A Comprehensive Review of Variability in the Thermal Resistance (D-Values) of Food-Borne Pathogens—A Challenge for Thermal Validation Trials
Abstract
:1. Introduction
2. Food-Borne Pathogens and Their Thermal Resistance
2.1. Bacillus cereus Spores
2.2. Clostridium perfringens
2.3. Shiga Toxin-Producing Escherichia coli (STEC)
2.4. Cronobacter sakazakii
2.5. Listeria monocytogenes
2.6. Surrogates for Food-Borne Pathogens
3. Factors Affecting Variation in D-Values Reported in the Literature
3.1. Laboratory Scale versus Commercial Applications
3.2. Role of Methods in Variation When Estimating Thermal Resistance of Bacteria in Food
3.3. Composition, Conditions, and Type of Food Matrix
3.4. Statistical Models Used in Prediction/Estimation
3.5. Inherent Resistance in Subpopulations of Bacterial Species
4. Research Gaps and Conclusions
- A lack of information on the come-up time (CUT) and models that could integrate this time into account.
- The limited database of D-values of food-borne pathogens such as B. cereus, C. botulinum, E. coli (STEC), C. sakazakii, and L. monocytogenes in different types of matrices, including buffers and food matrices (meat, milk, dried products) under commercial and laboratory-based setups.
- Only a few reports indicate correlations between industrial equipment (for example, pasteurization units and retorts) and laboratory-scale equipment used for the determination of D-values. Consensus with the statistical models used in laboratory-based setups would benefit from validation or application in commercial setups.
- The factors influencing the formation of shoulder-like survival curves and extended tails in survival curves require further investigation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fellows, P.J. 12-Pasteurisation. In Food Processing Technology, 3rd ed.; Fellows, P.J., Ed.; Woodhead Publishing: Sawston, UK, 2009; pp. 381–395. [Google Scholar]
- Özer, B.; Yaman, H. Milk and milk products|Microbiology of Liquid Milk. In Encyclopedia of Food Microbiology, 2nd ed.; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Oxford, UK, 2014; pp. 721–727. [Google Scholar]
- Soni, A.; Oey, I.; Silcock, P.; Bremer, P. Bacillus spores in the food industry: A review on resistance and response to novel inactivation technologies. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1139–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigo, D.; Tejedor, W.; Martínez, A. Heat treatment: Effect on microbiological changes and shelf life. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 311–315. [Google Scholar]
- Peng, J.; Tang, J.; Barrett, D.M.; Sablani, S.S.; Anderson, N.; Powers, J.R. Thermal pasteurization of ready-to-eat foods and vegetables: Critical factors for process design and effects on quality. Crit. Rev. Food Sci. Nutr. 2017, 57, 2970–2995. [Google Scholar] [CrossRef] [PubMed]
- FDA. Fish and Fisheries Products Hazards and Control Guidance, 4th ed.; U.S. Food and Drug Administration, U.S. Department of Health and Human Services: Spring, MA, USA, 2011. [Google Scholar]
- Food and Drug Administration. Prevention of Salmonella enteritidis in shell eggs during production, storage, and transportation. Final rule. Fed. Regist. 2009, 74, 33029–33101. [Google Scholar]
- Awuah, G.B.; Ramaswamy, H.S.; Economides, A. Thermal processing and quality: Principles and overview. Chem. Eng. Process. Process Intensif. 2007, 46, 584–602. [Google Scholar] [CrossRef]
- Van Doornmalen, J.P.C.M.; Kopinga, K. Temperature dependence of F-, D- and z-values used in steam sterilization processes. J. Appl. Microbiol. 2009, 107, 1054–1060. [Google Scholar] [CrossRef] [PubMed]
- Granum, P.E.; Lindbäck, T. Bacillus cereus. In Food Microbiology, 2nd ed.; Doyle, M.P., Beuchat, L.R., Montville, T.J., Eds.; ASM Press: Washington, DC, USA, 2012; p. 491. [Google Scholar]
- Bottone, E.J. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 2010, 23, 382–398. [Google Scholar] [CrossRef] [Green Version]
- Messelhäußer, U.; Ehling-Schulz, M. Bacillus cereus—A Multifaceted Opportunistic Pathogen. Curr. Clin. Microbiol. Rep. 2018, 5, 120–125. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.-H.; Beuchat, L.R. Biofilm formation and sporulation by Bacillus cereus on a stainless steel surface and subsequent resistance of vegetative cells and spores to chlorine, chlorine dioxide, and a peroxyacetic acid–based sanitizer. J. Food Prot. 2005, 68, 2614–2622. [Google Scholar] [CrossRef]
- Soni, A.; Oey, I.; Silcock, P.; Permina, E.; Bremer, P.J. Differential gene expression for investigation of the effect of germinants and heat activation to induce germination in Bacillus cereus spores. Food Res. Int. 2019, 119, 462–468. [Google Scholar] [CrossRef]
- Suklim, K.; Flick, G.J.; Bourne, D.W.; Granata, L.A.; Eifert, J.; Williams, R.; Popham, D.; Wittman, R. Pressure-induced germination and inactivation of Bacillus cereus spores and their survival in fresh blue crab meat (Callinectes sapidus) during storage. J. Aquat. Food Prod. Technol. 2008, 17, 322–337. [Google Scholar] [CrossRef]
- Helmy, Z.A.; Abd-El-Bakey, A.; Mohamed, E.I. Factors affecting germination and growth of Bacillus cereus spores in milk. Zent. Mikrobiol. 1984, 139, 135–141. [Google Scholar] [CrossRef]
- Granum, P.E.; Lund, T. Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 1997, 157, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Becker, H.; Schaller, G.; von Wiese, W.; Terplan, G. Bacillus cereus in infant foods and dried milk products. Int. J. Food Microbiol. 1994, 23, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-Y.; Hu, Q.; Xu, F.; Ding, S.-Y.; Zhu, K. Characterization of Bacillus cereus in dairy products in China. Toxins 2020, 12, 454. [Google Scholar] [CrossRef] [PubMed]
- Ankolekar, C.; Rahmati, T.; Labbé, R.G. Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in US rice. Int. J. Food Microbiol. 2009, 128, 460–466. [Google Scholar] [CrossRef]
- Mortimer, P.; McCann, G. Food-poisoning episodes associated with Bacillus cereus in fried rice. Lancet 1974, 303, 1043–1045. [Google Scholar] [CrossRef]
- Navaneethan, Y.; Effarizah, M.E. Prevalence, toxigenic profiles, multidrug resistance, and biofilm formation of Bacillus cereus isolated from ready-to eat cooked rice in Penang, Malaysia. Food Control. 2021, 121, 107553. [Google Scholar] [CrossRef]
- Kong, L.; Yu, S.; Yuan, X.; Li, C.; Yu, P.; Wang, J.; Guo, H.; Wu, S.; Ye, Q.; Lei, T.; et al. An investigation on the occurrence and molecular characterization of Bacillus cereus in meat and meat products in China. Foodborne Pathog. Dis. 2021, 18, 306–314. [Google Scholar] [CrossRef]
- Rahnama, H.; Azari, R.; Yousefi, M.H.; Berizi, E.; Mazloomi, S.M.; Hosseinzadeh, S.; Derakhshan, Z.; Ferrante, M.; Conti, G.O. A systematic review and meta-analysis of the prevalence of Bacillus cereus in foods. Food Control. 2023, 143, 109250. [Google Scholar] [CrossRef]
- González, I.; López, M.; Martínez, S.; Bernardo, A.; González, J. Thermal inactivation of Bacillus cereus spores formed at different temperatures. Int. J. Food Microbiol. 1999, 51, 81–84. [Google Scholar] [CrossRef]
- Leguerinel, I.; Spegagne, I.; Couvert, O.; Gaillard, S.; Mafart, P. Validation of an overall model describing the effect of three environmental factors on the apparent D-value of Bacillus cereus spores. Int. J. Food Microbiol. 2005, 100, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Stoeckel, M.; Westermann, A.C.; Atamer, Z.; Hinrichs, J. Thermal inactivation of Bacillus cereus spores in infant formula under shear conditions. Dairy Sci. Technol. 2013, 93, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Byrne, B.; Dunne, G.; Bolton, D.J. Thermal inactivation of Bacillus cereus and Clostridium perfringens vegetative cells and spores in pork luncheon roll. Food Microbiol. 2006, 23, 803–808. [Google Scholar] [CrossRef]
- Evelyn, E.; Silva, F.V.M. Thermosonication versus thermal processing of skim milk and beef slurry: Modeling the inactivation kinetics of psychrotrophic Bacillus cereus spores. Food Res. Int. 2015, 67, 67–74. [Google Scholar] [CrossRef]
- Collado, J.; Fernández, A.; Cunha, L.M.; Ocio, M.J.; Martínez, A. Improved Model Based on the Weibull Distribution To Describe the Combined Effect of pH and Temperature on the Heat Resistance of Bacillus cereus in Carrot Juice. J. Food Prot. 2003, 66, 978–984. [Google Scholar] [CrossRef]
- Penna, T.C.V.; Moraes, D.A. The influence of nisin on the Thermal resistance of Bacillus cereus. J. Food Prot. 2002, 65, 415–418. [Google Scholar] [CrossRef]
- Brynestad, S.; Granum, P.E. Clostridium perfringens and foodborne infections. Int. J. Food Microbiol. 2002, 74, 195–202. [Google Scholar] [CrossRef]
- Morelli, G.; Catellani, P.; Miotti Scapin, R.; Bastianello, S.; Conficoni, D.; Contiero, B.; Ricci, R. Evaluation of microbial contamination and effects of storage in raw meat-based dog foods purchased online. J. Anim. Physiol. Anim. Nutr. 2020, 104, 690–697. [Google Scholar] [CrossRef]
- Kępińska-Pacelik, J.; Biel, W. Microbiological hazards in dry dog chews and feeds. Animals 2021, 11, 631. [Google Scholar] [CrossRef]
- Orsburn, B.; Melville, S.B.; Popham, D.L. Factors contributing to heat resistance of Clostridium perfringens endospores. Appl. Environ. Microbiol. 2008, 74, 3328–3335. [Google Scholar] [CrossRef] [Green Version]
- Charlebois, A.; Jacques, M.; Boulianne, M.; Archambault, M. Tolerance of Clostridium perfringens biofilms to disinfectants commonly used in the food industry. Food Microbiol. 2017, 62, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Chukwu, E.E.; Nwaokorie, F.O.; Coker, A.O.; Avila-Campos, M.J.; Solis, R.L.; Llanco, L.A.; Ogunsola, F.T. Detection of toxigenic Clostridium perfringens and Clostridium botulinum from food sold in Lagos, Nigeria. Anaerobe 2016, 42, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Grass, J.E.; Gould, L.H.; Mahon, B.E. Epidemiology of Foodborne Disease Outbreaks Caused by Clostridium perfringens, United States, 1998–2010. Foodborne Pathog. Dis. 2013, 10, 131–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, Q.; McClane, B.A. Detection of Enterotoxigenic Clostridium perfringens type A isolates in American retail foods. Appl. Environ. Microbiol. 2004, 70, 2685–2691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novak, J.S.; Juneja, V.K.; McClane, B.A. An ultrastructural comparison of spores from various strains of Clostridium perfringens and correlations with heat resistance parameters. Int. J. Food Microbiol. 2003, 86, 239–247. [Google Scholar] [CrossRef]
- Bradshaw, J.G.; Peeler, J.T.; Twedt, R.M. Thermal inactivation of ileal loop-reactive Clostridium perfringens type A strains in phosphate buffer and beef gravy. Appl. Environ. Microbiol. 1977, 34, 280–284. [Google Scholar] [CrossRef] [Green Version]
- Katouli, M. Population structure of gut Escherichia coli and its role in development of extra-intestinal infections. Iran. J. Microbiol. 2010, 2, 59–72. [Google Scholar]
- Farrokh, C.; Jordan, K.; Auvray, F.; Glass, K.; Oppegaard, H.; Raynaud, S.; Thevenot, D.; Condron, R.; De Reu, K.; Govaris, A.; et al. Review of Shiga-toxin-producing Escherichia coli (STEC) and their significance in dairy production. Int. J. Food Microbiol. 2013, 162, 190–212. [Google Scholar] [CrossRef]
- Gyles, C. Shiga toxin-producing Escherichia coli: An overview. J. Anim. Sci. 2007, 85, E45–E62. [Google Scholar] [CrossRef]
- Slanec, T.; Fruth, A.; Creuzburg, K.; Schmidt, H. Molecular analysis of virulence profiles and Shiga toxin genes in food-borne Shiga toxin-producing Escherichia coli. Appl. Environ. Microbiol. 2009, 75, 6187–6197. [Google Scholar] [CrossRef] [Green Version]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, B.; Gebendorfer, K.M.; Buchner, J.; Winter, J. Evolution of Escherichia coli for growth at high temperatures. J. Biol. Chem. 2010, 285, 19029–19034. [Google Scholar] [CrossRef] [PubMed]
- Mercer, R.G.; Zheng, J.; Garcia-Hernandez, R.; Ruan, L.; Gänzle, M.G.; McMullen, L.M. Genetic determinants of heat resistance in Escherichia coli. Front. Microbiol. 2015, 6, 932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enache, E.; Mathusa, E.C.; Elliott, P.H.; Black, D.G.; Chen, Y.; Scott, V.N.; Schaffner, D.W. Thermal Resistance Parameters for Shiga Toxin–Producing Escherichia coli in Apple Juice. J. Food Prot. 2011, 74, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Dlusskaya, E.A.; McMullen, L.M.; Gänzle, M.G. Characterization of an extremely heat-resistant Escherichia coli obtained from a beef processing facility. J. Appl. Microbiol. 2011, 110, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Zhang, H.; Boyd, G.; Tang, J. Thermal resistance of Salmonella enteritidis and Escherichia coli K12 in liquid egg determined by thermal-death-time disks. J. Food Eng. 2008, 84, 608–614. [Google Scholar] [CrossRef]
- Farmer, J.J. My 40-Year History with Cronobacter/Enterobacter sakazakii – Lessons Learned, Myths Debunked, and Recommendations. Front. Pediatr. 2015, 3, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iversen, C.; Mullane, N.; McCardell, B.; Tall, B.D.; Lehner, A.; Fanning, S.; Stephan, R.; Joosten, H. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int. J. Syst. Evol. Microbiol. 2008, 58, 1442–1447. [Google Scholar]
- Hariri, S.; Joseph, S.; Forsythe, S.J. Cronobacter sakazakii ST4 strains and neonatal meningitis, United States. Emerg. Infect. Dis. 2013, 19, 175. [Google Scholar] [CrossRef]
- Flores, J.P.; Medrano, S.A.; Sánchez, J.S.; Fernandez-Escartin, E. Two cases of hemorrhagic diarrhea caused by Cronobacter sakazakii in hospitalized nursing infants associated with the consumption of powdered infant formula. J. Food Prot. 2011, 74, 2177–2181. [Google Scholar] [CrossRef]
- Yan, X.; Gurtler, J.B. Cronobacter (Enterobacter) sakazakii. In Encyclopedia of Food Microbiology, 2nd ed.; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Oxford, UK, 2014; pp. 528–532. [Google Scholar]
- Tamigniau, A.; Vanhaecke, J.; Saegeman, V. Cronobacter sakazakii bacteremia in a heart transplant patient with polycystic kidney disease. Transpl. Infect. Dis. 2015, 17, 921–925. [Google Scholar] [CrossRef] [PubMed]
- Kilonzo-Nthenge, A.; Rotich, E.; Godwin, S.; Nahashon, S.; Chen, F. Prevalence and antimicrobial resistance of Cronobacter sakazakii isolated from domestic kitchens in middle Tennessee, United States. J. Food Prot. 2012, 75, 1512–1517. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Jia, X.; Chen, L.; Peters, B.M.; Lin, C.-w.; Chen, D.; Li, L.; Li, B.; Li, Y.; Xu, Z. Effect of polymyxin resistance (pmr) on biofilm formation of Cronobacter sakazakii. Microb. Pathog. 2017, 106, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, C.; Cebrián, G.; Condón, S.; Pagán, R. Development of resistance in Cronobacter sakazakii ATCC 29544 to thermal and nonthermal processes after exposure to stressing environmental conditions. J. Appl. Microbiol. 2012, 112, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Jason, J. The roles of epidemiologists, laboratorians, and public health agencies in preventing invasive Cronobacter infection. Front. Pediatr. 2015, 3, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennour Hennekinne, R.; Guillier, L.; Fazeuilh, L.; Ells, T.; Forsythe, S.; Jackson, E.; Meheut, T.; Gnanou Besse, N. Survival of Cronobacter in powdered infant formula and their variation in biofilm formation. Lett. Appl. Microbiol. 2018, 66, 496–505. [Google Scholar] [CrossRef]
- Nazarowec-White, M.; Farber, J.M. Thermal resistance of Enterobacter sakazakii in reconstituted dried-infant formula. Lett. Appl. Microbiol. 1997, 24, 9–13. [Google Scholar] [CrossRef]
- Osaili, T.M.; Shaker, R.R.; Al-Haddaq, M.S.; Al-Nabulsi, A.A.; Holley, R.A. Heat resistance of Cronobacter species (Enterobacter sakazakii) in milk and special feeding formula. J. Appl. Microbiol. 2009, 107, 928–935. [Google Scholar] [CrossRef]
- Kim, S.-H.; Park, J.-H. Thermal resistance and inactivation of Enterobacter sakazakii isolates during rehydration of powdered infant formula. J. Microbiol. Biotechnol. 2007, 17, 364–368. [Google Scholar]
- Huertas, J.-P.; Álvarez-Ordóñez, A.; Morrissey, R.; Ros-Chumillas, M.; Esteban, M.-D.; Maté, J.; Palop, A.; Hill, C. Heat resistance of Cronobacter sakazakii DPC 6529 and its behavior in reconstituted powdered infant formula. Food Res. Int. 2015, 69, 401–409. [Google Scholar] [CrossRef]
- Pizarro-Cerdá, J.; Cossart, P. Microbe profile: Listeria monocytogenes: A paradigm among intracellular bacterial pathogens. Microbiology 2019, 165, 719–721. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, M.; Chikindas, M.L. Listeria: A foodborne pathogen that knows how to survive. Int. J. Food Microbiol. 2007, 113, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Mead, P.S.; Slutsker, L.; Dietz, V.; McCaig, L.F.; Bresee, J.S.; Shapiro, C.; Griffin, P.M.; Tauxe, R.V. Food-related illness and death in the United States. Emerg. Infect. Dis. 1999, 5, 607–625. [Google Scholar] [CrossRef] [PubMed]
- Cossart, P.; Mengaud, J. Listeria monocytogenes. A model system for the molecular study of intracellular parasitism. Mol. Biol. Med. 1989, 6, 463–474. [Google Scholar]
- Mateus, T.; Silva, J.; Maia, R.L.; Teixeira, P. Listeriosis during pregnancy: A public health concern. ISRN Obstet. Gynecol. 2013, 2013, 851712. [Google Scholar] [CrossRef]
- Lamont, R.F.; Sobel, J.; Mazaki-Tovi, S.; Kusanovic, J.P.; Vaisbuch, E.; Kim, S.K.; Uldbjerg, N.; Romero, R. Listeriosis in human pregnancy: A systematic review. J. Perinat. Med. 2011, 39, 227–236. [Google Scholar] [CrossRef]
- Francis, G.A.; O'Beirne, D. Effects of the indigenous microflora of minimally processed lettuce on the survival and growth of Listeria innocua. Int. J. Food Sci. Technol. 1998, 33, 477–488. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, W.; Sun, T.; Gorris, L.G.; Wang, X.; Liu, B.; Dong, Q. The prevalence of Listeria monocytogenes in meat products in China: A systematic literature review and novel meta-analysis approach. Int. J. Food Microbiol. 2020, 312, 108358. [Google Scholar] [CrossRef]
- Lovett, J. Isolation and identification of Listeria monocytogenes in dairy products. J. Assoc. Off. Anal. Chem. 1988, 71, 658–660. [Google Scholar] [CrossRef]
- Bashiry, M.; Javanmardi, F.; Taslikh, M.; Sheidaei, Z.; Sadeghi, E.; Abedi, A.-S.; Alizadeh, A.M.; Hashempour-Baltork, F.; Beikzadeh, S.; Riahi, S.M. Listeria monocytogenes in Dairy Products of the Middle East Region: A Systematic Review, Meta-Analysis, and Meta-Regression Study. Iran. J. Public Health 2022, 51, 292. [Google Scholar] [CrossRef]
- Panera-Martínez, S.; Rodríguez-Melcón, C.; Serrano-Galán, V.; Alonso-Calleja, C.; Capita, R. Prevalence, quantification and antibiotic resistance of Listeria monocytogenes in poultry preparations. Food Control. 2022, 135, 108608. [Google Scholar] [CrossRef]
- Yang, Y.; Sekhon, A.S.; Singh, A.; Unger, P.; Michael, M. Survival and thermal resistance of Listeria monocytogenes in dry and hydrated nonfat dry milk and whole milk powder during extended storage. Int. Dairy J. 2022, 129, 105338. [Google Scholar] [CrossRef]
- Aviles, M.V.; Naef, E.F.; Abalos, R.A.; Piaggio, M.C.; Lound, L.H.; Olivera, D.F. Thermal resistance for Salmonella enterica strains in Sous-vide chicken-and-vegetable patties. Int. J. Gastron. Food Sci. 2022, 28, 100540. [Google Scholar] [CrossRef]
- McCormick, K.; Han, I.Y.; Acton, J.C.; Sheldon, B.W.; Dawson, P.L. D and z-values for Listeria monocytogenes and Salmonella typhimurium in packaged low-fat ready-to-eat turkey bologna subjected to a surface pasteurization treatment. Poult. Sci. 2003, 82, 1337–1342. [Google Scholar] [CrossRef]
- Fain Jr, A.R.; Line, J.E.; Moran, A.B.; Martin, L.M.; Lechowich, R.V.; Carosella, J.M.; Brown, W.L. Lethality of heat to Listeria monocytogenes Scott A: D-value and z-value determinations in ground beef and turkey. J. Food Prot. 1991, 54, 756–761. [Google Scholar] [CrossRef]
- Murphy, R.Y.; Duncan, L.K.; Beard, B.L.; Driscoll, K.H. D and z values of Salmonella, Listeria innocua, and Listeria monocytogenes in fully cooked poultry products. J. Food. Sci. 2003, 68, 1443–1447. [Google Scholar] [CrossRef]
- de Matos, R.E. Heat resistance of Listeria monocytogenes in dairy products as affected by the growth medium. J. Appl. Microbiol. 1998, 84, 234–239. [Google Scholar]
- Aryani, D.C.; den Besten, H.M.W.; Hazeleger, W.C.; Zwietering, M.H. Quantifying variability on thermal resistance of Listeria monocytogenes. Int. J. Food Microbiol. 2015, 193, 130–138. [Google Scholar] [CrossRef]
- Briers, Y.; Klumpp, J.; Schuppler, M.; Loessner, M.J. Genome sequence of Listeria monocytogenes Scott A, a clinical isolate from a food-borne listeriosis outbreak. J. Bacteriol. 2011, 193, 4284–4285. [Google Scholar] [CrossRef] [Green Version]
- Chiozzi, V.; Agriopoulou, S.; Varzakas, T. Advances, Applications, and Comparison of Thermal (Pasteurization, Sterilization, and Aseptic Packaging) against Non-Thermal (Ultrasounds, UV Radiation, Ozonation, High Hydrostatic Pressure) Technologies in Food Processing. Appl. Sci. 2022, 12, 2202. [Google Scholar] [CrossRef]
- Koutchma, T. Chapter 6—Overview of other novel processes and validation approaches. In Validation of Food Preservation Processes Based on Novel Technologies; Koutchma, T., Ed.; Academic Press: Oxford, UK, 2022; pp. 215–240. [Google Scholar]
- Hu, M.; Gurtler, J.B. Selection of surrogate bacteria for use in Food Safety Challenge Studies: A Review. J. Food Prot. 2017, 80, 1506–1536. [Google Scholar] [CrossRef] [PubMed]
- Huertas, J.-P.; Aznar, A.; Esnoz, A.; Fernández, P.S.; Iguaz, A.; Periago, P.M.; Palop, A. High Heating Rates Affect Greatly the Inactivation Rate of Escherichia coli. Front. Microbiol. 2016, 7, 1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Restaino, L.; Frampton, E.W.; Spitz, H. Repair and growth of heat- and freeze-injured Escherichia coli O157:H7 in selective enrichment broths. Food Microbiol. 2001, 18, 617–629. [Google Scholar] [CrossRef]
- Miller, F.A.; Brandão, T.R.; Teixeira, P.; Silva, C.L. Recovery of heat-injured Listeria innocua. Int. J. Food Microbiol. 2006, 112, 261–265. [Google Scholar] [CrossRef]
- Wood, J.M.; Bremer, E.; Csonka, L.N.; Kraemer, R.; Poolman, B.; van der Heide, T.; Smith, L.T. Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2001, 130, 437–460. [Google Scholar] [CrossRef] [Green Version]
- Peleg, M. Microbial survival curves—The reality of flat “shoulders” and absolute thermal death times. Food Res. Int. 2000, 33, 531–538. [Google Scholar] [CrossRef]
- Toledo, R.T.; Singh, R.K.; Kong, F. Fundamentals of food Process Engineering; Springer: New York, NY, USA, 2007; Volume 297. [Google Scholar]
- Corradini, M.G.; Normand, M.D.; Eisenberg, M.; Peleg, M. Evaluation of a stochastic inactivation model for heat-activated spores of Bacillus spp. Appl. Environ. Microbiol. 2010, 76, 4402–4412. [Google Scholar] [CrossRef] [Green Version]
- Condón, S.; Palop, A.; Raso, J.; Sala, F. Influence of the incubation temperature after heat treatment upon the estimated heat resistance values of spores of Bacillus subtilis. Lett. Appl. Microbiol. 1996, 22, 149–152. [Google Scholar] [CrossRef]
- Syamaladevi, R.M.; Tang, J.; Villa-Rojas, R.; Sablani, S.; Carter, B.; Campbell, G. Influence of water activity on thermal resistance of microorganisms in low-moisture foods: A review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 353–370. [Google Scholar] [CrossRef] [Green Version]
- Beuchat, L.; Komitopoulou, E.; Betts, R.; Beckers, H.; Bourdichon, F.; Joosten, H.; Fanning, S.; Ter Kuile, B. Persistence and survival of pathogens in dry foods and dry food processing environments. In ILSI Europe Report Series; ILSI Europe: Brussels, Belgium, 2011. [Google Scholar]
- Alderton, G.; Chen, J.K.; Ito, K.A. Heat resistance of the chemical resistance forms of Clostridium botulinum 62A spores over the water activity range 0 to 0.9. Appl. Environ. Microbiol. 1980, 40, 511–515. [Google Scholar] [CrossRef] [Green Version]
- Alderton, G.; Ito, K.A.; Chen, J.K. Chemical manipulation of the heat resistance of Clostridium botulinum spores. Appl. Environ. Microbiol. 1976, 31, 492–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berk, Z. Chapter 17—Thermal processing. In Food Process Engineering and Technology; Berk, Z., Ed.; Academic Press: San Diego, CA, USA, 2009; pp. 355–373. [Google Scholar]
- Cameron, M.S.; Leonard, S.J.; Barrett, E.L. Effect of moderately acidic pH on heat restistance of Clostridium sporogenes spores in phosphate buffer and in buffered pea puree. Appl. Environ. Microbiol. 1980, 39, 943–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López, M.; González, I.; Condón, S.; Bernardo, A. Effect of pH heating medium on the thermal resistance of Bacillus stearothermophilus spores. Int. J. Food Microbiol. 1996, 28, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Hutton, M.T.; Koskinen, M.A.; Hanlin, J.H. Interacting effects of pH and NaCl on heat resistance of bacterial spores. J. Food. Sci. 1991, 56, 821–822. [Google Scholar] [CrossRef]
- Juneja, V.K.; Foglia, T.A.; Marmer, B.S. Heat Resistance and Fatty Acid Composition of Listeria monocytogenes: Effect of pH, Acidulant, and Growth Temperature. J. Food Prot. 1998, 61, 683–687. [Google Scholar] [CrossRef]
- Kim, S.-J.; Bae, Y.-M.; Lee, S.-Y. Stress response of acid-shocked Cronobacter sakazakii against subsequent acidic pH, mild heat, and organic acids. Food Sci. Biotechnol. 2012, 21, 205–210. [Google Scholar] [CrossRef]
- Waterman, S.R.; Small, P.L. Identification of sigma S-dependent genes associated with the stationary-phase acid-resistance phenotype of Shigella flexneri. Mol Microbiol. 1996, 21, 925–940. [Google Scholar] [CrossRef]
- Foster, J.W. Low pH adaptation and the acid tolerance response of Salmonella typhimurium. Crit. Rev. Microbiol. 1995, 21, 215–237. [Google Scholar] [CrossRef]
- Buchanan, R.L.; Edelson, S.G. Effect of pH-dependent, stationary phase acid resistance on the thermal tolerance of Escherichia coli O157:H7. Food Microbiol. 1999, 16, 447–458. [Google Scholar] [CrossRef]
- van Boekel, M.A. On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. Int. J. Food Microbiol. 2002, 74, 139–159. [Google Scholar] [CrossRef]
- Mafart, P.; Leguérinel, I. Modeling combined effects of temperature and pH on heat resistance of spores by a linear-Bigelow equation. J. Food. Sci. 1998, 63, 6–8. [Google Scholar] [CrossRef]
- Buchanan, R.l.; Golden, M.h.; Whiting, R.c.; Phillips, J.; Smith, J.l. Non-thermal inactivation models for Listeria monocytogenes. J. Food. Sci. 1994, 59, 179–188. [Google Scholar] [CrossRef]
- Cole, M.B.; Davies, K.W.; Munro, G.; Holyoak, C.D.; Kilsby, D.C. A vitalistic model to describe the thermal inactivation of Listeria monocytogenes. J. Ind. Microbiol. Biotechnol. 1993, 12, 232–239. [Google Scholar]
- Ross, E.; Taub, I.; Doona, C.; Feeherry, F.; Kustin, K. The mathematical properties of the quasi-chemical model for microorganism growth–death kinetics in foods. Int. J. Food Microbiol. 2005, 99, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Membré, J.; Thurette, J.; Catteau, M. Modelling the growth, survival and death of Listeria monocytogenes. J. Appl. Microbiol. 1997, 82, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Anellis, A.; Grecz, N.; Berkowitz, D. Survival of Clostridium botulinum spores. Appl. Microbiol. 1965, 13, 397–401. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Balasubramaniam, V. Effects of inoculum level and pressure pulse on the inactivation of Clostridium sporogenes spores by pressure-assisted thermal processing. J. Microbiol. Biotechnol. 2007, 17, 616–623. [Google Scholar]
- Davies, F. Heat resistance of Bacillus species. Int. J. Dairy Technol. 1975, 28, 69–78. [Google Scholar] [CrossRef]
- Zhang, Y.; Mathys, A. Superdormant spores as a hurdle for gentle germination-inactivation based spore control strategies. Front. Microbiol. 2019, 9, 3163. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Zhang, P.; Li, Y.-q.; Setlow, P. Superdormant spores of Bacillus species have elevated wet-heat resistance and temperature requirements for heat activation. J. Bacteriol. 2009, 191, 5584–5591. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ray, W.K.; Helm, R.F.; Melville, S.B.; Popham, D.L. Levels of germination proteins in Bacillus subtilis dormant, superdormant, and germinating spores. PLoS ONE 2014, 9, e95781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, K.; Li, H.; Zhang, Z.; Wu, S.; Zhang, Y.; Fox, E.M.; Man, C.; Jiang, Y. Typing and evaluating heat resistance of Bacillus cereus sensu stricto isolated from the processing environment of powdered infant formula. J. Dairy Sci. 2019, 102, 7781–7793. [Google Scholar] [CrossRef] [PubMed]
- Gajdosova, J.; Benedikovicova, K.; Kamodyova, N.; Tothova, L.; Kaclikova, E.; Stuchlik, S.; Turna, J.; Drahovska, H. Analysis of the DNA region mediating increased thermotolerance at 58 °C in Cronobacter sp. and other enterobacterial strains. Antonie Van Leeuwenhoek 2011, 100, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The human microbiome project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercer, R.G.; Walker, B.D.; Yang, X.; McMullen, L.M.; Gänzle, M.G. The locus of heat resistance (LHR) mediates heat resistance in Salmonella enterica, Escherichia coli and Enterobacter cloacae. Food Microbiol. 2017, 64, 96–103. [Google Scholar] [CrossRef]
- Rosario, D.K.A.; Rodrigues, B.L.; Bernardes, P.C.; Conte-Junior, C.A. Principles and applications of non-thermal technologies and alternative chemical compounds in meat and fish. Crit. Rev. Food Sci. Nutr. 2021, 61, 1163–1183. [Google Scholar] [CrossRef]
- Pöntinen, A.; Aalto-Araneda, M.; Lindström, M.; Korkeala, H. Heat resistance mediated by pLM58 plasmid-porne ClpL in Listeria monocytogenes. mSphere 2017, 2, e00364-17. [Google Scholar] [CrossRef] [Green Version]
- Omori, Y.; Miake, K.; Nakamura, H.; Kage-Nakadai, E.; Nishikawa, Y. Influence of lactic acid and post-treatment recovery time on the heat resistance of Listeria monocytogenes. Int. J. Food Microbiol. 2017, 257, 10–18. [Google Scholar] [CrossRef]
- Chastanet, A.; Derre, I.; Nair, S.; Msadek, T. clpB, a novel member of the Listeria monocytogenes CtsR regulon, is involved in virulence but not in general stress tolerance. J. Bacteriol. 2004, 186, 1165–1174. [Google Scholar] [CrossRef]
Bacterial spp. and Strain | D-Value (min) | Matrix Used | Method Used | Reference |
---|---|---|---|---|
B. cereus 4342 | 0.42–5.03 | McIlvaine buffer | Thermoresistometer | [25] |
B. cereus 7004 | 0.06–0.12 | McIlvaine buffer | Thermoresistometer | [25] |
B. cereus 9818 | 1.2–10.9 | McIlvaine buffer | Thermoresistometer | [25] |
B. cereus ADQP 407 | 1.04–5.57 | Tryptone salt broth | Capillary tubes and thermostat | [26] |
B. cereus ATCC 14579-5 | 0.9 | Phosphate buffer (0.067 M) | Capillary tubes and thermostat | [26] |
B. cereus R96 | 6.9 | Phosphate buffer (0.067 M) | Capillary tubes and thermostat | [26] |
B. cereus B4ac | 2.2 | Phosphate buffer (0.067 M) | Capillary tubes and thermostat | [26] |
B. cereus B4ac | 1.6 | De-ionized water | Capillary tubes and thermostat | [26] |
B. cereus B6ac | 1.7 | Phosphate buffer (0.067 M) | Capillary tubes and thermostat | [26] |
B. cereus B6ac | 1.4 | De-ionized water | Capillary tubes and thermostat | [26] |
B. cereus 4810/72 | 4.4 | Phosphate buffer (0.067 M) | Capillary tubes and thermostat | [26] |
B. cereus IP5832 | 1.8 | Infant milk formula (total solids: 10%) | Metal tubes in a shear field using a rheometer | [27] |
B. cereus IP5832 | 3.5 | Infant milk formula (total solids: 50%) | Metal tubes in a shear field using a rheometer | [27] |
Bacterial spp. and Strain | D-Value (min) | Matrix Used | Method Used | Reference |
---|---|---|---|---|
B. cereus IP5832 | D100 = 1.8 | Infant milk formula (total solids: 10%) | Metal tubes in a shear field using a rheometer | [27] |
B. cereus IP5832 | D100 = 3.5 | Infant milk formula (total solids: 50%) | Metal tubes in a shear field using a rheometer | [27] |
B. cereus DSM 4313 and DSM 626 (cocktail) | D95 = 2.0 min | Blended luncheon meat | Sterile polyethylene bags in a water bath | [28] |
B. cereus NZRM 984 | D70 = 8.6 | Skim milk | Vacuum-packed food-grade sterile pouches in a water bath | [29] |
B. cereus NZRM 984 | D70 = 2.3 | Beef slurry | Vacuum-packed food-grade sterile pouches in a water bath | [29] |
B. cereus CM 2275 | D100 = 1.92 | Carrot juice (pH 6.2) | Capillary tubes and water bath | [30] |
B. cereus ATCC 14579-8 | D97.5 = 3.7 | Rice broth | Steel containers via standard cooking | [31] |
Bacterial spp. and Strain | D-Value (min) | Matrix Used | Method Used | Reference |
---|---|---|---|---|
C. perfringens cocktail (DSM 11784, NCTC 10614, and NCTC 08237) | D100°C = 2.2 | Blended luncheon meat | Sterile polyethylene bags in a water bath | [32] |
C. perfringens type ANCTC8239 | D100°C = 93 | Duncan–Strong (DS) sporulation medium | Batch thermal treatment with regular sampling | [39] |
C. perfringens 8239 | D100°C = 124 | Sterile distilled water | Batch thermal treatment with regular sampling | [40] |
C. perfringens type A8798 | D104°C = 2.9 | Phosphate buffer 0.067 M (pH 7.0) | Borosilicate glass tubes and oil bath | [41] |
C. perfringens type A8798 | D104°C = 6.1 | Commercial beef gravy | Borosilicate glass tubes and oil bath | [41] |
Bacterial Species and Strain | D-Value (min) | Matrix Used | Method Used | Reference |
---|---|---|---|---|
E. coli O26 STEC | D60°C = 0.51 | Apple juice | Thermostatically controlled water bath using glass vials | [49] |
E. coli O45 STEC | D60°C = 0.66 | Apple juice | Thermostatically controlled water bath using glass vials | [49] |
E. coli O157:H7 STEC | D60°C > 5.0 | Luria–Bertani broth | Eppendorf tubes in dry bath incubator | [48] |
Cocktail of 5 E. coli strains (STEC and non-STEC) | D60°C = 0·1 to 0·5 | Luria–Bertani broth | Eppendorf tubes in dry bath incubator | [50] |
E. coli K12 | D60°C = 0.22 | Liquid egg | Aluminum-based thermal-death-time disk in a water bath | [51] |
Bacterial spp. and Strain | D-Value (min) | Matrix Used | Method Used | Reference |
---|---|---|---|---|
Enterobacter sakazakii | D60°C = 2.5 | Reconstituted dried infant formula | Stainless-steel flat-bottomed centrifuge tubes in a water bath | [63] |
C. sakazakii strains isolated from milk (n = 4) | D58°C = 0.66 | Lactose-free infant milk formula | 100 mL capacity Duran bottles in a water bath with regular sampling | [64] |
C. sakazakii strains isolated from milk (n = 4) | D58°C = 0.51 | Skim milk | 100 mL capacity Duran bottles in a water bath with regular sampling | [64] |
C. sakazakii strains isolated from milk (n = 4) | D58°C = 0.68 | Whole milk | 100 mL capacity Duran bottles in a water bath with regular sampling | [64] |
E. sakazakii NCTC 11467 | D60°C = 1.24 | Saline solution | Glass test tubes (with stirrer) in a water bath | [65] |
E. sakazakii NCTC 11467 | D60°C = 2.78 | Rehydrated infant formula | Glass test tubes (with stirrer) in the water bath | [65] |
C. sakazakii DPC 6529 | D58°C = 0.6 | LB broth | Thermoresistometer Mastia vessel | [66] |
C. sakazakii DPC 6529 | D58°C = 0.6 | Infant formula | Thermoresistometer Mastia vessel | [66] |
Bacterial spp. and Strain (Where Reported) | D-Value (min) | Matrix Used | Method Used | Reference |
---|---|---|---|---|
L. monocytogenes Scott A | D61°C = 2.04 | Meat (low-fat turkey) | Meat slices sealed in vacuum packs in a water bath | [80] |
L. monocytogenes Scott A | D62°C = 1.2 | Fatty (30.5% fat) ground beef | Glass thermal death time tubes in circulating water bath | [81] |
L. monocytogenes Scott A | D62°C = 0.6 | Lean (2.0% fat) ground beef | Glass thermal death time tubes in circulating water bath | [81] |
L. monocytogenes | D62.5°C = 2.23 | Ground duck Muscle meat | Gas/moisture barrier (plastic) bag in a water bath | [82] |
L. monocytogenes 1151 | D60°C = 0.87 | Tryptic soy broth (TSB) | Capillary tubes in a water bath | [83] |
L. monocytogenes Scott A | D60°C = 0.34 | TSB | Capillary tubes in a water bath | [83] |
L. monocytogenes Scott A | D60°C = 0.58 | Brain heart infusion (BHI) broth | 250 mL flasks in a water bath with regular sampling | [84] |
L. monocytogenes L6 | D60°C = 4.1 | Brain heart infusion (BHI) broth | 250 mL flasks in a water bath with regular sampling | [84] |
Model | Details | References |
---|---|---|
Weibull distribution |
| [110] |
Bigelow model |
| [111] |
Log-Logistic Model |
| [112] |
Vitalistic model |
| [113] |
Quasi-chemical model for microorganism growth–death |
| [114] |
Gompertz model |
| [115] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soni, A.; Bremer, P.; Brightwell, G. A Comprehensive Review of Variability in the Thermal Resistance (D-Values) of Food-Borne Pathogens—A Challenge for Thermal Validation Trials. Foods 2022, 11, 4117. https://doi.org/10.3390/foods11244117
Soni A, Bremer P, Brightwell G. A Comprehensive Review of Variability in the Thermal Resistance (D-Values) of Food-Borne Pathogens—A Challenge for Thermal Validation Trials. Foods. 2022; 11(24):4117. https://doi.org/10.3390/foods11244117
Chicago/Turabian StyleSoni, Aswathi, Phil Bremer, and Gale Brightwell. 2022. "A Comprehensive Review of Variability in the Thermal Resistance (D-Values) of Food-Borne Pathogens—A Challenge for Thermal Validation Trials" Foods 11, no. 24: 4117. https://doi.org/10.3390/foods11244117
APA StyleSoni, A., Bremer, P., & Brightwell, G. (2022). A Comprehensive Review of Variability in the Thermal Resistance (D-Values) of Food-Borne Pathogens—A Challenge for Thermal Validation Trials. Foods, 11(24), 4117. https://doi.org/10.3390/foods11244117