Seaweed Inclusion in Finishing Lamb Diet Promotes Changes in Micronutrient Content and Flavour-Related Compounds of Raw Meat and Dry-Cured Leg (Fenalår)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals Selection
2.2. Raw Material
2.3. Production of Dry-Cured Leg
2.4. Instrumental Colour
2.5. Chemical Analysis
2.6. Volatile Compound Analysis
2.7. Metabolite Analysis
2.8. Sensory Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Quality Properties
3.2. Micronutrient Content
3.3. Volatile Compounds
Compound 1 | RT | CD 2 | SD | PD | p-Value | Threshold (mg/kg) | Odour Description | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(Min) | Meat 3 | Dry-Cured Meat | Meat | Dry-Cured Meat | Meat | Dry-Cured Meat | D 4 | P | D × P | |||
undecane | 22.3 | <0.001 b | 2.42 ± 1.13 a | <0.001 b | 2.69 ± 1.75 a | <0.001 b | 0.25 ± 0.01 ab | 0.200 | <0.001 | 0.200 | 0.4–3.26 (1) | alkane (2) |
heptanal | 33.3 | 0.31 ± 0.24 ab | 0.47 ± 0.32 a | 0.31 ± 019 ab | 0.37 ± 0.23 ab | 0.34 ± 0.26 ab | 0.005 ± 0.00 b | 0.233 | 0.028 | <0.001 | 0.3–1.4 (2) | unpleasant fat, (dilute:citrus/nut) (2) |
nonanal | 38.0 | 2.40 ± 1.51 ab | 10.84 ± 14.16 a | 2.33 ± 1.32 ab | 1.71 ± 1.10 b | 3.32 ± 1.81 ab | 0.03 ± 0.01 b | 0.039 | 0.688 | 0.045 | 0.4 (2) | unpleasant fat, (dilute:citrus/rose) (2) |
2-ethyl-1-hexanol | 40.3 | 0.003 ± 0.00 b | 0.29 ± 0.16 a | 0.006 ± 0.01 b | 0.25 ± 0.19 a | 0.01 ± 0.01 b | 0.01 ± 0.00 b | 0.096 | <0.001 | 0.006 | 0.14 (3) | unpleasant, fat, citrus, green, oil, rose (2) |
3-heptanol | 35.0 | <0.001 b | 0.13 ± 0.11 a | <0.001 b | 0.12 ± 0.09 a | <0.001 b | <0.001 b | 0.132 | <0.001 | 0.127 | 0.03 (4) | alcoholic, herb, overripe fruit, pleasant (2) |
1-octanol | 41.7 | <0.001 b | 0.44 ± 0.48 a | <0.001 b | 0.14 ± 0.10 ab | <0.001 b | 0.003 ± 0.00 b | 0.038 | 0.001 | 0.025 | 0.023 (air, mg/m3) (5) | fatty, green, citrus, fruity, metal (2) |
6-methyl-5-hepten-2-one | 36.4 | 0.73 ± 0.34 b | 13.04 ± 6.71 a | 1.57 ± 0.69 b | 9.09 ± 4.45 ab | 1.38 ± 052 b | 0.14 ± 0.08 bc | 0.366 | <0.001 | 0.028 | 1–8.2 (water, mg/l) (6) | fatty, green, citrus, fruity (2) |
acetophenone | 44.0 | 1.10 ± 0.64 b | 9.08 ± 6.91 a | 1.46 ± 0.86 b | 7.95 ± 5.09 ab | 0.99 ± 0.75 b | 0.14 ± 0.05 b | 0.176 | 0.003 | 0.023 | 0.17 (7) | almond, animal, flower, must, plastic (2) |
3-nonanone | 36.9 | 0.018 ± 0.00 b | 9.40 ± 5.51 a | 0.018 ± 0.00 b | 7.43 ± 4.15 ab | 0.018 ± 0.00 b | 0.20 ± 0.07 b | 0.822 | <0.001 | 0.193 | 0.05 (8) | floral (9) |
hexanoic acid, methyl ester | 30.1 | 3.15 ± 1.34 a | 5.67 ± 3.32 a | 3.34 ± 1.43 a | 6.06 ± 2.54 a | 3.58 ± 1.53 a | 0.18 ± 0.07 b | 0.027 | 0.151 | 0.007 | 0.07 (10) | fruit, pineapple, sweet (2) |
octanoic acid, methyl ester | 37.9 | 2.09 ± 0.82 a | 4.52 ± 2.07 a | 1.93 ± 0.92 a | 4.59 ± 1.58 a | 1.67 ± 0.85 ab | 0.11 ± 0.02 b | <0.001 | 0.560 | 0.005 | 0.2-0.9 (11) | fruit, orange, sweet, wax, wine (2) |
decanoic acid, methyl ester | 42.5 | 0.26 ± 0.15 b | 1.48 ± 0.71 a | 0.26 ± 0.13 b | 3.03 ± 1.18 a | 0.15 ± 0.13 a | 0.03 ± 0.01 b | <0.001 | <0.001 | 0.003 | 1.0 (12) | fresh, wine, fruity, fat (2) |
Total content 5 | ||||||||||||
alkanes | 1.89 b | 5.48 a | 1.59 b | 4.76 a | 3.41 ab | 1.33 b | 0.421 | 0.065 | 0.012 | |||
aldehydes | 4.8 b | 12.4 a | 4.7 b | 2.4 b | 4.8 a | 0.85 b | 0.040 | 0.809 | 0.040 | |||
alcohols | 3.2 a | 1.49 abc | 2.8 ab | 0.97 bc | 3.2 a | 0.59 c | 0.507 | 0.001 | 0.616 | |||
ketones | 127 ab | 135 a | 52 bc | 126 ab | 74 abc | 27 c | 0.017 | 0.601 | 0.089 | |||
esters | 70 a | 26 b | 29 b | 24 b | 28 b | 4.5 b | 0.003 | 0.002 | 0.096 |
3.4. Metabolite Changes
Compound 1 | CD 2 | SD | PD | p-Value | Threshold (mg/kg) | Taste Description |
---|---|---|---|---|---|---|
serine | 5325 ± 241 a | 4375 ± 336 ab | 3085 ± 347 b | 0.018 | 0.2 (1) | sweet, umami, sour (2) |
tryptophan | 292 ± 20 b | 405 ± 41 ab | 625 ± 75 a | 0.030 | 102 (3) | bitter (3) |
mannose | 3587 ± 190 ab | 4318 ± 137 a | 2460 ± 133 b | 0.005 | ~12,000 (4) | sweet (5) |
eicosapentaenoic | 123 ± 11 b | 154 ± 14 ab | 260 ± 31 a | 0.025 | n.d. | n.d. |
ß-alanine | 168 ± 4 b | 319 ± 9 a | 171 ± 4 b | 0.032 | 107 (6) | slight sweet (7) |
lactic acid | 14,737 ± 882 ab | 18,311 ± 293 a | 14,129 ± 895 b | 0.014 | 10 (8) | sour (9) |
4-hydroxybutanoic acid | 40.6 ± 3.7 b | 80.6 ± 5.5 a | 43.2 ± 5.1 b | 0.002 | n.d. | n.d. |
malic acid | 58.1 ± 4.1 b | 104 ± 7.0 a | 87.2 ± 11.3 ab | 0.007 | 9.6–99 (10) | sour, tart (7) |
2-aminomalonic acid | 56.9 ± 4.1 b | 136 ± 18 a | 99.8 ± 13 ab | 0.023 | n.d. | n.d. |
butanedioic acid | 542 ± 42 b | 851 ± 40 a | 680 ± 70 a | 0.038 | 0.2 (8) | sour (9) |
creatinine | 610 ± 67 ab | 1021 ± 119 a | 348 ± 42 b | 0.009 | n.d. | bitter (11) |
ethanolamine | 96 ± 19 b | 615 ± 119 a | 449 ± 45 ab | <0.001 | ~2 (12) | weak ammonia (12) |
niacinamide | 80 ± 7.0 b | 130 ± 7.9 a | 110 ± 14 ab | 0.035 | n.d. | bitter (13) |
Total content 3 | ||||||
amino acids | 51,544 a | 51,667 a | 43,453 b | 0.002 | ||
fatty acids | 3552 c | 3254 b | 4609 a | 0.026 | ||
sugars | 8190 b | 9386 a | 6033 c | <0.001 |
3.5. Sensory Profile of Dry-Cured Leg
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Commission Implementing Regulation (EU) 2017/1752, of 12 September 2017 of entering a name in the register of protected designations of origin and protected geographical indications (Fenalår fra Norge (PGI)), C/2017/6248. Off. J. Eur. Union 2017, L264, 4-4. [Google Scholar]
- Coll-Brasas, E.; Possas, A.; Berg, P.; Grabež, V.; Egelandsdal, B.; Bover-Cid, S.; Fulladosa, E. Physicochemical characterisation of restructured Fenalår and safety implications of salt and nitrite reduction. Food Control 2021, 119, 107460. [Google Scholar] [CrossRef]
- Jiménez-Colmenero, F.; Ventanas, J.; Toldrá, F. Nutritional composition of dry-cured ham and its role in a healthy diet. Meat Sci. 2010, 84, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Haug, A.; Vhile, S.G.; Berg, J.; Hove, K.; Egelandsdal, B. Feeding potentially health promoting nutrients to finishing bulls changes meat composition and allow for product health claims. Meat Sci. 2018, 145, 461–468. [Google Scholar] [CrossRef] [PubMed]
- SINTEF. Value Created from Productive Oceans in 2050. A Report Prepared by a Working Group Appointed by the Royal Norwegian Society of Sciences and Letters (DKNVS) and the Norwegian Academy of Technological Sciences (NTVA); DKNVS and NTVA: Trondheim, Norway, 2012; pp. 1–83. [Google Scholar]
- Grabež, V.; Kidane, A.S.; Mydland, L.T.; Øverland, M.; Berg, P.; Kåsin, K.; Egelandsdal, B. Seaweed in lamb diet—Oxidative stability and consumer preferences. In Proceedings of the Oral Presentation at 65th International Congress of Meat Science and Technology, Potsdam/Berlin, Germany, 4–9 August 2019. [Google Scholar]
- Grabež, V.; Mydland, L.T.; Kidane, A.; Øverland, M.; Berg, P.; Fulladosa, E.; Coll, E.; Egelandsdal, B. Inclusion of intact Saccharina latissima to finishing lamb diet improved micronutrient content in the meat. In Proceedings of the Virtual Oral Presentation at 66th International Congress of Meat Science and Technology, Krakow, Poland, 3–6 August 2021. [Google Scholar]
- Dierick, N.; Ovyn, A.; De Smet, S. Effect of feeding intact brown seaweed Ascophyllum nodosum on some digestive parameters and on iodine content in edible tissues in pigs. J. Sci. Food Agric. 2009, 89, 584–594. [Google Scholar] [CrossRef]
- Commission Internationale de l’Eclairage. Colorimetry; Publication No. 15; Bureau Central de la CIE: Vienna, Austria, 1976. [Google Scholar]
- Yi, G.; Haug, A.; Nyquist, N.F.; Egelandsdal, B. Hydroperoxide formation in different lean meats. Food Chem. 2013, 141, 2656–2665. [Google Scholar] [CrossRef]
- Inglingstad, R.A.; Skeie, S.; Vegarud, G.E.; Devold, T.G.; Chilliard, Y.; Eknæs, M. Feeding a concentrate rich in rapeseed oil improves fatty acid composition and flavor in Norwegian goat milk. J. Dairy Sci. 2017, 100, 7088–7105. [Google Scholar] [CrossRef]
- Lombardi-Boccia, G.; Martinez-Dominguez, B.; Aguzzi, A. Total heme and non-heme iron in raw and cooked meats. J. Food Sci. 2002, 67, 1738–1741. [Google Scholar] [CrossRef]
- Delgado, I.; Ventura, M.; Gueifão, S.; Coelho, I.; Nascimento, A.C.; Silva, J.A.L.; Castanheira, I. 12th IFDC 2017 special issue—Iodine, selenium and iron contents in Portuguese key foods as consumed. J. Food Compos. Anal. 2019, 79, 39–46. [Google Scholar] [CrossRef]
- Grabež, V.; Bjelanović, M.; Rohloff, J.; Martinović, A.; Berg, P.; Tomović, V.; Rogić, B.; Egelandsdal, B. The relationship between volatile compounds, metabolites and sensory attributes: A case study using lamb and sheep meat. Small Rumin. Res. 2019, 181, 12–20. [Google Scholar] [CrossRef]
- Najar-Villarreal, F.; Boyle, E.A.; Danler, R.D.; O’Quinn, T.G.; Houser, T.A.; Gonzalez, J.M. Fatty acid composition, proximate analysis, and consumer sensory evaluation of United States retail grass-fed ground beef. Meat Muscle Biol. 2019, 3, 389–398. [Google Scholar] [CrossRef]
- Anderson, B.A.; Kinsella, J.A.; Watt, B.K. Comprehensive evaluation of fatty acids in foods. II. Beef products. J. Am. Diet. Assoc. 1975, 67, 35–41. [Google Scholar] [CrossRef]
- EFSA. Dietary Reference Values for Nutrients. Summary Report; Technical Report; EFSA Supporting Publications: Parma, Italy, 2017; Volume 14, p. e15121. [Google Scholar]
- Meyer, U.; Weigel, K.; Schöne, F.; Leiterer, M.; Flachowsky, G. Effect of dietary iodine on growth and iodine status of growing fattening bulls. Livest. Sci. 2008, 115, 219–225. [Google Scholar] [CrossRef]
- Downer, J.V.; Hemken, R.W.; Fox, J.D.; Bull, L.S. Effect of dietary on tissue iodine content in the bovine. J. Animal Sci. 1981, 52, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Taylor, V.F.; Li, Z.; Sayarath, V.; Palys, T.J.; Morse, K.R.; Scholz-Bright, R.A.; Karagas, M.R. Distinct arsenic metabolites following seaweed consumption in humans. Sci. Rep. 2017, 7, 3920. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) 2015/1006 of 25 June 2015 amending Regulation (EC) No 1881/2006 as regards maximum levels of inorganic arsenic in foodstuffs. Off. J. Eur. Union 2015, L16/14–16. [Google Scholar]
- Martín, A.; Córdoba, J.J.; Aranda, E.; Córdoba, M.G.; Asensio, M.A. Contribution of a selected fungal population to the volatile compounds on dry-cured ham. Int. J. Food Microbiol. 2006, 110, 8–18. [Google Scholar] [CrossRef]
- Shahidi, F.; Rubin, L.J.; D’Souza, L.A.; Teranishi, R.; Buttery, R.G. Meat flavor volatiles: A review of the composition, techniques of analysis, and sensory evaluation. Crit. Rev. Food Sci. Nutr. 1986, 24, 141–243. [Google Scholar] [CrossRef]
- Carrapiso, A.I.; Ventanas, J.; García, C. Characterization of the most odor-active compounds of Iberian ham headspace. J. Agric. Food Chem. 2002, 50, 1996–2000. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef]
- Mottram, D.S. Some aspects of the chemistry of meat flavour. In Flavor of Meat and Meat Products, 1st ed.; Shahidi, F., Ed.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 210–230. [Google Scholar]
- Sirtori, F.; Dimauro, C.; Bozzi, R.; Aquilani, C.; Franci, O.; Calamai, L.; Pezzati, A.; Pugliese, C. Evolution of volatile compounds and physical, chemical and sensory characteristics of Toscano PDO ham from fresh to dry-cured product. Eur. Food Res. Technol. 2020, 246, 409–424. [Google Scholar] [CrossRef]
- Soto, E.; Hoz, L.; Ordóñez, J.A.; Hierro, E.; Herranz, B.; López-Bote, C.; Cambero, M.I. Impact of feeding and rearing systems of Iberian pigs on volatile profile and sensory characteristics of dry-cured loin. Meat Sci. 2008, 79, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Champagne, J.R.; Nawar, W.W. The volatile components of irradiated beef and pork fats. J. Food Sci. 1969, 34, 335–339. [Google Scholar] [CrossRef]
- VCF Online. Volatile Compounds in Food 16.8. Available online: https://www.vcf-online.nl/VcfHome.cfm (accessed on 5 October 2021).
- Wakayama, T.; Ito, Y.; Sakai, K.; Miyake, M.; Shibata, E.; Ohno, H.; Kamijima, M. Comprehensive review of 2-ethyl-1-hexanol as an indoor air pollutant. J. Occup. Health 2019, 61, 19–35. [Google Scholar] [CrossRef]
- ASTM Committee E-18 on Sensory Evaluation of Materials and Products. Compilation of Odor and Taste Threshold Values Data/Sponsored by Committee E-18 on Sensory Evaluation of Materials and Products, American Society for Testing and Materials; Fazzalari, F.A., Ed.; The Society: Philadelphia, PA, USA, 1978; pp. 1–497. [Google Scholar]
- Cometto-Muñiz, J.E.; Abraham, M.H. Human olfactory detection of homologous n-alcohols measured via concentration-response functions. Pharmacol. Biochem. Behav. 2008, 89, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Tamura, H.; Yang, R.H.; Sugisawa, H. Aroma profiles of peel oils of acid citrus. In Bioactive Volatile Compounds from Plants; American Chemical Society: Washington, DC, USA, 1993; Volume 525, pp. 121–136. [Google Scholar]
- Santa Cruz Biotechnology. Acetophenone sc-239189. Available online: https://www.scbt.com/p/acetophenone-98-86-2 (accessed on 10 October 2021).
- Burdock, G.A. Fenaroli’s Handbook of Flavor Ingredienta, 6th ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- EMA 3-nonanone. Available online: https://www.femaflavor.org/flavor-library/3-nonanone (accessed on 10 October 2021).
- Simmonds, M.; Preedy, V.R. Nutritional Composition of Fruit Cultivars; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- ChemicalBook. Methyloctanoat Produktbeschreibung. Available online: https://www.chemicalbook.com/ChemicalProductProperty_DE_CB9268272.htm (accessed on 11 October 2021).
- Meilgaard, M.C. Aroma volatiles in beer: Purification, flavour, threshold and interaction. In Geruchs- und Geschmacksstoffe; Drawert, F., Ed.; Verlag Hans Carl: Nürnberg, Germany, 1975; pp. 211–254. [Google Scholar]
- Toldrá, F. Handbook of Fermented Meat and Poultry; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Toldrá, F.; Flores, M. The role of muscle proteases and lipases in flavor development during the processing of dry-cured ham. Crit. Rev. Food Sci. Nutr. 1998, 38, 331–352. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Bote, C.J.; Toldrá, F.; Daza, A.; Ferrer, J.M.; Menoyo, D.; Silió, L.; Rodríguez, M.C. Effect of exercise on skeletal muscle proteolytic enzyme activity and meat quality characteristics in Iberian pigs. Meat Sci. 2008, 79, 71–76. [Google Scholar] [CrossRef]
- Armenteros, M.; Toldra, F.; Aristoy, M.C.; Ventanas, J.; Estevez, M. Effect of the partial replacement of sodium chloride by other salts on the formation of volatile compounds during ripening of dry-cured ham. J. Agric. Food Chem. 2012, 60, 7607–7615. [Google Scholar] [CrossRef]
- Schiffman, S.; Sennewald, K.; Gagnon, J. Comparison of taste qualities and thresholds of D- and L-amino acids. Physiol. Behav. 1981, 27, 51–59. [Google Scholar] [CrossRef]
- Kawai, M.; Sekine-Hayakawa, Y.; Okiyama, A.; Ninomiya, Y. Gustatory sensation of (L)- and (D)-amino acids in humans. Amino Acids 2012, 43, 2349–2358. [Google Scholar] [CrossRef]
- Schiffman, S.S.; Dackis, C. Taste of nutrients: Amino acids, vitamins, and fatty acids. Percept. Psychophys. 1975, 17, 140–146. [Google Scholar] [CrossRef]
- Belitz, H.D.; Grosch, W.; Schieberle, P. Food Chemistry, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Rudrum, M.; Shaw, D. The structure and conformation of some monosaccharides in solution. J. Chem. Soc. 1965, 52–57. [Google Scholar] [CrossRef]
- Stark, T.; Bareuther, S.; Hofmann, T. Molecular definition of the taste of roasted cocoa nibs (Theobroma cacao) by means of quantitative studies and sensory experiments. J. Agri. Food Chem. 2006, 54, 5530–5539. [Google Scholar] [CrossRef] [PubMed]
- Burdock, G.A. Fenaroli’s Handbook of Flavor Ingredients, 5th ed.; Taylor & Francis: Abingdon, UK, 2005. [Google Scholar]
- The Good Scents Company. Available online: http://www.thegoodscentscompany.com (accessed on 15 October 2021).
- Stevens, J.C. Detection of very complex taste mixtures: Generous integration across constituent compounds. Physiol. Behav. 1997, 62, 1137–1143. [Google Scholar] [CrossRef]
- Haseleu, G.; Lubian, E.; Courter, C.; Mueller, S. Quantitative Mapping of Taste-Active Compounds in Dashi Ingredients; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- National Research Council. Emergency and Continuous Exposure Limits for Selected Airborne Contaminants; The National Academies: Washington, DC, USA, 1984; Volume 2. [Google Scholar]
- Delompré, T.; Guichard, E.; Briand, L.; Salles, C. Taste perception of nutrients found in nutritional supplements: A Review. Nutrients 2019, 11, 2050. [Google Scholar] [CrossRef] [PubMed]
Ingredients | CD 1 | SD | PD 2 |
---|---|---|---|
Early cut grass/clover silage | 822.0 | 822.0 | - |
Wilted seaweed 3 | - | 67.9 | - |
Compound feed (DRØV lam) 4 | 102.2 | 102.2 | - |
Rolled barley | 21.6 | - | - |
VitaMineral ® Normal Sau 5 | 4.8 | 4.8 | - |
GrassAAT Korn 6 | 3.1 | 3.1 | - |
Added free water | 46.3 | - | - |
Analyzed content, g/kg DM | |||
Crude protein | 190.3 | 186.4 | 181.3 |
Neutral detergent fiber, NDF | 453.5 | 433.4 | 552.3 |
Acid detergent fiber, ADF | 282 | 279.1 | 253.4 |
Ash | 91.9 | 105.6 | 88.8 |
Organic matter | 908.1 | 894.4 | 911.2 |
Starch/WSC 7 | 73.4 | 61.3 | 95.6 |
Analyzed content of minerals, mg/kg DM | |||
Iodine | 5.40 | 204.60 | n.a. 8 |
Selenium | 0.40 | 0.35 | 0.03 |
Arsenic | 0.14 | 3.66 | n.a. |
CD 1 | SD | PD | p-Value | |
---|---|---|---|---|
pH 2 | 5.53 ±0.02 ab | 5.47 ± 0.04 b | 5.54 ± 0.06 a | 0.010 |
Heme content (mg/g w/w) 3 | 2.68 ± 0.85 | 2.58 ± 0.49 | 2.97 ± 1.21 | 0.675 |
Fatty acids (mg/g of meat) 3 | ||||
C10:0 | 0.06 ± 0.03 | 0.07 ± 0.04 | 0.05 ± 0.02 | 0.285 |
C12:0 | 0.10 ± 0.06 | 0.14 ± 0.09 | 0.08 ± 0.05 | 0.301 |
C14:0 | 1.15 ± 0.61 | 1.53 ± 1.00 | 0.93 ± 0.55 | 0.289 |
C15:0 | 0.19 ± 0.08 | 0.22 ± 0.15 | 0.18 ± 0.07 | 0.704 |
C16:0 | 9.50 ± 3.54 | 11.38 ± 5.19 | 8.13 ± 3.11 | 0.293 |
C17:0 | 0.43 ± 0.17 | 0.49 ± 0.22 | 0.38 ± 0.13 | 0.463 |
C18:0 | 6.59 ± 2.25 | 7.54 ± 3.11 | 6.30 ± 1.85 | 0.582 |
C20:0 | 0.06 ± 0.02 | 0.07 ± 0.03 | 0.06 ± 0.02 | 0.416 |
C21:0 | 0.05 ± 0.01 | 0.06 ± 0.03 | 0.05 ± 0.02 | 0.458 |
C23:0 | 0.07 ± 0.02 | 0.08 ± 0.02 | 0.09 ± 0.02 | 0.068 |
C14:1n-5 | 0.05 ± 0.03 | 0.08 ± 0.05 | 0.04 ± 0.02 | 0.194 |
C16:1n-7 | 0.79 ± 0.29 | 1.02 ± 0.52 | 0.74 ± 0.31 | 0.317 |
C17:1n-8 | 0.25 ± 0.02 | 0.26 ± 0.02 | 0.27 ± 0.04 | 0.370 |
9t-C18:1 | 0.20 ± 0.06 | 0.24 ± 0.10 | 0.19 ± 0.07 | 0.400 |
C18:1n-7 | 0.72 ± 0.29 | 1.00 ± 0.55 | 1.02 ± 0.40 | 0.319 |
C18:1n-9 | 16.22 ± 5.30 | 18.87 ± 7.68 | 14.41 ± 4.70 | 0.352 |
C20:1n-9 | 0.58 ± 0.07 | 0.59 ± 0.13 | 0.70 ± 0.14 | 0.073 |
C22:1n-9 | 0.15 ± 0.04 | 0.15 ± 0.03 | 0.15 ± 0.06 | 0.975 |
9t,12t-C18:2 | 0.13 ± 0.05 | 0.15 ± 0.06 | 0.12 ± 0.04 | 0.539 |
C18:2 n-6 | 2.23 ± 0.17 | 2.26 ± 0.33 | 2.28 ± 0.26 | 0.942 |
C18:3 n-3 | 0.59 ± 0.07 | 0.60 ± 0.13 | 0.72 ± 0.14 | 0.073 |
C20:2n-6 | 0.03 ± 0.00 | 0.03 ± 0.01 | 0.02 ± 0.00 | 0.230 |
C20:3n-9 | 0.26 ± 0.02 | 0.26 ± 0.04 | 0.30 ± 0.05 | 0.072 |
C20:3n-6 | 0.11 ± 0.01 | 0.10 ± 0.01 | 0.11 ± 0.01 | 0.358 |
C20:3n-3 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.01 | 0.975 |
C20:4n-6 | 0.99 ± 0.11 b | 0.92 ± 0.04 b | 1.13 ± 0.10 a | <0.001 |
C20:5n-3 | 0.66 ± 0.09 | 0.63 ± 0.06 | 0.73 ± 0.10 | 0.080 |
C22:6n-3 | 0.29 ± 0.07 | 0.25 ± 0.03 | 0.27 ± 0.05 | 0.309 |
SFA | 18.21 ± 6.69 | 21.59 ± 9.80 | 16.25 ± 5.69 | 0.381 |
MUFA | 18.95 ± 6.03 | 22.20 ± 9.05 | 17.52 ± 5.61 | 0.414 |
PUFA | 5.30 ± 0.41 | 5.21 ± 0.61 | 5.68 ± 0.46 | 0.164 |
Total fat 4 | 46.35 ± 14.34 | 53.49 ± 21.24 | 43.07 ± 12.83 | 0.965 |
CD 1 | SD | PD | p-Value | ||||
---|---|---|---|---|---|---|---|
Raw Meat | Dry-Cured Leg | Raw Meat | Dry-Cured Leg | Raw Meat | Dry-Cured Leg | ||
Selenium, Se 2 | 15.88 ± 1.02 b (14.80–18.17) 3 | 15.54 ±1.03 a (14.17–17.72) | 18.20 ± 0.88 a,x (16.45–19.32) | 16.88 ± 0.53 a,y (16.25–17.62) | 11.97 ± 2.0 c (9.15–14.45) | 12.09 ± 1.89 b (9.23–13.95) | <0.001 |
Iodine, I | <1.9 b <1.9 | 2.56 ± 0.51 b (2.51–4.82) | 55.69 ± 12.62 a,x (47.61–85.44) | 95.51 ± 16.59 a,y (90.11–161.87) | <1.9 b <1.9 | 1.43 ± 0.09 b (1.90–2.24) | <0.001 |
Arsenic, As | 0.11 ± 0.05 b (0.07–0.23) | 0.14 ± 0.02 b (0.12–0.16) | 3.79 ± 0.39 a,x (3.14–4.33) | 4.47 ± 0.80 a,y (3.54–5.74) | 0.13 ± 0.11 b (0.06–0.35) | 0.10 ± 0.02 b (0.06–0.13) | <0.001 |
Log2 FC | ||||||||
---|---|---|---|---|---|---|---|---|
Compound | RT | RI | CD | SD | PD | CD: SD 1 | CD: PD | SD: PD |
glycine | 13.16 | 1045.72 | 4.85 × 109 | 5.02 × 109 | 2.98 × 109 | −1.20 | 0.54 | 1.74 |
leucine | 14.36 | 1083.97 | 3.24 × 109 | 5.85 × 109 | 3.88 × 109 | −1.19 | 1.14 | 2.33 |
valine | 16.17 | 1023.17 | 1.05 × 1010 | 1.13 × 1010 | 9.57 × 109 | −0.45 | 0.56 | 1.00 |
isoleucine | 18.64 | 1066.58 | 6.20 × 109 | 9.03 × 109 | 6.71 × 109 | −1.17 | −0.11 | 1.05 |
proline | 18.79 | 1069.23 | 2.87 × 109 | 2.90 × 109 | 1.76 × 109 | −0.35 | 0.84 | 1.19 |
β-alanine | 22.48 | 1075.85 | 4.83 × 108 | 9.38 × 108 | 4.94 × 108 | −1.15 | 1.17 | 2.32 |
serine | 20.57 | 1001.36 | 1.50 × 1010 | 1.31 × 1010 | 9.24 × 109 | −0.06 | 2.98 | 3.04 |
aspartic acid | 24.95 | 1076.40 | 4.80 × 109 | 2.92 × 109 | 2.95 × 109 | 0.54 | 1.50 | 0.95 |
methionine | 24.97 | 1077.06 | 2.69 × 109 | 3.54 × 109 | 3.05 × 109 | −1.09 | −0.08 | 1.01 |
glutamic acid | 27.55 | 1088.53 | 1.98 × 1010 | 2.21 × 1010 | 2.04 × 1010 | −0.70 | 0.31 | 1.01 |
phenylalanine | 27.75 | 1097.59 | 1.18 × 1010 | 1.08 × 1010 | 7.81 × 109 | −0.32 | 2.65 | 2.97 |
asparagine | 28.75 | 1043.25 | 3.18 × 109 | 1.93 × 109 | 1.83 × 109 | 0.37 | 1.99 | 1.62 |
glutamine | 31.17 | 955.20 | 2.30 × 109 | 2.39 × 109 | 1.66 × 109 | −0.82 | 0.93 | 1.75 |
histidine | 34.42 | 1120.40 | 3.52 × 109 | 2.18 × 109 | 2.61 × 109 | 1.49 | 0.87 | −0.62 |
tyrosine | 34.83 | 1141.39 | 8.59 × 109 | 8.00 × 109 | 7.56 × 109 | −0.39 | 1.14 | 1.52 |
lactic acid | 11.16 | 1082.23 | 8.84 × 1010 | 1.04 × 1011 | 8.48 × 1010 | −1.87 | −1.31 | 0.56 |
glycolic acid | 11.59 | 1095.48 | 1.14 × 108 | 2.00 × 108 | 1.32 × 108 | −0.84 | 0.74 | 1.57 |
4-hydroxybutanoic acid | 16.88 | 1035.71 | 1.02 × 108 | 2.22 × 108 | 1.10 × 108 | −1.60 | 1.27 | 2.86 |
butanedioic acid | 19.32 | 1078.56 | 3.23 × 109 | 5.09 × 109 | 4.06 × 109 | −2.02 | −0.32 | 1.71 |
2-aminomalonic acid | 23.55 | 1018.29 | 4.01 × 108 | 7.95 × 108 | 7.76 × 108 | −1.53 | −0.71 | 0.82 |
malic acid | 24.11 | 1041.62 | 3.69 × 108 | 6.04 × 108 | 6.91 × 108 | −1.10 | 0.30 | 1.41 |
gluconic acid | 35.85 | 1193.17 | 8.25 × 108 | 1.72 × 109 | 7.09 × 108 | −0.57 | 1.76 | 2.32 |
9H-purin-6-ol | 32.06 | 1000.51 | 1.33 × 109 | 1.65 × 109 | 1.77 × 109 | −0.60 | 0.84 | 1.44 |
scyllo-inositol | 36.44 | 1223.20 | 4.92 × 108 | 7.91 × 108 | 7.45 × 108 | −0.91 | 0.54 | 1.45 |
myo-inositol | 37.74 | 1289.08 | 1.07 × 1010 | 1.38 × 1010 | 1.38 × 1010 | −0.38 | 0.99 | 1.36 |
fructopyranose | 31.91 | 992.87 | 1.89 × 109 | 2.12 × 109 | 1.51 × 109 | −0.44 | 1.86 | 2.30 |
fructose | 33.17 | 1056.73 | 7.53 × 109 | 1.04 × 1010 | 5.67 × 109 | −1.47 | 1.04 | 2.51 |
sorbose | 33.38 | 1067.80 | 6.85 × 109 | 6.97 × 109 | 4.12 × 109 | −0.52 | 1.73 | 2.25 |
glucose | 33.49 | 1073.18 | 1.01 × 1010 | 1.16 × 1010 | 9.85 × 109 | −0.23 | 1.94 | 2.17 |
glucopyranose | 33.68 | 1083.04 | 1.62 × 1010 | 2.19 × 1010 | 1.42 × 1010 | −0.60 | 4.23 | 4.83 |
mannose | 33.76 | 1086.80 | 3.58 × 1010 | 3.79 × 1010 | 2.45 × 1010 | −0.22 | 4.64 | 4.86 |
palmitic acid | 37.11 | 1256.98 | 2.98 × 109 | 2.76 × 109 | 3.20 × 109 | −1.46 | 0.16 | 1.62 |
9,12-octadecadienoic acid (Z,Z)- (18:2) | 40.31 | 1419.39 | 3.66 × 108 | 3.58 × 108 | 1.15 × 109 | −4.86 | −3.15 | 1.71 |
oleic acid | 40.44 | 1425.90 | 5.37 × 109 | 4.70 × 109 | 6.85 × 109 | −0.73 | 0.65 | 1.38 |
stearic acid | 40.89 | 1448.86 | 1.50 × 109 | 1.37 × 109 | 2.13 × 109 | −0.52 | 0.52 | 1.03 |
arachidonic acid | 43.14 | 1563.03 | 3.10 × 108 | 4.28 × 108 | 5.14 × 108 | −1.58 | −0.32 | 1.26 |
eicosapentaenoic acid | 43.20 | 1566.33 | 3.49 × 108 | 4.40 × 108 | 7.10 × 108 | −1.16 | −0.98 | 0.18 |
urea | 17.70 | 1050.09 | 6.51 × 109 | 1.02 × 1010 | 8.07 × 109 | −1.18 | 0.89 | 2.07 |
ethanolamine | 17.72 | 1050.39 | 2.65 × 109 | 1.83 × 109 | 1.33 × 109 | −3.13 | −6.50 | −3.36 |
niacinamide | 24.13 | 1042.57 | 2.19 × 108 | 3.70 × 108 | 3.11 × 108 | −1.20 | 0.61 | 1.81 |
pyroglutamic acid | 25.05 | 1080.47 | 9.50 × 109 | 1.41 × 1010 | 8.64 × 109 | −1.06 | 0.60 | 1.66 |
creatinine | 25.83 | 1013.43 | 2.12 × 109 | 3.04 × 109 | 1.13 × 109 | −0.76 | 1.86 | 2.62 |
ornithine | 30.68 | 965.94 | 7.08 × 108 | 3.86 × 108 | 6.78 × 108 | −0.81 | 0.38 | 1.19 |
norvaline | 37.20 | 1261.81 | 3.58 × 108 | 4.88 × 108 | 3.35 × 108 | −1.25 | 0.08 | 1.33 |
inosine | 46.43 | 1730.42 | 1.88 × 1010 | 1.68 × 1010 | 1.83 × 1010 | −0.13 | 1.07 | 1.20 |
cholesterol | 55.37 | 2184.21 | 5.22 × 108 | 5.54 × 108 | 6.68 × 108 | −1.25 | −0.11 | 1.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabež, V.; Coll-Brasas, E.; Fulladosa, E.; Hallenstvedt, E.; Håseth, T.T.; Øverland, M.; Berg, P.; Kidane, A.; Egelandsdal, B. Seaweed Inclusion in Finishing Lamb Diet Promotes Changes in Micronutrient Content and Flavour-Related Compounds of Raw Meat and Dry-Cured Leg (Fenalår). Foods 2022, 11, 1043. https://doi.org/10.3390/foods11071043
Grabež V, Coll-Brasas E, Fulladosa E, Hallenstvedt E, Håseth TT, Øverland M, Berg P, Kidane A, Egelandsdal B. Seaweed Inclusion in Finishing Lamb Diet Promotes Changes in Micronutrient Content and Flavour-Related Compounds of Raw Meat and Dry-Cured Leg (Fenalår). Foods. 2022; 11(7):1043. https://doi.org/10.3390/foods11071043
Chicago/Turabian StyleGrabež, Vladana, Elena Coll-Brasas, Elena Fulladosa, Elin Hallenstvedt, Torunn Thauland Håseth, Margareth Øverland, Per Berg, Alemayehu Kidane, and Bjørg Egelandsdal. 2022. "Seaweed Inclusion in Finishing Lamb Diet Promotes Changes in Micronutrient Content and Flavour-Related Compounds of Raw Meat and Dry-Cured Leg (Fenalår)" Foods 11, no. 7: 1043. https://doi.org/10.3390/foods11071043
APA StyleGrabež, V., Coll-Brasas, E., Fulladosa, E., Hallenstvedt, E., Håseth, T. T., Øverland, M., Berg, P., Kidane, A., & Egelandsdal, B. (2022). Seaweed Inclusion in Finishing Lamb Diet Promotes Changes in Micronutrient Content and Flavour-Related Compounds of Raw Meat and Dry-Cured Leg (Fenalår). Foods, 11(7), 1043. https://doi.org/10.3390/foods11071043