Quality Evaluation and Mathematical Modelling Approach to Estimate the Growth Parameters of Total Viable Count in Sausages with Different Casings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Casing Modifications and Sausage Preparation
2.2. Physicochemical Analysis
2.3. Bacterial Enumeration and Modelling the Growth Parameters
2.4. Statistical and Accuracy Analysis
3. Results and Discussion
3.1. Effects of Different Casings on Quality Attributes of Sausages during Long-Term Storage
3.1.1. pH
3.1.2. Water Holding Capacity
3.1.3. Moisture Content
3.2. Effects of Different Casings on Microbial Attributes of Sausages during Long-Term Storage
3.2.1. Growth Parameters of Total Viable Count
3.2.2. Prediction of Shelf Life
- The growth parameters of sausages with different types of casings, especially the modified casing, were estimated by using the Baranyi model for the first time, and the coefficient of determination for sausages stuffed in modified casings reached 0.94. These results can be useful to understand how the microorganism behaviour acts under different types of sausage casings.
- The quality attributes of sausages stuffed in modified casings, control hog casings and natural sheep casings as a function of the long-term storage time have been clearly elucidated. The data obtained from the current study can provide useful information for sausage manufacturing in regard to producing fresh sausages using different sausage casings.
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, C.H.; Makino, Y.; Yoshimura, M.; Rodríguez-Pulido, F.J. Estimation of adenosine triphosphate content in ready-to-eat sausages with different storage days, using hyperspectral imaging coupled with R statistics. Food Chem. 2018, 264, 419–426. [Google Scholar] [CrossRef]
- Feng, C.H.; Drummond, L.; Sun, D.-W. Modelling the growth parameters of lactic acid bacteria and total viable count in vacuum-packaged Irish cooked sausages cooled by different methods. Int. J. Food Sci. Technol. 2014, 49, 2659–2667. [Google Scholar] [CrossRef]
- Feng, C.H.; Drummond, L.; Sun, D.-W.; Zhang, Z.H. Evaluation of natural hog casings modified by surfactant solutions combined with lactic acid by response surface methodology. LWT-Food Sci. Technol. 2014, 58, 427–438. [Google Scholar] [CrossRef]
- Feng, C.H.; Li, C.; García-Martín, J.F.; Malakar, P.K.; Yan, Y.; Liu, Y.-W.; Wang, W.; Liu, Y.-T.; Yang, Y. Physical properties and volatile composition changes of cooked sausages stuffed in a new casing formulation based in surfactants and lactic acid during long-term storage. J. Food Sci. 2017, 82, 594–604. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.H.; Wang, W.; Makino, Y.; García-Martín, J.F.; Alvarez-Mateos, P.; Song, X.Y. Evaluation of storage time and temperature on physicochemical properties of immersion vacuum cooled sausages stuffed in the innovative casings modified by surfactants and lactic acid. J. Food Eng. 2019, 257, 34–43. [Google Scholar] [CrossRef]
- Feng, C.H.; Makino, Y. Colour analysis in sausages stuffed in modified casings with different storage days using hyperspectral imaging—A feasibility study. Food Control 2020, 111, 107047. [Google Scholar] [CrossRef]
- Feng, C.H.; García Martín, J.F.; Li, C.; Liu, B.-L.; Song, X.-Y.; Dong, Q.-L.; Wang, W.; Yang, Y. Evaluation of physicochemical properties and microbial attributes of cooked sausages stuffed in casing modified by surfactants and lactic acid after immersion vacuum cooling and long-term storage. Int. J. Food Sci. Tech. 2016, 51, 2270–2279. [Google Scholar] [CrossRef]
- Feng, C.H.; Liu, Y.W.; Makino, Y.; García-Martín, J.F.; Cummins, E. Evaluation of modified casings and chitosan-PVA packaging on the physicochemical properties of cooked Sichuan sausages during long term storage. Int. J. Food Sci. Tech. 2017, 52, 1777–1788. [Google Scholar] [CrossRef]
- Álvarez, M.C.; Pena, I.; Villat, M.C.; Sota, P.; Laporte, G.; Olivera, D.; Noia, M.; Cárdenas, F.C. Joint Application of Antimicrobial Agents on Microbial Flora Chilled Meat Cattle. Use of Mathematical Models. Procedia Food Sci. 2016, 7, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Hutchings, N.; Smyth, B.; Cunningham, E.; Mangwandi, C. Development of a mathematical model to predict the growth of Pseudomonas spp. in, and film permeability requirements of, high oxygen modified atmosphere packaging for red meat. J. Food Eng. 2021, 289, 110251. [Google Scholar] [CrossRef]
- Gunvig, A.; Hansen, F.; Borggaard, C. A mathematical model for predicting growth/no-growth of psychrotrophic C. botulinum in meat products with five variables. Food Control 2013, 29, 309–317. [Google Scholar] [CrossRef]
- Radha krishnan, K.; Babuskin, S.; Azhagu Saravana Babu, P.; Sivarajan, M.; Sukumar, M. Evaluation and predictive modeling the effects of spice extracts on raw chicken meat stored at different temperatures. J. Food Eng. 2015, 166, 29–37. [Google Scholar] [CrossRef]
- Sheen, S.; Hwang, C.-A. Mathematical modeling the cross-contamination of Escherichia coli O157:H7 on the surface of ready-to-eat meat product while slicing. Food Microbiol. 2010, 27, 37–43. [Google Scholar] [CrossRef]
- Feng, C.H.; Makino, Y.; García-Martín, J.F. Hyperspectral imaging coupled with multivariate analysis and image processing for detection and visualisation of colour in cooked sausages stuffed in different modified casings. Foods 2020, 9, 1089. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.H.; Drummond, L.; Zhang, Z.H.; Sun, D.-W. Evaluation of innovative immersion vacuum cooling with different pressure reduction rates and agitation for cooked sausages stuffed in natural or artificial casing. LWT-Food Sci. Technol. 2014, 59, 77–85. [Google Scholar] [CrossRef]
- Zdolec, N.; Hadžiosmanović, M.; Kozačinski, L.; Cvrtila, Ž.; Filipović, I.; Škrivanko, M.; Leskovar, K. Microbial and physicochemical succession in fermented sausages produced with bacteriocinogenic culture of Lactobacillus sakei and semi-purified bacteriocin mesenterocin Y. Meat Sci. 2008, 80, 480–487. [Google Scholar] [CrossRef]
- Baranyi, J.; Roberts, T.A. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef]
- Feng, C.H.; Otani, C.; Ogawa, Y. Innovatively identifying naringin and hesperidin by using terahertz spectroscopy and evaluating flavonoids extracts from waste orange peels by coupling with multivariate analysis. Food Control 2022, in press. [Google Scholar] [CrossRef]
- Iqbal, A.; Sun, D.-W.; Allen, P. Prediction of moisture, colour and pH in cooked, pre-sliced turkey hams by NIR hyperspectral imaging system. J. Food Eng. 2013, 117, 42–51. [Google Scholar] [CrossRef]
- Feng, C.H.; Sun, D.-W.; Garcia-Martin, J.F.; Zhang, Z.H. Effects of different cooling methods on shelf-life of cooked jumbo plain sausages. LWT-Food Sci. Technol. 2013, 54, 426–433. [Google Scholar] [CrossRef]
- Bakker, W.A.M.; Houben, J.H.; Koolmees, P.A.; Bindrich, U.; Sprehe, L. Effect of initial mild curing, with additives, of hog and sheep sausage casings on their microbial quality and mechanical properties after storage at difference temperatures. Meat Sci. 1999, 51, 163–174. [Google Scholar] [CrossRef]
- Marapana, R.; Nayanarasi, H.; Senanayaka, S.; Perera, P.; Kodagoda, K. Effect of processing conditions on quality of chicken sausages stuffed in different casings. J. Pharmacogn. Phytochem. 2018, 7, 56–64. [Google Scholar]
- Kamruzzaman, M.; Makino, Y.; Oshita, S. Hyperspectral imaging for real-time monitoring of water holding capacity in red meat. LWT-Food Sci. Technol. 2016, 66, 685–691. [Google Scholar] [CrossRef]
- Wang, P.; Xu, X.-L.; Zhou, G.-H. Effects of meat and phosphate level on water-holding capacity and texture of emulsion-type sausage during storage. Agric. Sci. China 2009, 8, 1475–1481. [Google Scholar] [CrossRef]
- Cheng, Q.F.; Sun, D.-W. Factors affecting the water holding capacity of red meat products: A review of recent research advances. Crit. Rev. Food Sci. Nutr. 2008, 48, 137–159. [Google Scholar] [CrossRef]
- Ma, F.; Zhang, B.; Wang, W.; Li, P.J.; Niu, X.L.; Chen, C.G.; Zheng, L. Potential use of multispectral imaging technology to identify moisture content and water-holding capacity in cooked pork sausages. J. Sci. Food Agric. 2018, 98, 1832–1838. [Google Scholar] [CrossRef] [PubMed]
- Zayas, J.F. Water holding capacity of proteins. In Functionality of Proteins in Food; Zayas, J.F., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; Volume 3, pp. 76–133. [Google Scholar]
- Ahmad, S.; Rizawi, J.A.; Srivastava, P.K. Effect of soy protein isolate incorporation on quality characteristics and shelf-life of buffalo meat emulsion sausage. J. Food Sci. Technol. 2010, 47, 290–294. [Google Scholar] [CrossRef] [Green Version]
- Collell, C.; Gou, P.; Arnau, J.; Muñoz, I.; Comaposada, J. NIR technology for on-line determination of superficial aw and moisture content during the drying process of fermented sausages. Food Chem. 2012, 135, 1750–1755. [Google Scholar] [CrossRef]
- Feng, C.H.; Otani, C.; Ogawa, Y.; García-Martín, J.F. Evaluation of properties in different casings modified by surfactants and lactic acid using terahertz spectroscopy—A feasibility study. Food Control 2021, 127, 108152. [Google Scholar] [CrossRef]
- Settanni, L.; Barbaccia, P.; Bonanno, A.; Ponte, M.; Gerlando, R.D.; Franciosi, E.; Grigoli, A.D.; Gaglio, R. Evolution of indigenous starter microorganisms and physicochemical parameters in spontaneously fermented beef, horse, wild boar and pork salamis produced under controlled conditions. Food Microbiol. 2020, 87, 103385. [Google Scholar] [CrossRef]
- Aggelis, G.; Sameis, J.; Metaxopoulos, J. Anovel modelling approachi for predicting microbial growth in a raw cured meat product stored at 3 °C and at 12 °C in air. Int. J. Food Microbiol. 1998, 43, 39–52. [Google Scholar] [CrossRef]
- Pal, A.; Labuza, T.P.; Diez-Gonzalez, F. Shelf life evaluation for ready-to-eat sliced uncured turkey breast and cured ham under probable storage conditions based on Listeria monocytogenes and psychrotroph growth. Int. J. Food Microbiol. 2008, 126, 49–56. [Google Scholar] [CrossRef]
- Pal, A.; Labuza, T.P.; Diez-Gonzalez, F. Comparison of primary predictive models to study the growth of Listeria monocytogenes at low temperatures in liquid cultures and selection of fastest growing ribotypes in meat and turkey product slurries. Food Microbiol. 2008, 25, 460–470. [Google Scholar] [CrossRef]
- Li, M.Y.; Sun, X.M.; Zhao, G.M.; Huang, X.Q.; Zhang, J.W.; Tian, W.; Zhang, Q.H. Comparison of mathematical models of lactic acid bacteria growth in vacuum-packaged raw beef stored at different temperatures. J. Food Sci. 2013, 78, M600–M604. [Google Scholar] [CrossRef] [PubMed]
- Lόpez, S.; Prieto, M.; Dijkstra, J.; Dhanoa, M.S.; France, J. Statistical evaluation mathematical models for microbial growth. Int. J. Food Microbiol. 2004, 96, 289–300. [Google Scholar] [CrossRef]
- Rubio, B.; Martínez, B.; García-Cachán, M.D.; Rovira, J.; Jaime, I. Effect of high pressure preservation on the quality of dry cured beef “Cecina de Leon”. Innov. Food Sci. Emerg. Technol. 2007, 8, 102–110. [Google Scholar] [CrossRef]
- Slongo, A.P.; Rosenthal, A.; Camargo, L.M.Q.; Deliza, R.; Mathias, S.P.; Aragáo, G.M.F. Modeling the grow of lactic acid bacteria in sliced ham processed by high hydrostatic pressure. LWT-Food Sci. Technol. 2009, 42, 303–306. [Google Scholar] [CrossRef]
Parameters | Samples | Day 1 | Day 7 | Day 16 | Day 22 | Day 29 | Day 36 | Day 43 | Day 50 |
---|---|---|---|---|---|---|---|---|---|
pH | MHC | 6.90 ± 0.01 Aa | 6.88 ± 0.01 Aa | 6.88 ± 0.01 Aa | 6.96 ± 0.01 Ba | 6.95 ± 0.02 Ba | 7.00 ± 0.01 Cb | 7.00 ± 0.02 Ca | 6.96 ± 0.01 Ba |
CHC | 6.93 ± 0.02 BEa | 6.92 ± 0.01 BEb | 6.93 ± 0.00 BEb | 6.98 ± 0.01 CDa | 6.90 ± 0.01 Eb | 6.97 ± 0.01 Da | 7.05 ± 0.01 Ab | 7.09 ± 0.01 Fb | |
NSC | 6.97 ± 0.01 EFb | 6.96 ± 0.01 Fc | 6.97 ± 0.01 BEFc | 7.01 ± 0.01 DGb | 7.04 ± 0.01 DCc | 7.00 ± 0.01 EGb | 7.10 ± 0.01 Ac | 7.05 ± 0.02 Cc | |
WHC (%) | MHC | 96.26 ± 1.20 Aa | 99.01 ± 0.08 BCa | 98.78 ± 0.14 BDa | 97.70 ± 0.29 BDa | 97.40 ± 0.46 ADa | 97.87 ± 0.29 BDb | 97.64 ± 0.41 ACDb | 98.58 ± 0.20 BDab |
CHC | 99.01 ± 0.13 Bb | 98.96 ± 0.68 BCa | 99.09 ± 0.10 Ba | 99.02 ± 0.22 Ba | 99.48 ± 0.14 Bb | 99.50 ± 0.12 Ba | 97.21 ± 0.06 Ab | 98.22 ± 0.12 Ca | |
NSC | 98.19 ± 0.51 Ab | 98.65 ± 0.36 Aa | 98.79 ± 0.22 Aa | 94.55± 7.16 Aa | 98.55 ± 0.17 Ac | 98.35 ± 0.30 Ab | 98.88 ± 0.13 Aa | 98.85 ± 0.12 Ab | |
MC (%) | MHC | 29.49 ± 2.56 Aa | 32.70 ± 0.91 Aa | 29.35 ± 0.95 Aa | 29.76 ± 1.08 Aa | 27.76 ± 2.30 Aa | 27.34 ± 3.27 Ab | 31.91 ± 2.79 Ab | 29.38 ± 2.52 Ab |
CHC | 39.63 ± 3.46 ACb | 34.88 ± 3.47 BCa | 38.24 ± 1.69 ACb | 34.55 ± 1.27 BCa | 34.39 ± 3.57 BCb | 43.50 ± 0.49 Aa | 33.22 ± 2.12 BCb | 29.15 ± 1.16 Bb | |
NSC | 27.39 ± 2.21 BDa | 30.61 ± 0.12 BCDa | 33.48 ± 0.32 CEFc | 34.41 ± 2.92 CEFa | 31.59 ± 1.02 BDFab | 27.60 ± 1.32 Db | 44.03 ± 2.09 Aa | 38.30 ± 3.23 Ea |
Parameters Estimated from Baranyi Model | MHC | CHC | NSC |
---|---|---|---|
Initial cell population (ln (N0), log cfu/g) | 4.81 ± 0.20 | 5.19 ± 0.53 | 3.74 ± 0.54 |
Maximum specific growth rate (μmax, day−1) | 0.13 ± 0.03 | 0.20 ± 0.09 | 1.31 ± 0.40 |
Lag time (λ, day) | -- | -- | -- |
Final cell population (ln (Nmax), log cfu/g) | 7.09 ± 0.10 | 8.26 ± 0.34 | 7.64 ± 0.22 |
Coefficient of determination (R2) | 0.94 | 0.77 | 0.86 |
Standard error (SE) of fit | 0.22 | 0.69 | 0.54 |
Predicted shelf life (day) | 19 | 10 | 3 |
Day 0 | Day 2 | Day 7 | Day 16 | Day 22 | Day 29 | Day 36 | Day 43 | Day 50 | |
---|---|---|---|---|---|---|---|---|---|
MHC (log cfu/g) | 4.69 ± 0.10 Aa | --- | 5.97 ±0.34 ABa | 6.71 ± 0.56 Ba | 6.80 ± 0.10 B | 7.26 ± 0.47 Ba | 6.95 ± 0.10 Ba | 7.25 ± 0.70 Ba | 7.17 ± 0.19 Ba |
CHC (log cfu/g) | 4.79 ± 0.10 Aa | 6.24 ± 0.22 Ba | 6.22 ± 0.18 Ba | 8.22 ± 0.36 CDb | --- | 7.13 ± 0.64 BCa | 8.60 ± 0.56 Db | 8.62 ± 0.69 Da | 8.64 ± 0.29 Db |
NSC (log cfu/g) | 3.74 ± 0.14 Aa | 6.35 ± 0.35 Ba | 7.18 ± 0.15 BCDa | 7.02 ± 0.66 BCab | --- | 7.81 ± 0.44 BCDa | 8.34 ± 1.05 Db | 8.16 ± 0.23 CDa | 7.34 ± 0.42 BDab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, C.-H. Quality Evaluation and Mathematical Modelling Approach to Estimate the Growth Parameters of Total Viable Count in Sausages with Different Casings. Foods 2022, 11, 634. https://doi.org/10.3390/foods11050634
Feng C-H. Quality Evaluation and Mathematical Modelling Approach to Estimate the Growth Parameters of Total Viable Count in Sausages with Different Casings. Foods. 2022; 11(5):634. https://doi.org/10.3390/foods11050634
Chicago/Turabian StyleFeng, Chao-Hui. 2022. "Quality Evaluation and Mathematical Modelling Approach to Estimate the Growth Parameters of Total Viable Count in Sausages with Different Casings" Foods 11, no. 5: 634. https://doi.org/10.3390/foods11050634
APA StyleFeng, C. -H. (2022). Quality Evaluation and Mathematical Modelling Approach to Estimate the Growth Parameters of Total Viable Count in Sausages with Different Casings. Foods, 11(5), 634. https://doi.org/10.3390/foods11050634