In Vitro Protein Digestibility of Selected Seaweeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Six Seaweeds
2.2. Analytical Procedures
2.2.1. Protein Content
2.2.2. Amino Acid Profile Analysis
2.2.3. Protein Digestibility-Corrected Amino Acid Score (PDCAAS) Method (Megazyme, Wicklow, Ireland)
2.3. Calculations
- (a)
- Primary amine concentration:
- CI = unknown concentration of the primary amines (mM),
- Y = absorbance,
- B = y-intercept and
- A = slope of the line.
- (b)
- Primary amine concentration corrected for dilution and weight
- CI = concentration of primary amines in the diluted samples,
- D = dilution factor of the samples prior to amine determination,
- 1.25 = dilution with TCA (all samples equal),
- W = sample weight (g), and
- 0.5 = nominal size (g).
- (c)
- Primary amine concentration corrected for amino acids present
- C2 = corrected primary amine concentration in the original sample solution (mM),
- Prol, Lys, Hist, and Arg = concentration of L-proline, L-lysine, L-histidine, and L-arginine, respectively, in the original sample, and
- 2, 0.5, 0.2 and 0.2 = constants for various amino acids.
- (d)
- In vitro digestibility
- X = corrected primary amine concentration for each sample,
- M = slope of the line,
- B = y-intercept, and
- 100 = conversion from percentage to grams.
- (e)
- Determination of amino acid ratio and limiting amino acid
- (f)
- Determination of in vitro PDCAAS score, and
- (g)
- The in vitro PDCAAS score was calculated by multiplying the in vitro digestibility from Equation (4) by the limiting amino acid ratio (lowest value) from Equation (6).
- PDCAAS = Digestibility ∗ Ratio
- where
- PDCAAS = in vitro PDCAAS score, Digestibility = in vitro digestibility from Equation (4), and
- Ratio = ratio of limiting essential amino acid from Equation (6).
2.4. Statistical Analysis
3. Results and Discussions
3.1. Seaweeds and k-PDCAAS Assessment
3.2. Limiting Amino Acids, Essential Amino Acids, and Other Important Amino Acids Found These Six Seaweeds
4. Future Direction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bikker, P.; Stokvis, L.; van Krimpen, M.M.; van Wikselaar, P.G.; Cone, J.W. Evaluation of seaweeds from marine waters in Northwestern Europe for application in animal nutrition. Anim. Feed Sci. Technol. 2020, 263, 114460. [Google Scholar] [CrossRef]
- Amoriello, T.; Mellara, F.; Amoriello, M.; Ceccarelli, D.; Ciccoritti, R. Powdered seaweeds as a valuable ingredient for functional breads. Eur. Food Res. Technol. 2021, 247, 2431–2443. [Google Scholar] [CrossRef]
- Mæhre, H.K.; Malde, M.K.; Eilertsen, K.E.; Elvevoll, E.O. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J. Sci. Food Agric. 2014, 94, 3281–3290. [Google Scholar] [CrossRef] [PubMed]
- Afonso, N.C.; Catarino, M.D.; Silva, A.M.S.; Cardoso, S.M. Brown Macroalgae as Valuable Food Ingredients. Antioxidants 2019, 8, 365. [Google Scholar] [CrossRef] [Green Version]
- Hayes, M. Measuring Protein Content in Food: An Overview of Methods. Foods 2020, 9, 1340. [Google Scholar] [CrossRef] [PubMed]
- Rahardjo, S.; Soepardjo, A.H.; Djokosetiyanto, D.; Alamsyah, A.T. Seaweed Utilization for Phytoremediation of Litopenaeus vannamei Shrimp Farming Waste in Recirculation Systems (Environmentally Friendly Design of Sustainable Shrimp Culture). In Sustainable Future for Human Security; McLellan, B., Ed.; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Fleurence, J. Chapter 5—Seaweeds as Food. In Seaweed in Health and Disease Prevention; Fleurence, J., Levine, I., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 149–167. [Google Scholar] [CrossRef]
- Fernandez-Segovia, I.; Lerma-Garcia, M.J.; Fuentes, A.; Barat, J.M. Characterization of Spanish powdered seaweeds: Composition, antioxidant capacity and technological properties. Food Res. Int. 2018, 111, 212–219. [Google Scholar] [CrossRef]
- Onwezen, M.C.; Kunz, M.C.; Dagevos, H.; Verain, M.C.D. Consumers More Inclined to Eat ‘Alternative’ Proteins Compared to 2015; Scientific Report 2020; Wageningen University & Research: Wageningen, The Netherlands, 2020; p. 10. [Google Scholar]
- Jayasekara, C.; Mendis, E.; Kim, S.K. Seafood in the Human Diet for Better Nutrition and Health. In Encyclopedia of Marine Biotechnology; Kim, S.-K., Ed.; Wiley: Toronto, ON, Canada, 2020. [Google Scholar] [CrossRef]
- Černá, M. Chapter 24—Seaweed Proteins and Amino Acids as Nutraceuticals. In Advances in Food and Nutrition Research; Kim, S.-K., Ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 64, pp. 297–312. [Google Scholar] [CrossRef]
- Vieira, E.F.; Soares, C.; Machado, S.; Correia, M.; Ramalhosa, M.J.; Oliva-Teles, M.T.; Carvalho, A.; Domingues, V.; Antunes, F.; Oliveira, T.A.C.; et al. Seaweeds from the Portuguese coast as a source of proteinaceous material: Total and free amino acid composition profile. Food Chem. 2018, 269, 264–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadam, S.U.; Álvarez, C.; Tiwari, B.K.; O’Donnell, C.P. Extraction and characterization of protein from Irish brown seaweed Ascophyllum nodosum. Food Res. Int. 2017, 99, 1021–1027. [Google Scholar] [CrossRef]
- Bleakley, S.; Hayes, M. Algal proteins: Extraction, application, and challenges concerning production. Foods 2017, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Pangestuti, R.; Kim, S.K. Chapter 6—Seaweed proteins, peptides, and amino acids. In Seaweed Sustainability; Brijesh, K., Tiwari, D., Troy, J., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 125–140. [Google Scholar] [CrossRef]
- Silva, D.M.; Valente, L.M.P.; Sousa-Pinto, I.; Pereira, R.; Pires, M.A.; Seixas, F.; Rema, P. Evaluation of IMTA-produced seaweeds (Gracilaria, Porphyra, and Ulva) as dietary ingredients in Nile tilapia, Oreochromis niloticus L., juveniles. Effects on growth performance and gut histology. J. Appl. Phycol. 2015, 27, 1671–1680. [Google Scholar] [CrossRef]
- Fleurence, J.; Morançais, M.; Dumay, J. Chapter 9—Seaweed proteins. In Proteins in Food, Woodhead Publishing Series in Food Science, Technology and Nutrition; Yada, R.Y., Ed.; Woodhead Publishing: Cambridge, UK, 2018; pp. 245–262. [Google Scholar]
- Food and Agriculture Organization; World Health Organization. Protein Quality Evaluation—Report of Joint. FAO/WHO Expert Consultation; FAO: Rome, Italy, 1991. [Google Scholar]
- Rutherfurd, S.M.; Fanning, A.C.; Miller, B.J.; Moughan, P.J. Protein digestibility, corrected amino acid scores and digestible indispensable amino acid scores differentially describe protein quality in growing male rats. J. Nutr. 2015, 145, 372–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loveday, S.M. Food Proteins: Technological, Nutritional, and Sustainability Attributes of Traditional and Emerging Proteins. Annu. Rev. Food Sci. Technol. 2019, 10, 311–339. [Google Scholar] [CrossRef]
- Hooper, S.D.; Glahn, R.P.; Cichy, K.A. Single Varietal Dry Bean (Phaseolus vulgaris L.) Pastas: Nutritional Profile and Consumer Acceptability. Plant Foods Hum. Nutr. 2019, 74, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Biancarosa, I.; Espe, M.; Bruckner, C.G.; Heesch, S.; Liland, N.; Waagbø, R.; Torstensen, B.; Lock, E.J. Amino acid composition, protein content, and nitrogen-to-protein conversion factors of 21 seaweed species from Norwegian waters. J. Appl. Phycol. 2017, 29, 1001–1009. [Google Scholar] [CrossRef]
- Stévant, P.; Marfaing, H.; Rustad, T.; Sandbakken, I.; Fleurence, J.; Chapman, A. Nutritional value of the kelps Alaria esculenta and Saccharina latissima and effects of short-term storage on biomass quality. J. Appl. Phycol. 2017, 29, 2417–2426. [Google Scholar] [CrossRef]
- Bjarnadóttir, M.; Aðalbjörnsson, B.V.; Nilsson, A.; Slizyte, R.; Roleda, M.Y.; Hreggviðsson, G.; Friðjónsson, H.; Jónsdóttir, R. Palmaria palmata as an alternative protein source: Enzymatic protein extraction, amino acid composition, and nitrogen-to-protein conversion factor. J. Appl. Phycol. 2018, 30, 2061–2070. [Google Scholar] [CrossRef]
- Boye, J.; Wijesinha-Bettoni, R.; Burlingame, B. Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. Br. J. Nutr. 2012, 108, S183–S211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leser, S. FAO dietary protein report. Nutr. Bull. 2013, 38, 421–428. [Google Scholar] [CrossRef]
- Pedó, I.; Sgarbieri, V.; Gutkoski, L. Protein evaluation of four oat (Avena sativa L.) cultivars adapted for cultivation in the south of Brazil. Plant Foods Hum. Nutr. 1999, 53, 297–304. [Google Scholar] [CrossRef]
- Woolf, P.J.; Fu, L.L.; Basu, A. vProtein: Identifying Optimal Amino Acid Complements from Plant-Based Foods. PLoS ONE 2011, 6, e18836. [Google Scholar] [CrossRef] [Green Version]
- Cian, R.E.; Caballero, M.S.; Sabbag, N.; González, R.J.; Drago, S.R. Bio-accessibility of bioactive compounds (ACE inhibitors and antioxidants) from extruded maize products added with a red seaweed Porphyra columbina. LWT-Food Sci. Technol. 2014, 55, 51–58. [Google Scholar] [CrossRef]
- Wan, A.C.A.; Tai, B.C.U.; Du, C. Food security and nutrition- a systematic approach. Trends Food Sci. Technol. 2021, 109, 738–745. [Google Scholar] [CrossRef]
- Schaafsma, G. The Protein Digestibility–Corrected Amino Acid Score. J. Nutr. 2000, 130, 1865S–1867S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suárez López, M.M.; Kizlansky, A.; López, L.B. Assessment of protein quality in foods by calculating the amino acids score corrected by digestibility. Nutr. Hosp. 2006, 21, 47–51. [Google Scholar]
- Bai, T.; Nosworthy, M.G.; House, J.D.; Nickerson, M.T. Effect of tempering moisture and infrared heating temperature on the nutritional properties of desi chickpea and hull-less barley flours, and their blends. Food Res. Int. 2018, 108, 430–439. [Google Scholar] [CrossRef]
- Kazir, M.; Abuhassira, Y.; Robin, A.; Nahor, O.; Luo, J.; Israel, A.; Golberg, A.; Livney, Y.D. Extraction of proteins from two marine macroalgae, Ulva sp. and Gracilaria sp., for food application, and evaluating digestibility, amino acid composition and antioxidant properties of the protein concentrates. Food Hydrocoll. 2019, 87, 194–203. [Google Scholar] [CrossRef]
- Gilani, G.S.; Cockell, K.A.; Sepehr, E. Effects of antinutritional factors on protein digestibility and amino acid availability in foods. J. AOAC Int. 2005, 88, 967–987. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, M.; Valentão, P.; Ferreres, F.; Gil-Izquierdo, A.; Andrade, P.B. In Vitro multifunctionality of phlorotannin extracts from edible Fucus species on targets underpinning neurodegeneration. Food Chem. 2020, 333, 127456. [Google Scholar] [CrossRef]
- Cian, R.E.; Fajardo, M.A.; Alaiz, M.; Vioque, J.; González, R.J.; Drago, S.R. Chemical composition, nutritional and antioxidant properties of the red edible seaweed Porphyra columbina. Int. J. Food Sci. Nutr. 2014, 65, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Mariotti, F.; Gardner, C.D. Dietary Protein and Amino Acids in Vegetarian Diets-A Review. Nutrients 2019, 11, 2661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terriente-Palacios, C.; Castellari, M. Levels of taurine, hypotaurine and homotaurine, and amino acids profiles in selected commercial seaweeds, microalgae, and algae-enriched food products. Food Chem. 2022, 368, 130770. [Google Scholar] [CrossRef] [PubMed]
- Gossai, D.; Lau-cam, C.A. The effects of taurine, taurine homologs and hypotaurine on cell and membrane antioxidative system alterations caused by type 2 diabetes in Rat erythrocytes. Taurine 7. Adv. Exp. Med. Biol. 2009, 643, 359–360. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, S.; Kim, H.W. Effects and mechanisms of taurine as a therapeutic agent. Biomol. Ther. 2018, 26, 225–241. [Google Scholar] [CrossRef] [PubMed]
- Astorga-España, S.; Rodríguez-Galdón, B.; Rodríguez-Rodríguez, E.M.; Díaz-Romero, C. Amino acid content in seaweeds from the Magellan Straits (Chile). J. Food Compos. Anal. 2016, 53, 77–84. [Google Scholar] [CrossRef]
Sample Name | In Vitro Digestibility | Amino Acid Score | K-PDCAAS | Crude Protein (%) |
---|---|---|---|---|
Brown seaweeds | ||||
Alaria esculenta | 0.78 ± 0.002 | 0.751 ± 0.022 | 0.59 ± 0.021 | 9.96 ± 0.51 |
Fucus serratus | 0.77 ± 0.001 | 0.825 ± 0.108 | 0.63 ± 0.084 | 6.122 ± 1.18 |
Fucus vesiculosus | 0.82 ± 0.001 | 0.101 ± 0.002 | 0.08 ± 0.013 | 9.02 ± 0.26 |
Green seaweed | ||||
Ulva lactuca | 0.79 ± 0.003 | 0.184 ± 0.012 | 0.15 ± 0.014 | 5.37 ± 0.74 |
Red seaweeds | ||||
Palmaria palmata | 0.78 ± 0.002 | 0.883 ± 0.019 | 0.69 ± 0.014 | 7.78 ± 0.42 |
Asparagopsis taxiformis | 0.79 ± 0.001 | 0.393 ± 0.01 | 0.31 ± 0.01 | 7.523 ± 0.02 |
Amino Acids | Alaria Esculenta | Fucus Serratus | Fucus Vesiculosus | Ulva Lactuca | Palmaria Palmata | Asparagopsis Taxiformis | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total AA (g/100 g CP) | Ratio | Total AA (g/100 g CP) | Ratio | Total AA (g/100 g CP) | Ratio | Total AA (g/100 g CP) | Ratio | Total AA (g/100 g CP) | Ratio | Total AA (g/100 g CP) | Ratio | |
L-Cys + L-Met | 0.35 ± 0.001 | 1.18 ± 0.001 | 0.15 ± 0.0001 | 0.92 ± 0.0001 | 0.89 ± 0.009 | 3.30 ± 0.009 | 0.02 ± 0.001 | 0.11 ± 0.001 | 0.49 ± 0.002 | 1.55 ± 0.002 | 0.07 ± 0.0002 | 0.25 ± 0.0002 |
L-Trp | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 | 0.0 ± 0.0 |
L-Hydroxy Pro | 0.0 ± 0.0 | - | 0.0 ± 0.0 | - | 0.0 ± 0.0 | - | 0.08 ± 0.001 | - | 0.0 ± 0.0 | - | 0.0 ± 0.0 | - |
L-Asp | 0.99 ± 0.002 | - | 0.98 ± 0.03 | - | 0.47 ± 0.02 | - | 0.94 ± 0.05 | - | 1.03 ± 0.006 | - | 1.50 ± 0.10 | - |
L-Thr | 0.46 ± 0.009 | 1.15 ± 0.009 | 0.50 ± 0.005 | 2.19 ± 0.03 | 0.15 ± 0.013 | 0.41 ± 0.01 | 0.46 ± 0.002 | 1.63 ± 0.001 | 0.47 ± 0.03 | 1.10 ± 0.03 | 0.76 ± 0.034 | 1.88 ± 0.034 |
L-Ser | 0.51 ± 0.02 | - | 0.63 ± 0.012 | - | 0.07 ± 0.0007 | - | 0.66 ± 0.001 | - | 0.51 ± 0.001 | - | 1.02 ± 0.048 | - |
L-Glu | 1.41 ± 0.001 | - | 0.57 ± 0.01 | - | 1.71 ± 0.01 | - | 0.78 ± 0.003 | - | 1.52 ± 0.013 | - | 1.27 ± 0.05 | - |
L-Pro | 0.48 ± 0.006 | - | 0.36 ± 0.017 | - | 0.34 ± 0.001 | - | 0.44 ± 0.01 | - | 0.44 ± 0.004 | - | 0.62 ± 0.008 | - |
L-Gly | 0.53 ± 0.001 | - | 1.40 ± 0.08 | - | 0.17 ± 0.005 | - | 1.39 ± 0.05 | - | 0.58 ± 0.031 | - | 2.09 ± 0.02 | - |
L-Ala | 0.63 ± 0.009 | - | 1.42 ± 0.02 | - | 0.46 ± 0.03 | - | 1.50 ± 0.04 | - | 0.63 ± 0.003 | - | 2.01 ± 0.06 | - |
L-Val | 0.54 ± 0.002 | 1.31 ± 0.002 | 0.56 ± 0.018 | 2.43 ± 0.017 | 0.12 ± 0.001 | 0.32 ± 0.001 | 0.60 ± 0.004 | 2.02 ± 0.003 | 0.62 ± 0.008 | 1.40 ± 0.008 | 0.95 ± 0.024 | 2.29 ± 0.02 |
L-Ile | 0.43 ± 0.03 | 1.30 ± 0.03 | 0.34 ± 0.01 | 1.85 ± 0.01 | 0.12 ± 0.001 | 0.39 ± 0.001 | 0.33 ± 0.006 | 1.39 ± 0.006 | 0.36 ± 0.001 | 1.04 ± 0.001 | 0.62 ± 0.01 | 1.87 ± 0.01 |
L-Leu | 0.71 ± 0.004 | 0.91 ± 0.004 | 0.57 ± 0.01 | 1.30 ± 0.01 | 0.06 ± 0.001 | 0.08 ± 0.001 | 0.58 ± 0.008 | 1.03 ± 0.008 | 0.59 ± 0.002 | 0.71 ± 0.002 | 0.91 ± 0.02 | 1.16 ± 0.02 |
L-Tyr + L-Phe | 0.47 ± 0.001 | 0.63 ± 0.001 | 0.33 ± 0.01 | 0.78 ± 0.01 | 0.85 ± 0.01 | 1.24 ± 0.01 | 0.31 ± 0.009 | 0.58 ± 0.009 | 0.43 ± 0.006 | 0.55 ± 0.006 | 0.46 ± 0.006 | 0.62 ± 0.006 |
L-Lys | 0.53 ± 0.002 | 0.77 ± 0.002 | 0.40 ± 0.02 | 1.05 ± 0.02 | 0.18 ± 0.08 | 0.27 ± 0.08 | 0.29 ± 0.009 | 0.58 ± 0.009 | 0.56 ± 0.01 | 0.77 ± 0.01 | 0.46 ± 0.01 | 0.67 ± 0.01 |
L-His | 0.50 ± 0.01 | 2.25 ± 0.01 | 0.10 ± 0.0002 | 0.76 ± 0.0002 | 0.57 ± 0.002 | 2.77 ± 0.002 | 0.08 ± 0.002 | 0.47 ± 0.002 | 0.47 ± 0.015 | 1.95 ± 0.015 | 0.11 ± 0.01 | 0.48 ± 0.01 |
L-Arg | 0.70 ± 0.015 | - | 0.25 ± 0.009 | - | 0.12 ± 0.031 | - | 0.27 ± 0.002 | - | 0.60 ± 0.001 | - | 0.38 ± 0.014 | - |
Food Materials | PDCAAS | Ref |
---|---|---|
Vegetables | 0.73 | [32] |
Fresh and dry fruits | 0.64 | [32] |
Soy | 0.91 | [31] |
Wheat | 0.42 | [31] |
Rice | 0.81 | [31] |
Chickpeas | 0.62–0.65 | [33] |
Barley | 0.44–0.53 | [33] |
Porphyra columbina (red seaweed) | 0.327 | [29] |
Palmaria palmata (red seaweed) | 0.69 | In this study |
Asparagopsis taxiformis (red seaweed) | 0.31 | In this study |
Alaria esculenta (brown seaweed) | 0.59 | In this study |
Fucus serratus (brown seaweed) | 0.63 | In this study |
Fucus vesiculosus (brown seaweed) | 0.08 | In this study |
Ulva lactuca (green seaweed) | 0.15 | In this study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Bhowmick, G.; Hayes, M. In Vitro Protein Digestibility of Selected Seaweeds. Foods 2022, 11, 289. https://doi.org/10.3390/foods11030289
De Bhowmick G, Hayes M. In Vitro Protein Digestibility of Selected Seaweeds. Foods. 2022; 11(3):289. https://doi.org/10.3390/foods11030289
Chicago/Turabian StyleDe Bhowmick, Goldy, and Maria Hayes. 2022. "In Vitro Protein Digestibility of Selected Seaweeds" Foods 11, no. 3: 289. https://doi.org/10.3390/foods11030289
APA StyleDe Bhowmick, G., & Hayes, M. (2022). In Vitro Protein Digestibility of Selected Seaweeds. Foods, 11(3), 289. https://doi.org/10.3390/foods11030289