Chang, H.B.; Li, H.P.; Oda, Y.; Xing, X.H. Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis. Appl. Microbiol. Biotechnol. 2015, 99, 5639–5646. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Huang, Z.; Gui, X.; Xiang, W.; Jin, Y.; Chen, J.; Zhao, J. Multi-omics comparative analysis of streptomyces mutants obtained by iterative atmosphere and room-temperature plasma mutagenesis. Front. Microbiol. 2021, 11, 630309. [Google Scholar] [CrossRef]
- Dev, M.J.; Warke, R.G.; Warke, G.M.; Mahajan, G.B.; Patil, T.A.; Singhal, R.S. Advances in fermentative production, purification, characterization and applications of gellan gum. Bioresour. Technol. 2022, 359, 127498. [Google Scholar] [CrossRef]
- West, T.P. Isolation of a mutant strain of Pseudomonas sp ATCC 31461 exhibiting elevated polysaccharide production. J. Ind. Microbiol. Biotechnol. 2002, 29, 185–188. [Google Scholar] [CrossRef]
- Arockiasamy, S.; Banik, R.M. Optimization of gellan gum production by Sphingomonas paucimobilis ATCC 31461 with nonionic surfactants using central composite design. J. Biosci. Bioeng. 2008, 105, 204–210. [Google Scholar] [CrossRef]
- Liu, K.; Fang, H.; Cui, F.; Nyabako, B.A.; Tao, T.; Zan, X.; Chen, H.; Sun, W. ARTP mutation and adaptive laboratory evolution improve probiotic performance of Bacillus coagulans. Appl. Microbiol. Biotechnol. 2020, 104, 6363–6373. [Google Scholar] [CrossRef]
- Gu, L.S.; Tan, M.Z.; Li, S.H.; Zhang, T.; Zhang, Q.Q.; Li, C.X.; Luo, X.M.; Feng, J.X.; Zhao, S. ARTP/EMS-combined multiple mutagenesis efficiently improved production of raw starch-degrading enzymes in Penicillium oxalicum and characterization of the enzyme-hyperproducing mutant. Biotechnol. Biofuels 2020, 13, 187. [Google Scholar] [CrossRef]
- Xiang, J.H.; Yang, Y.; Dabbour, M.; Mintah, B.K.; Zhang, Z.L.; Dai, C.H.; He, R.H.; Huang, G.P.; Ma, H.L. Metabolomic and genomic profiles of Streptomyces albulus with a higher ε-polylysine production through ARTP mutagenesis. Biochem. Eng. J. 2020, 162, 107720. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, S.; Li, C.; Zhang, C.; Ji, Y. Cost-effective optimization of gellan gum production by Sphingomonas paucimobilis using corn steep liquor. Prep. Biochem. Biotechnol. 2020, 50, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guo, S.; Hua, Q.; Hu, F. Improved AP-3 production through combined ARTP mutagenesis, fermentation optimization, and subsequent genome shuffling. Biotechnol. Lett. 2021, 43, 1143–1154. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dong, Y.C.; Fan, L.L.; Jiao, Z.H.; Chen, Q.H. Optimization of culture medium compositions for gellan gum production by a halobacterium Sphingomonas paucimobilis. Carbohydr. Polym. 2015, 115, 694–700. [Google Scholar] [CrossRef] [PubMed]
Time (h) | Yield (g/L) | Time (h) | Yield (g/L) | Time (h) | Yield (g/L) | Time (h) | Yield (g/L) |
---|---|---|---|---|---|---|---|
6 | 0.35 | 36 | 3.68 | 56 | 4.28 | 72 | 4.94 |
8 | 0.74 | 36 | 3.63 | 60 | 3.82 | 72 | 4.89 |
8 | 0.73 | 36 | 4.89 | 60 | 3.45 | 72 | 5.05 |
12 | 1.28 | 40 | 3.33 | 60 | 4.35 | 72 | 6.16 |
12 | 1.53 | 42 | 3.96 | 64 | 3.10 | 72 | 6.24 |
12 | 2.73 | 44 | 3.05 | 68 | 3.02 | 72 | 6.21 |
16 | 2.28 | 44 | 3.60 | 72 | 3.62 | 72 | 5.59 |
16 | 3.30 | 44 | 3.75 | 72 | 3.12 | 72 | 5.74 |
20 | 2.86 | 46 | 4.52 | 72 | 4.55 | 72 | 5.51 |
20 | 3.46 | 48 | 3.77 | 72 | 4.32 | 72 | 5.29 |
24 | 3.35 | 48 | 3.05 | 72 | 4.64 | 72 | 5.27 |
24 | 2.64 | 48 | 3.58 | 72 | 4.46 | 72 | 5.33 |
24 | 4.13 | 48 | 3.53 | 72 | 4.65 | 72 | 5.23 |
28 | 3.03 | 48 | 4.58 | 72 | 4.36 | 72 | 6.00 |
28 | 4.03 | 48 | 3.89 | 72 | 4.49 | 72 | 6.34 |
28 | 3.89 | 52 | 4.04 | 72 | 4.12 | 72 | 5.45 |
30 | 3.37 | 52 | 4.64 | 72 | 4.31 | 72 | 6.50 |
32 | 3.26 | 52 | 4.11 | 72 | 4.35 | 72 | 5.94 |
32 | 4.31 | 54 | 3.36 | 72 | 4.73 | ||
36 | 2.95 | 56 | 3.42 | 72 | 4.39 |
Pretreatment Method | LV | Joint Sections | Calibration Set | Prediction Set | ||
---|---|---|---|---|---|---|
rc | RMSECV | rp | RMSEP | |||
No pretreatment | 8 | 6, 9, 12, 14 | 0.9230 | 0.4790 | 0.9268 | 0.5250 |
SNV | 8 | 6, 9, 12, 14 | 0.9230 | 0.4790 | 0.9326 | 0.4850 |
MSC | 8 | 6, 9, 12, 14 | 0.9230 | 0.4790 | 0.9327 | 0.4850 |
Normalization | 8 | 6, 9, 12, 14 | 0.9230 | 0.4790 | 0.9328 | 0.4850 |
S-G | 8 | 6, 9, 11, 14 | 0.9207 | 0.4850 | 0.9133 | 0.5670 |
D1 | 9 | 6, 8, 10, 14 | 0.8982 | 0.5490 | 0.9087 | 0.5710 |
D2 | 7 | 4, 9, 13, 14 | 0.7485 | 0.8661 | 0.7827 | 0.9280 |
Number | A | B | C | Yield (g/L) | |
---|---|---|---|---|---|
Soybean Meal Concentration (%) | Inoculation Amount (%) | pH | Actual Value | Predicted Value | |
1 | 0.30 | 4.00 | 7.00 | 8.38 | 8.37 |
2 | 0.50 | 4.00 | 7.00 | 9.05 | 9.00 |
3 | 0.30 | 8.00 | 7.00 | 8.30 | 8.31 |
4 | 0.50 | 8.00 | 7.00 | 9.04 | 8.99 |
5 | 0.30 | 4.00 | 8.00 | 8.09 | 8.16 |
6 | 0.50 | 4.00 | 8.00 | 8.88 | 8.90 |
7 | 0.30 | 8.00 | 8.00 | 8.29 | 8.37 |
8 | 0.50 | 8.00 | 8.00 | 9.12 | 9.16 |
9 | 0.23 | 6.00 | 7.50 | 8.05 | 7.97 |
10 | 0.57 | 6.00 | 7.50 | 9.12 | 9.16 |
11 | 0.40 | 2.60 | 7.50 | 8.73 | 8.72 |
12 | 0.40 | 9.40 | 7.50 | 8.92 | 8.89 |
13 | 0.40 | 6.00 | 6.70 | 8.69 | 8.76 |
14 | 0.40 | 6.00 | 8.30 | 8.82 | 8.71 |
15 | 0.40 | 6.00 | 7.50 | 9.48 | 9.42 |
16 | 0.40 | 6.00 | 7.50 | 9.51 | 9.42 |
17 | 0.40 | 6.00 | 7.50 | 9.35 | 9.42 |
18 | 0.40 | 6.00 | 7.50 | 9.37 | 9.42 |
19 | 0.40 | 6.00 | 7.50 | 9.37 | 9.42 |
20 | 0.40 | 6.00 | 7.50 | 9.41 | 9.42 |
Source | Sum of Squares | Df | Variance | F-Value | p-Value |
---|---|---|---|---|---|
Model | 4.1500 | 9 | 0.4600 | 72.26 | <0.0001 |
A | 1.7100 | 1 | 1.7100 | 267.68 | <0.0001 |
B | 0.0328 | 1 | 0.0300 | 5.14 | 0.0467 |
C | 0.0022 | 1 | 0.0022 | 0.34 | 0.5744 |
AB | 0.0015 | 1 | 0.0015 | 0.24 | 0.6368 |
AC | 0.0055 | 1 | 0.0055 | 0.86 | 0.3745 |
BC | 0.0351 | 1 | 0.0351 | 5.50 | 0.0409 |
A2 | 1.3100 | 1 | 1.3100 | 204.66 | <0.0001 |
B2 | 0.6734 | 1 | 0.6700 | 105.54 | <0.0001 |
C2 | 0.8364 | 1 | 0.8400 | 131.09 | <0.0001 |
Residual | 0.0638 | 10 | 0.0064 | ||
Lack of fit | 0.0423 | 5 | 0.0085 | 1.96 | 0.2400 |
Pure Error | 0.0216 | 5 | 0.0043 | ||
Total | 4.2100 | 19 | |||
R2 | R2 = 98.49% | ||||
Adjusted R2 | R2 = 97.12% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Wang, Y.; Yue, M.; Ding, X.; Yu, X.; Ge, J.; Sun, W.; Song, L. Rapid Screening of High-Yield Gellan Gum Mutants of Sphingomonas paucimobilis ATCC 31461 by Combining Atmospheric and Room Temperature Plasma Mutation with Near-Infrared Spectroscopy Monitoring. Foods 2022, 11, 4078. https://doi.org/10.3390/foods11244078
Sun L, Wang Y, Yue M, Ding X, Yu X, Ge J, Sun W, Song L. Rapid Screening of High-Yield Gellan Gum Mutants of Sphingomonas paucimobilis ATCC 31461 by Combining Atmospheric and Room Temperature Plasma Mutation with Near-Infrared Spectroscopy Monitoring. Foods. 2022; 11(24):4078. https://doi.org/10.3390/foods11244078
Chicago/Turabian StyleSun, Ling, Yazhen Wang, Meixiang Yue, Xialiang Ding, Xiangyang Yu, Jing Ge, Wenjing Sun, and Lixiao Song. 2022. "Rapid Screening of High-Yield Gellan Gum Mutants of Sphingomonas paucimobilis ATCC 31461 by Combining Atmospheric and Room Temperature Plasma Mutation with Near-Infrared Spectroscopy Monitoring" Foods 11, no. 24: 4078. https://doi.org/10.3390/foods11244078
APA StyleSun, L., Wang, Y., Yue, M., Ding, X., Yu, X., Ge, J., Sun, W., & Song, L. (2022). Rapid Screening of High-Yield Gellan Gum Mutants of Sphingomonas paucimobilis ATCC 31461 by Combining Atmospheric and Room Temperature Plasma Mutation with Near-Infrared Spectroscopy Monitoring. Foods, 11(24), 4078. https://doi.org/10.3390/foods11244078