Risk Assessment and Determination of Heavy Metals in Home Meal Replacement Products by Using Inductively Coupled Plasma Mass Spectrometry and Direct Mercury Analyzer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Sample Preparation for Evaluation of Heavy Metals
2.3. Sample Digestion and Preprocessing for Pb, Cd, As and Sn Analysis
2.4. Instrument Optimization for ICP-MS Analysis
2.5. Sample Preprocessing for Me-Hg Analysis
2.6. Instrument Optimization for DMA Analysis
2.7. Method Validation for Quality Assurance of Analysis
2.8. Exposure Assessment
2.9. Risk Characterization
2.10. Statistical Analysis
3. Results
3.1. Method Validation for Heavy Metals Analysis
3.2. Estimation of Measurement Uncertainty
3.3. External Quality Assurance
3.4. Comparisons of Heavy Metal Content in HMR Products
3.5. Exposure Assessment
3.6. Risk Characterization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mills, S.; Brown, H.; Wrieden, W.; White, M.; Adams, J. Frequency of eating home cooked meals and potential benefits for diet and health: Cross-sectional analysis of a population based cohort study. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 109. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Levy, R.B.; Claro, R.M.; Castro, I.R.R.D.; Cannon, G. A new classification of foods based on the extent and purpose of their processing. Cadernos de Saúde Pública 2010, 26, 2039–2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, E.; Kim, B.H. A comparison of the fat, sugar, and sodium contents in ready-to-heat type home meal replacements and restaurant foods in Korea. J. Food Compos. Anal. 2020, 92, 103524. [Google Scholar] [CrossRef]
- Department of Health & Human Services. Your Guide to Food Safety; Victoria State Government: Melbourne, Australia, 2016; pp. 6–8. [Google Scholar]
- U.S. Environmental Protection Agency Office of Research and Development. Emerging Issues in Food Waste Management Persistent Chemical Contaminants; U.S. Environmental Protection Agency Office of Research and Development: Washington, DC, USA, 2021; pp. 35–47.
- Järup, L. Hazard of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef]
- Rubio, C.; González-Iglesias, T.; Revert, C.; Reguera, J.I.; Gutiérrez, A.J.; Hardisson, A. Lead dietary intake in a Spanish population (Canary Islands). J. Agric. Food. Chem. 2005, 53, 6543–6549. [Google Scholar] [CrossRef]
- Ali, A.S.; US, S.A.; Ahmad, R. Effect of different heavy metal pollution on fish. Res. J. Chem. Environ. Sci. 2014, 2, 74–79. [Google Scholar]
- Vahter, M. Species differences in the metabolism of arsenic compounds. Appl. Organomet. Chem. 1994, 8, 175–182. [Google Scholar] [CrossRef]
- Lutz, M.A.; Brigham, M.E.; Marvin-DiPasquale, M. Procedures for Collecting and Processing Streambed Sediment and Pore Water for Analysis of Mercury as Part of the National Water-Quality Assessment Program; US Geological Survey: Reston, VA, USA, 2008; pp. 1–82.
- AGO Labs. Available online: https://www.agqlabs.us.com/heavy-metals-in-foods/ (accessed on 15 September 2021).
- Mansour, S.A. Monitoring and health risk assessment of heavy metal contamination in food. In Practical Food Safety: Contemporary Issues and Future Directions; Bhat, R., Ed.; Wiley: Hoboken, NJ, USA, 2014; Volume 13, pp. 235–255. [Google Scholar]
- Paul, B.T.; Clement, G.Y.; Anita, K.P.; Dwayne, J.S. Heavy metal toxicity and the environment. Mol. Clin. Environ. Toxicol. 2012, 101, 133–164. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO); World Health Organization (WHO). Food Additives and Contaminants, Joint Codex Alimentarius Commission, Food Standards Programme, ALINORM 01/12A. 2001. Available online: https://www.fao.org/common-pages/search/en/?q=ALINORM%2001%2F12A (accessed on 17 September 2021).
- Magnusson, B.; Örnemark, U. Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics, 2nd ed.; Eurachem: Teddington, UK, 2014; 70p. [Google Scholar]
- Mohamed, R.; Zainudin, B.H.; Yaakob, A.S. Method validation and determination of heavy metals in cocoa beans and cocoa products by microwave assisted digestion technique with inductively coupled plasma mass spectrometry. Food Chem. 2020, 303, 125392. [Google Scholar] [CrossRef]
- Oz, F.; Kotan, G. Effects of different cooking methods and fat levels on the formation of heterocyclic aromatic amines in various fishes. Food Control 2016, 67, 216–224. [Google Scholar] [CrossRef]
- Neto, A.P.N.; Costa, L.C.S.M.; Kikuchi, A.N.S.; Furtado, D.M.S.; Araujo, M.Q.; Melo, M.C.C. Method validation for the determination of total mercury in fish muscle by cold vapour atomic absorption spectrometry. Food Addit. Contam. Part A 2014, 29, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Dico, G.M.L.; Cammillen, G.; Macaluso, A.; Vella, A.; Giangrosso, G.; Vazzana, M.; Ferrantelli, V. Simultaneous determination of As, Cu, Cr, Se, Sn, Cd, Sb and Pb levels in infant formulas by ICP-MS after microwave-assisted digestion: Method validation. J. Environ. Anal. Toxicol. 2015, 5, 1–5. [Google Scholar] [CrossRef]
- Habte, G.; Hwang, I.M.; Kim, J.S.; Hong, J.H.; Hong, Y.S.; Choi, J.Y.; Nho, E.Y.; Jamila, N.; Khan, N.; Kim, K.S. Elemental profiling and geographical differentiation of Ethiopian coffee samples through inductively coupled plasma-optical emission spectroscopy (ICP-OES), ICP-mass spectrometry (ICP-MS) and direct mercury analyzer (DMA). Food Chem. 2016, 212, 512–520. [Google Scholar] [CrossRef]
- Mensah, R.A.; Ofori, H.; Tortoe, C.; Johnson, P.N.T.; Aryee, D.; Frimpong, S.K. Effect of home processing methods on the levels of heavy metal contaminants in four food crops grown in and around two mining towns in Ghana. Toxicol. Rep. 2021, 8, 1830–1838. [Google Scholar] [CrossRef]
- Heidari, A.; Younesi, H.; Mehraban, Z.; Heikkinen, H. Selective adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueoussolution using chitosan–MAA nanoparticles. Int. J. Biol. Macromol. 2013, 61, 251–263. [Google Scholar] [CrossRef]
- Kumar, A.; Yegla, B.; Foster, T.C. Redox signaling in neurotransmission and cognition during aging. Antioxid. Redox Signal. 2018, 28, 1724–1745. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Nagpal, A.K.; Kaur, I. Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar Wetland, Punjab, India and its environs. Food Chem. 2018, 255, 15–22. [Google Scholar] [CrossRef]
- Gomez-Caminero, A.; Howe, P.D.; Hughes, M.; Kenyon, E.; Lewis, D.R.; Moore, M.; Aitio, A.; Becking, G.C.; Ng, J. Arsenic and arsenic compounds. In Environmental Health Criteria 224; World Health Organization (WHO): Geneva, Switzerland, 2001; pp. 1–114. [Google Scholar]
- Carbonell, G.; Bravo, J.C.; Fernández, C.; Tarazona, J.V. A new method for total mercury and methyl mercury analysis in muscle of seawater fish. Bull. Environ. Contam. Toxicol. 2009, 83, 210–213. [Google Scholar] [CrossRef]
- Kruszewski, B.; Obiedzi´nski, M.W.; Kowalska, J. Nickel, cadmium and lead levels in raw cocoa and processed chocolate mass materials from three different manufacturers. J. Food Compos. Anal. 2018, 66, 127–135. [Google Scholar] [CrossRef]
- Shariatifar, N.; Mozaffari Nejad, A.S.; Ebadi Fathabad, A. Assessment of heavy metal content in refined and unrefined salts obtained from Urmia, Iran. Toxin Rev. 2017, 36, 89–93. [Google Scholar] [CrossRef]
- Kiani, A.; Arabameri, M.; Moazzen, M.; Shariatifar, N.; Aeenehvand, S.; Khaniki, G.J.; Abdel-Wahhab, M.; Shahsavari, S. Probabilistic health risk assessment of trace elements in baby food and milk powder using ICP-OES method. Biol. Trace Elem. Res. 2021, 1, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Karami, H.; Shariatifar, N.; Nazmara, S.; Moazzen, M.; Mahmoodi, B.; Mousavi Khaneghah, A. The concentration and probabilistic health risk of potentially toxic elements (PTEs) in edible mushrooms (wild and cultivated) samples collected from different cities of Iran. Biol. Trace Elem. Res. 2021, 199, 389–400. [Google Scholar] [CrossRef] [PubMed]
Matrix Type | Heavy Metal Element | LOD a (µg/kg) | LOQ b (µg/kg) | Linearity Equation c | R2 |
---|---|---|---|---|---|
Non-fatty solid phase | Pb | 0.09 | 0.29 | y = 107,991x + 44,824 | 0.9997 |
Cd | 0.03 | 0.08 | y = 44,515x − 1453.8 | 0.9984 | |
As | 0.02 | 0.05 | y = 2415.7x + 107.13 | 0.9998 | |
Sn | 16.00 | 49.00 | y = 10,000,000x − 206,653 | 0.9989 | |
Hg | 2.79 | 8.46 | y = 0.0172x + 0.0425 | 0.9977 | |
Me-Hg | 1.34 | 4.06 | y = 0.0066x + 0.01 | 0.9989 | |
Fatty solid phase | Pb | 0.09 | 0.29 | y = 108,635x + 43,525 | 0.9998 |
Cd | 0.03 | 0.08 | y = 44,439x − 1505.8 | 0.9997 | |
As | 0.02 | 0.05 | y = 11,253x − 344.17 | 0.9919 | |
Sn | 4.00 | 11.00 | y = 10,000,000x − 107,914 | 0.9978 | |
Hg | 0.63 | 1.92 | y = 0.0171x + 0.0441 | 0.9979 | |
Me-Hg | 0.67 | 2.04 | y = 0.007x + 0.0219 | 0.9989 | |
Non-fatty liquid phase | Pb | 0.09 | 0.29 | y = 106,669x + 46,240 | 0.9995 |
Cd | 0.03 | 0.08 | y = 43,756x − 1309.4 | 0.9902 | |
As | 0.02 | 0.05 | y = 10,975x − 292.49 | 0.9968 | |
Sn | 11.00 | 34.00 | y = 10,000,000x + 100,280 | 0.9985 | |
Hg | 1.56 | 4.72 | y = 0.0173x + 0.0395 | 0.9994 | |
Me-Hg | 0.23 | 0.69 | y = 0.0072x + 0.0221 | 0.9961 | |
Fatty liquid phase | Pb | 0.09 | 0.29 | y = 108,669x + 44,707 | 0.9997 |
Cd | 0.03 | 0.08 | y = 45,349x − 1546.1 | 0.9943 | |
As | 0.02 | 0.05 | y = 11,325x − 331.02 | 0.9952 | |
Sn | 1.00 | 30.00 | y = 10,000,000x − 313,065 | 0.9966 | |
Hg | 2.81 | 8.51 | y = 0.0173x + 0.0162 | 0.9939 | |
Me-Hg | 1.75 | 5.30 | y = 0.0072x + 0.0252 | 0.9988 |
Matrix Type | Heavy Metal Element | Accuracy (%) | |||||
---|---|---|---|---|---|---|---|
Intraday (n = 3) | Interday (n = 3) | ||||||
Non-fatty solid phase | Pb (mg/kg) | 103.07 | 80.49 | 101.50 | 93.18 | 101.80 | 103.22 |
Cd (mg/kg) | 89.66 | 101.04 | 100.15 | 96.81 | 117.80 | 100.28 | |
As (mg/kg) | 107.11 | 109.47 | 97.26 | 106.90 | 107.36 | 99.69 | |
Sn (mg/kg) | 82.00 | 81.00 | 93.80 | 85.33 | 80.33 | 90.20 | |
Hg (µg/kg) | 99.02 | 101.57 | 99.27 | 98.68 | 98.09 | 95.34 | |
Me-Hg (µg/kg) | 102.51 | 95.16 | 102.05 | 103.34 | 105.14 | 111.43 | |
Fatty solid phase | Pb (mg/kg) | 103.07 | 80.49 | 101.50 | 93.18 | 101.80 | 103.22 |
Cd (mg/kg) | 109.66 | 81.04 | 100.15 | 96.81 | 107.80 | 100.28 | |
As (mg/kg) | 107.11 | 109.47 | 97.26 | 106.90 | 107.36 | 99.69 | |
Sn (mg/kg) | 86.00 | 87.00 | 90.40 | 92.00 | 88.67 | 90.87 | |
Hg (µg/kg) | 92.50 | 93.88 | 96.94 | 96.21 | 94.49 | 97.48 | |
Me-Hg (µg/kg) | 115.62 | 114.32 | 107.93 | 108.83 | 113.15 | 106.66 | |
Non-fatty liquid phase | Pb (mg/kg) | 103.07 | 80.49 | 101.50 | 93.18 | 101.80 | 103.22 |
Cd (mg/kg) | 109.66 | 101.04 | 100.15 | 96.81 | 107.80 | 100.28 | |
As (mg/kg) | 107.11 | 109.47 | 97.26 | 106.90 | 107.36 | 99.69 | |
Sn (mg/kg) | 96.00 | 109.00 | 107.00 | 86.67 | 95.00 | 98.93 | |
Hg (µg/kg) | 97.77 | 93.91 | 93.96 | 98.49 | 94.78 | 95.48 | |
Me-Hg (µg/kg) | 105.47 | 114.27 | 114.17 | 103.79 | 112.58 | 111.16 | |
Fatty liquid phase | Pb (mg/kg) | 103.07 | 80.49 | 101.50 | 93.18 | 101.80 | 103.22 |
Cd (mg/kg) | 109.66 | 101.04 | 100.15 | 96.81 | 107.80 | 100.28 | |
As (mg/kg) | 107.11 | 109.47 | 97.26 | 106.90 | 107.36 | 99.69 | |
Sn (mg/kg) | 82.00 | 81.00 | 88.00 | 83.33 | 85.67 | 100.60 | |
Hg (µg/kg) | 92.19 | 90.89 | 92.96 | 89.88 | 93.49 | 94.64 | |
Me-Hg (µg/kg) | 116.13 | 119.49 | 116.02 | 119.61 | 115.04 | 112.87 |
Matrix Type | Heavy Metal Element | Precision (%) | |||||
---|---|---|---|---|---|---|---|
Intraday (n = 3) | Interday (n = 3) | ||||||
Non-fatty solid phase | Pb (mg/kg) | 4.29 | 3.68 | 2.48 | 5.06 | 1.71 | 4.80 |
Cd (mg/kg) | 2.64 | 3.34 | 1.22 | 2.45 | 0.94 | 1.64 | |
As (mg/kg) | 5.16 | 3.09 | 1.40 | 2.66 | 4.92 | 2.85 | |
Sn (mg/kg) | 5.24 | 4.48 | 2.54 | 8.07 | 4.29 | 11.97 | |
Hg (µg/kg) | 2.34 | 1.05 | 0.39 | 1.95 | 2.79 | 3.79 | |
Me-Hg (µg/kg) | 6.00 | 3.25 | 1.10 | 4.94 | 7.53 | 9.30 | |
Fatty solid phase | Pb (mg/kg) | 4.29 | 3.68 | 2.48 | 5.06 | 1.71 | 4.80 |
Cd (mg/kg) | 2.64 | 3.34 | 1.22 | 2.45 | 0.94 | 1.64 | |
As (mg/kg) | 5.16 | 3.09 | 1.40 | 2.66 | 4.92 | 2.85 | |
Sn (mg/kg) | 3.07 | 0.93 | 1.29 | 11.56 | 13.85 | 7.45 | |
Hg (µg/kg) | 0.53 | 0.26 | 0.49 | 4.47 | 3.62 | 3.61 | |
Me-Hg (µg/kg) | 1.11 | 0.61 | 1.26 | 10.42 | 8.63 | 9.52 | |
Non-fatty liquid phase | Pb (mg/kg) | 4.29 | 3.68 | 2.48 | 5.06 | 1.71 | 4.80 |
Cd (mg/kg) | 2.64 | 3.34 | 1.22 | 2.45 | 0.94 | 1.64 | |
As (mg/kg) | 5.16 | 3.09 | 1.40 | 2.66 | 4.92 | 2.85 | |
Sn (mg/kg) | 2.11 | 3.54 | 1.72 | 11.70 | 14.33 | 14.93 | |
Hg (µg/kg) | 0.36 | 0.40 | 0.39 | 2.58 | 1.82 | 2.04 | |
Me-Hg (µg/kg) | 0.88 | 0.94 | 0.92 | 6.49 | 4.38 | 5.04 | |
Fatty liquid phase | Pb (mg/kg) | 4.29 | 3.68 | 2.48 | 5.06 | 1.71 | 4.80 |
Cd (mg/kg) | 2.64 | 3.34 | 1.22 | 2.45 | 0.94 | 1.64 | |
As (mg/kg) | 5.16 | 3.09 | 1.40 | 2.66 | 4.92 | 2.85 | |
Sn (mg/kg) | 5.29 | 3.00 | 1.95 | 13.18 | 11.16 | 10.38 | |
Hg (µg/kg) | 2.70 | 1.96 | 1.05 | 0.79 | 2.27 | 2.57 | |
Me-Hg (µg/kg) | 5.57 | 4.18 | 2.39 | 1.53 | 5.26 | 6.17 |
Heavy Metal Element | CRM | Certified Value | Measured Value | Accuracy (%) |
---|---|---|---|---|
Pb (mg/kg) | NIST SRM 2976 (Mussel tissue) | 1.19 | 1.12 | 94.12 |
Cd (mg/kg) | 0.82 | 0.80 | 97.56 | |
As (mg/kg) | 13.30 | 13.66 | 102.71 | |
Sn (mg/kg) | KRISS CRM 108-05-005 (Tomato paste) | 221.20 | 224.19 | 101.35 |
Hg (µg/kg) | NIST CRM 2976 (Mussel tissue) | 61.00 | 55.43 | 90.87 |
Me-Hg (µg/kg) | 28.09 | 23.81 | 84.76 |
Matrix Type | Heavy Metal Element | Mean Value | Min Value | Max Value | Median Value |
---|---|---|---|---|---|
Non-fatty solid phase | Pb (mg/kg) | 0.013 | 0.002 | 0.089 | 0.015 |
Cd (mg/kg) | 0.013 | ND a | 0.110 | 0.055 | |
As (mg/kg) | 0.039 | ND | 0.154 | 0.077 | |
Sn (mg/kg) | ND | ND | ND | ND | |
Hg (µg/kg) | 5.533 | ND | 24.667 | 12.333 | |
Me-Hg (µg/kg) | 3.000 | ND | 48.000 | 24.000 | |
Fatty solid phase | Pb (mg/kg) | 0.013 | 0.003 | 0.087 | 0.045 |
Cd (mg/kg) | 0.003 | ND | 0.017 | 0.009 | |
As (mg/kg) | 0.009 | ND | 0.051 | 0.025 | |
Sn (mg/kg) | ND | ND | ND | ND | |
Hg (µg/kg) | 0.760 | ND | 14.250 | 7.125 | |
Me-Hg (µg/kg) | ND | ND | ND | ND | |
Non-fatty liquid phase | Pb (mg/kg) | 0.010 | 0.001 | 0.044 | 0.023 |
Cd (mg/kg) | 0.007 | ND | 0.117 | 0.059 | |
As (mg/kg) | 0.048 | ND | 0.108 | 0.054 | |
Sn (mg/kg) | ND | ND | ND | ND | |
Hg (µg/kg) | 2.000 | ND | 50.000 | 25.000 | |
Me-Hg (µg/kg) | ND | ND | ND | ND | |
Fatty liquid phase | Pb (mg/kg) | 0.012 | 0.005 | 0.062 | 0.033 |
Cd (mg/kg) | 0.004 | ND | 0.017 | 0.008 | |
As (mg/kg) | 0.030 | ND | 0.055 | 0.028 | |
Sn (mg/kg) | ND | ND | ND | ND | |
Hg (µg/kg) | 0.500 | ND | 9.000 | 4.500 | |
Me-Hg (µg/kg) | ND | ND | ND | ND |
Matrix Type | Age (Year) | Average Dietary Exposure (μg/kg/day) | 95th Percentile Dietary Exposure (μg/kg/day) |
---|---|---|---|
Non-fatty solid phase | Above 65 | 1.04 × 10−2 | 3.41 × 10−2 |
20–64 | 9.32 × 10−3 | 3.07 × 10−2 | |
13–19 | 1.02 × 10−2 | 3.34 × 10−2 | |
7–12 | 1.60 × 10−2 | 5.28 × 10−2 | |
3–6 | 3.08 × 10−2 | 1.01 × 10−1 | |
1–2 | 4.80 × 10−2 | 1.58 × 10−1 | |
Fatty solid phase | Above 65 | 2.05 × 10−3 | 3.94 × 10−3 |
20–64 | 1.84 × 10−3 | 3.54 × 10−3 | |
13–19 | 2.01 × 10−3 | 3.86 × 10−3 | |
7–12 | 3.17 × 10−3 | 6.10 × 10−3 | |
3–6 | 6.08 × 10−3 | 1.17 × 10−2 | |
1–2 | 9.48 × 10−3 | 1.82 × 10−2 | |
Non-fatty liquid phase | Above 65 | 8.53 × 10−3 | 2.98 × 10−3 |
20–64 | 7.67 × 10−3 | 2.68 × 10−3 | |
13–19 | 8.36 × 10−3 | 2.92 × 10−3 | |
7–12 | 1.32 × 10−2 | 4.61 × 10−3 | |
3–6 | 2.53 × 10−2 | 8.85 × 10−3 | |
1–2 | 3.95 × 10−2 | 1.38 × 10−2 | |
Fatty liquid phase | Above 65 | 2.01 × 10−4 | 1.81 × 10−3 |
20–64 | 1.81 × 10−4 | 1.62 × 10−3 | |
13–19 | 1.97 × 10−4 | 1.77 × 10−3 | |
7–12 | 3.11 × 10−4 | 2.80 × 10−3 | |
3–6 | 5.96 × 10−4 | 5.37 × 10−3 | |
1–2 | 9.30 × 10−4 | 8.37 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, H.-J.; Hwang, G.-H.; Ahn, S.-M.; Kim, Y.-Y.; Shin, H.-S. Risk Assessment and Determination of Heavy Metals in Home Meal Replacement Products by Using Inductively Coupled Plasma Mass Spectrometry and Direct Mercury Analyzer. Foods 2022, 11, 504. https://doi.org/10.3390/foods11040504
Hwang H-J, Hwang G-H, Ahn S-M, Kim Y-Y, Shin H-S. Risk Assessment and Determination of Heavy Metals in Home Meal Replacement Products by Using Inductively Coupled Plasma Mass Spectrometry and Direct Mercury Analyzer. Foods. 2022; 11(4):504. https://doi.org/10.3390/foods11040504
Chicago/Turabian StyleHwang, Hee-Jeong, Gyo-Ha Hwang, So-Min Ahn, Yong-Yeon Kim, and Han-Seung Shin. 2022. "Risk Assessment and Determination of Heavy Metals in Home Meal Replacement Products by Using Inductively Coupled Plasma Mass Spectrometry and Direct Mercury Analyzer" Foods 11, no. 4: 504. https://doi.org/10.3390/foods11040504
APA StyleHwang, H. -J., Hwang, G. -H., Ahn, S. -M., Kim, Y. -Y., & Shin, H. -S. (2022). Risk Assessment and Determination of Heavy Metals in Home Meal Replacement Products by Using Inductively Coupled Plasma Mass Spectrometry and Direct Mercury Analyzer. Foods, 11(4), 504. https://doi.org/10.3390/foods11040504