Effect of High Pressure on the Properties of Chocolate Fillings during Long-Term Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation
2.2. High Pressure Processing Treatments
2.3. Storage Conditions
2.4. Physical and Chemical Analyses
2.5. Microbiological Analysis
2.6. Statistical Analysis
3. Results
3.1. Physical and Chemical Parameters
3.2. Microbiological Parameters
3.2.1. Total Mesophilic Count
3.2.2. Moulds
3.2.3. Yeasts
3.2.4. Enterobacteriaceae
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ostrowska-Ligęza, E.; Marzec, A.; Górska, A.; Wirkowska-Wojdyła, M.; Bryś, J.; Rejch, A.; Czarkowska, K. A comparative study of thermal and textural properties of milk, white and dark chocolates. Thermochim. Acta 2019, 671, 60–69. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kang, S.; Kim, D.H.; Kim, Y.J.; Kim, W.R.; Kim, Y.M.; Park, S. Calorie reduction of chocolate ganache through substitution of whipped cream. J. Ethn. Foods 2017, 4, 51–57. [Google Scholar] [CrossRef]
- Saglio, A.; Bourgeay, J.; Socrate, R.; Canette, A.; Cuvelier, G. Understanding the structure of ganache: Link between composition and texture. Int. J. Gastron. Food Sci. 2018, 13, 29–37. [Google Scholar] [CrossRef]
- Wybauw, J. Fine Chocolates—Great Experience 3. Extending Shelf Life; Lannoo Publishing: Tielt, Belgium, 2010. [Google Scholar]
- Merachli, F.; Devienne, J.; Delmas, R.; Plawinski, L.; Leal-Calderon, F.; Delample, M. Impact of cocoa fibers on the stability and rheological properties of chocolate ganaches. LWT 2021, 139, 110505. [Google Scholar] [CrossRef]
- Dias, J.; Alvarenga, N.; Sousa, I. Shelf-life of reduced-fat white chocolate fillings using iota-carrageenan. Emir. J. Food Agric. 2017, 29, 893–898. [Google Scholar] [CrossRef] [Green Version]
- do Nascimento, M.D.S.; Brum, D.M.; Pena, P.O.; Berto, M.I.; Efraim, P. Inactivation of Salmonella during cocoa roasting and chocolate conching. Int. J. Food Microbiol. 2012, 159, 225–229. [Google Scholar] [CrossRef]
- Marvig, C.; Kristiansen, R.; Madsen, M.; Nielsen, D. Identification and characterization of organisms associated with chocolate pralines and sugar syrups used for their production. Int. J. Food Microbiol. 2014, 185, 167–176. [Google Scholar] [CrossRef]
- Mercier, S.; Mondor, M.; Villeneuve, S.; Marcos, B. The Canadian food cold chain: A legislative, scientific, and prospective overview. Int. J. Refrig. 2018, 88, 637–645. [Google Scholar] [CrossRef]
- Dias, J.; Coelho, P.; Alvarenga, N.B.; Duarte, R.V.; Saraiva, J.A. Evaluation of the impact of high pressure on the storage of filled traditional chocolates. Innov. Food Sci. Emerg. Technol. 2018, 45, 36–41. [Google Scholar] [CrossRef]
- Roobab, U.; Abida, A.; Afzal, R.; Madni, G.M.; Zeng, X.-A.; Rahaman, A.; Aadil, R.M. Impact of high-pressure treatments on enzyme activity of fruit based beverages: An overview. Int. J. Food Sci. Technol. 2022, 57, 801–815. [Google Scholar] [CrossRef]
- Nabi, B.G.; Mukhtar, K.; Arshad, R.N.; Radicetti, E.; Tedeschi, P.; Shahbaz, M.U.; Walayat, N.; Nawaz, A.; Inam-Ur-Raheem, M.; Aadil, R.M. High-pressure processing for sustainable food. Sustainability 2021, 13, 13908. [Google Scholar] [CrossRef]
- Roobab, U.; Shabbir, M.A.; Khan, A.W.; Arshad, R.N.; Bekhit, A.E.-D.; Zeng, X.-A.; Inam-Ur-Raheem, M.; Aadil, R.M. High-pressure treatments for better quality clean label juices and beverages: Overview and advances. LWT 2021, 141, 111828. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using SPSS, 3rd ed.; Sage: Newbury Park, CA, USA, 2009. [Google Scholar]
- Levene, H. Robust tests for equality of variance. In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling; Olkin, I., Ed.; Stanford University Press: Redwood City, CA, USA, 1960; pp. 278–292. [Google Scholar]
- Tukey, J.N. The Problem of Multiple Comparisons; Princeton University: Princeton, NJ, USA, 1953. [Google Scholar]
- Welch, B.L. On the comparison of several mean values: An alternative approach. Biometrika 1951, 38, 330–336. [Google Scholar] [CrossRef]
- Wilcox, R. Modern Statistics for the Social and Behavioral Sciences: A Practical Introduction, 2nd ed.; CRC Press: Cambridge, UK, 2017. [Google Scholar]
- Gutierrez, T.J. State-of-the-art chocolate manufacture: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1313–1344. [Google Scholar] [CrossRef] [Green Version]
- Podolak, R.; Whitman, D.; Black, D.G. Factors affecting microbial inactivation during high pressure processing in juices and beverages: A Review. J. Food Prot. 2020, 83, 1561–1575. [Google Scholar] [CrossRef]
- Briones, V.; Aguilera, J.M. Image analysis of changes in surface color of chocolate. Food Res. Int. 2005, 38, 87–94. [Google Scholar] [CrossRef]
- Briones, V.; Aguilera, J.M.; Brown, C. Effect of surface topography on color and gloss of chocolate samples. J. Food Eng. 2006, 77, 776–783. [Google Scholar] [CrossRef]
- Nopens, I.; Foubert, I.; De Graef, V.; Van Laere, D.; Dewettinck, K.; Vanrolleghem, P. Automated image analysis tool for migration fat bloom evaluation of chocolate coated food products. LWT 2008, 41, 1884–1891. [Google Scholar] [CrossRef]
- Subramaniam, P. 12-Shelf-life prediction and testing. In Science and Technology of Enrobed and Filled Chocolate, Confectionery and Bakery Products; Talbott, G., Ed.; WoodHead Publishing Limited: Cambridge, UK, 2009; pp. 233–254. [Google Scholar]
- Sevdin, S.; Yucel, U.; Alpas, H. Effect of high hydrostatic pressure (HPP) on crystal structure of palm stearin emulsions. Innov. Food Sci. Emerg. Technol. 2017, 42, 42–48. [Google Scholar] [CrossRef]
- INSA. Interpretação de Resultados de Ensaios Microbiológicos em Alimentos Prontos para Consumo e em Superfícies do Ambiente de Preparação e Distribuição Alimentar: Valores-Guia; INSA/Instituto Nacional de Saúde Doutor Ricardo Jorge: Lisboa, Portugal, 2019; Available online: http://repositorio.insa.pt//handle/10400.18/5610 (accessed on 20 January 2022). (In Portuguese)
- O’ Reilly, C.E.; O’Connor, P.M.; Kelly, A.L.; Beresford, T.P.; Murphy, P.M. Use of hydrostatic pressure for inactivation of microbial contaminants in cheese. Appl. Environ. Microbiol. 2000, 66, 4890–4896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrés, V.; Villanueva, M.J.; Tenorio, M.D. Influence of high pressure processing on microbial shelf life, sensory profile, soluble sugars, organic acids, and mineral content of milk- and soy-smoothies. LWT 2016, 65, 98–105. [Google Scholar] [CrossRef]
- Yang, P.; Lei, R.; Zhao, L.; Wu, X.; Liao, X. High pressure processing combined with selected hurdles: Enhancement in the inactivation of vegetative microorganisms. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1800–1828. [Google Scholar] [CrossRef] [PubMed]
- Abe, F. Effects of high hydrostatic pressure on microbial cell membranes: Structural and functional perspectives. In High Pressure Bioscience. Subcellular Biochemistry; Akasaka, K., Matsuki, H., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 371–381. [Google Scholar] [CrossRef]
- Patterson, M.F. Microbiology of pressure-treated foods. J. Appl. Microbiol. 2005, 98, 1400–1409. [Google Scholar] [CrossRef] [PubMed]
- Queirós, R.P.; Saraiva, J.A.; da Silva, J.A.L. Tailoring structure and technological properties of plant proteins using high hydrostatic pressure. Crit. Rev. Food Sci. Nutr. 2018, 58, 1538–1556. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.; Moreira, S.; Fidalgo, L.; Inácio, R.; Barba, F.; Saraiva, J. Effects of high-pressure processing on fungi spores: Factors affecting spore germination and inactivation and impact on ultrastructure. Compr. Rev. Food Sci. Food Saf. 2020, 19, 553–573. [Google Scholar] [CrossRef]
- De Clercq, N.; Coillie, E.V.; Pamel, E.V.; De Meulenaer, B.; Devlieghere, F.; Vlaemynck, G. Detection and identification of xerophilic fungi in Belgian chocolate confectionery factories. Food Microbiol. 2015, 46, 322–328. [Google Scholar] [CrossRef]
- Considine, K.M.; Kelly, A.L.; Fitzgerals, G.F.; Hill, C.; Sleator, R.D. High-pressure processing-effects on microbial food safety and food quality. FEMS Microbiol. Lett. 2008, 281, 1–9. [Google Scholar] [CrossRef]
- Sehrawat, R.; Kaur, B.P.; Nema, P.K.; Tewari, S.; Kumar, L. Microbial inactivation by high pressure processing: Principle, mechanism and factors responsible. Food Sci. Biotechnol. 2021, 30, 19–35. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Sokorai, K.; Ukuku, D.; Fan, X.; Juneja, V. Effect of high hydrostatic pressure processing on the background microbial loads and quality of cantaloupe puree. Food Res. Int. 2017, 91, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Jofré, A.; Aymerich, T.; Bover-Cid, S.; Garriga, M. Inactivation and recovery of Listeria monocytogenes, Salmonella enterica and Staphylococcus aureus after high hydrostatic pressure treatments up to 900 MPa. Int. Microbiol. 2010, 13, 105–112. [Google Scholar] [PubMed]
- Camargo, C. Chapter 2. Microbiological and physicochemical factors that affect the safety and quality of chocolate. In Chocolate. Cocoa Byproducts Technology, Rheology, Styling and Nutrition; Sira, E.P., Ed.; Nova Publishers: New York, NY, USA, 2015; pp. 49–76. [Google Scholar]
Code | HPP Treatment | Storage Temperature (°C) | |
---|---|---|---|
Pressure (Mpa) | Time (min) | ||
Control | 0.1 | - | 20 ± 0.3 |
NoHPP/−12 | 0.1 | - | −12 ± 2.4 |
NoHPP/4 | 0.1 | - | 4 ± 0.9 |
400/10 | 400 | 10 | 20 ± 0.3 |
400/20 | 400 | 20 | 20 ± 0.3 |
600/10 | 600 | 10 | 20 ± 0.3 |
600/20 | 600 | 20 | 20 ± 0.3 |
Parameter | Months | Control | NoHPP/-12 | NoHPP/4 | 400/10 | 400/20 | 600/10 | 600/20 |
---|---|---|---|---|---|---|---|---|
Moisture % (m/m) | 0 | 31.7 ± 0.5 a | 31.7 ± 0.5 a | 31.7 ± 0.5 a | 31.7 ± 0.5 a | 31.7 ± 0.5 a | 31.7 ± 0.5 a | 31.7 ± 0.5 a |
2 | 32.5 ± 1.0 ab | 32.2 ± 0.7 ab | 32.0 ± 0.5 a | 33.0 ± 0.6 a | 31.9 ± 0.7 a | 33.7 ± 0.7 ab | 32.0 ± 0.9 a | |
4 | 33.0 ± 0.5 ab | 32.7 ± 1.9 | 32.7 ± 0.6 a | 31.9 ± 0.7 a | 32.1 ± 0.8 a | 32.5 ± 0.9 ab | 33.3 ± 0.4 ab | |
6 | 33.8 ± 1.2 b | 34.5 ± 1.2 ab | 33.2 ± 2.2 a | 33.3 ± 2.1 a | 34.4 ± 1.0 b | 34.3 ± 1.6 b | 34.6 ± 1.6 b | |
8 | 31.6 ± 0.5 a | 33.9 ± 2.2 ab | 33.3 ± 2.1 a | 33.1 ± 1.9 a | 32.3 ± 0.8 a | 33.2 ± 1.4 ab | 33.5 ± 1.4 ab | |
10 | 31.8 ± 0.3 a | 33.4 ± 0.4 b | 33.2 ± 0.6 a | 33.0 ± 0.8 a | 33.0 ± 0.6 ab | 33.5 ± 0.3 ab | 33.1 ± 0.6 ab | |
12 | 32.7 ± 0.5 ab | 33.2 ± 0.5 ab | 32.1 ± 0.2 a | 33.8 ±0.5 a | 32.0 ± 0.6 a | 33.1 ± 0.6 ab | 33.1 ± 0.7 ab | |
aw | 0 | 0.92 ± 0.01 ab | 0.92 ± 0.01 ab | 0.92 ± 0.01 ab | 0.92 ± 0.01 ab | 0.92 ± 0.01 a | 0.92 ± 0.01 ab | 0.92 ± 0.01 abc |
2 | 0.91 ± 0.03 | 0.89 ± 0.02 | 0.90 ± 0.02 a | 0.92 ± 0.02 | 0.91 ± 0.03 | 0.89 ± 0.04 ab | 0.92 ± 0.01 a | |
4 | 0.93 ± 0.00 b | 0.87 ± 0.02 | 0.93 ± 0.00 b | 0.91 ± 0.01 a | 0.92 ± 0.00 a | 0.93 ± 0.00 b | 0.93 ± 0.00 b | |
6 | 0.90 ± 0.01 a | 0.91 ± 0.01 a | 0.91 ± 0.01 a | 0.90 ± 0.01 a | 0.90 ± 0.03 | 0.88 ± 0.02 a | 0.91 ± 0.01 c | |
8 | 0.93 ± 0.01 b | 0.89 ± 0.03 ab | 0.93 ± 0.01 ab | 0.94 ± 0.01 b | 0.94 ± 0.01 b | 0.95 ± 0.01 b | 0.94 ± 0.03 abc | |
10 | 0.93 ± 0.01 ab | 0.94 ± 0.01 b | 0.92 ± 0.01 ab | 0.93 ± 0.00 b | 0.93 ± 0.01 b | 0.92 ± 0.01 b | 0.94 ± 0.00 b | |
12 | 0.94 ± 0.01 b | 0.94 ±0.00 b | 0.94 ± 0.01 b | 0.93 ± 0.01 b | 0.93 ± 0.01 ab | 0.93 ± 0.01 b | 0.93 ± 0.01 ab | |
pH | 0 | 5.20 ± 0.01 a | 5.20 ± 0.01 a | 5.20 ± 0.01 a | 5.20 ± 0.01 a | 5.20 ± 0.01 a | 5.20 ± 0.01 a | 5.20 ± 0.01 b |
2 | 5.14 ± 0.11 a | 5.41 ± 0.82 | 5.12 ± 0.10 a | 5.11 ± 0.03 | 4.94 ± 0.05 | 4.87 ± 0.08 | 4.62 ± 0.19 a | |
4 | 5.07 ± 0.07 a | 5.13 ± 0.05 | 5.15 ± 0.07 | 5.20 ± 0.09 a | 5.14 ± 0.05 | 5.12 ± 0.04 | 5.16 ± 0.13 b | |
6 | 5.19 ± 0.09 a | 5.27 ± 0.05 | 5.15 ± 0.05 | 5.22 ± 0.06 a | 5.12 ± 0.04 | 5.13 ± 0.13 a | 5.12 ± 0.08 b | |
8 | 5.48 ± 0.19 b | 5.58 ± 0.27 a | 5.38 ± 0.30 a | 5.06 ± 0.09 a | 5.06 ± 0.18 a | 5.04 ± 0.09 a | 5.22 ± 0.15 b | |
10 | 5.70 ± 0.19 b | 5.00 ± 0.07 a | 5.52 ± 0.15 a | 5.08 ± 0.16 a | 5.18 ± 0.20 a | 5.38 ± 0.16 a | 5.22 ± 0.08 b | |
12 | 5.04 ± 0.05 | 5.40 ± 0.22 a | 5.28 ± 0.13 a | 5.02 ± 0.04 | 5.02 ± 0.04 | 5.38 ± 0.25 a | 5.12 ± 0.16 b | |
L* | 0 | 44.3 ± 0.9 de | 44.3 ± 0.9 b | 44.3 ± 0.9 cde | 44.3 ± 0.9 b | 44.3 ± 0.9 c | 44.3 ± 0.9 c | 44.3 ± 0.9 cd |
2 | 42.9 ± 0.7 bcd | 44.5 ± 1.7 b | 45.4 ± 1.0 de | 47.2 ± 1.9 | 48.2 ± 2.3 c | 44.9 ± 1.8 c | 48.7 ± 0.7 e | |
4 | 43.2 ± 0.4 cd | 44.5 ± 1.6 b | 43.2 ± 0.5 cd | 42.5 ± 1.0 b | 43.2 ± 0.8 c | 43.1 ± 0.8 bc | 42.3 ± 0.7 bc | |
6 | 46.6 ± 1.6 e | 44.0 ± 1.8 b | 45.8 ± 1.6 e | 46.6 ± 1.5 b | 45.4 ± 2.2 abc | 45.0 ± 1.1 c | 47.1 ± 0.9 de | |
8 | 40.4 ± 1.9 abc | 38.4 ± 1.8 a | 42.4 ± 1.3 bc | 40.6 ± 2.3 ab | 42.7 ± 1.1 bc | 43.0 ± 1.5 bc | 40.7 ± 2.6 ab | |
10 | 40.1 ± 0.9 ab | 40.0 ± 0.4 a | 40.4 ± 0.8 ab | 41.0 ± 3.0 ab | 40.4 ± 0.8 ab | 40.3 ± 1.3 ab | 40.5 ± 1.2 ab | |
12 | 39.0 ± 1.0 a | 39.3 ± 1.1 a | 39.3 ± 0.6 a | 38.5 ± 0.6 a | 38.4 ± 0.5 a | 37.8 ± 1.0 a | 38.0 ± 1.1 a | |
a* | 0 | 9.3 ± 0.6 ab | 9.3 ± 0.6 a | 9.3 ± 0.6 b | 9.3 ± 0.6 b | 9.3 ± 0.6 ab | 9.3 ± 0.6 bcd | 9.3 ± 0.6 bc |
2 | 8.2 ± 0.6 a | 7.6 ± 0.7 a | 7.3 ± 0.4 a | 6.3 ± 1.3 a | 6.5 ± 0.9 a | 7.4 ± 0.7 a | 6.3 ± 0.3 a | |
4 | 8.3 ± 0.2 a | 8.7 ± 0.7 a | 9.0 ± 0.3 b | 8.5 ± 0.5 ab | 8.3 ± 0.3 ab | 8.4 ± 0.3 ab | 8.8 ± 0.4 bc | |
6 | 8.4 ± 0.3 a | 9.0 ± 0.3 a | 8.3 ± 0.1 ab | 8.5 ± 1.1 ab | 8.8 ± 0.5 ab | 8.8 ± 0.5 bc | 8.7 ± 0.8 b | |
8 | 10.0 ± 0.8 b | 11.0 ± 0.4 b | 10.3 ± 0.9 bc | 9.6 ± 1.1 b | 8.9 ± 0.7 ab | 9.0 ± 0.5 bc | 9.6 ± 1.0 bc | |
10 | 10.2 ± 0.4 b | 12.4 ± 0.7 b | 12.9 ± 0.4 c | 9.8 ± 1.0 b | 11.4 ± 1.5 b | 10.4 ± 0.7 d | 10.7 ± 1.0 c | |
12 | 9.9 ± 0.2 b | 11.7 ± 1.1 b | 12.0 ± 0.6 c | 9.2 ± 0.4 b | 10.2 ± 0.9 b | 10.1 ± 0.3 cd | 10.7 ± 0.9 c | |
b* | 0 | 10.8 ± 0.5 cd | 10.8 ± 0.5 a | 10.8 ± 0.5 c | 10.8 ± 0.5 c | 10.8 ± 0.5 b | 10.8 ± 0.5 d | 10.8 ± 0.5 b |
2 | 11.5 ± 0.3 d | 10.3 ± 1.0 a | 9.7 ± 0.6 c | 9.3 ± 1.9 bc | 9.9 ± 1.0 b | 10.3 ± 1.0 d | 9.5 ± 1.1 b | |
4 | 9.5 ± 0.4 c | 8.9 ± 1.7 a | 10.6 ± 0.4 c | 9.5 ± 1.0 bc | 9.1 ± 0.7 b | 9.4 ± 0.7 cd | 10.1 ± 0.7 b | |
6 | 7.6 ± 1.0 b | 9.1 ± 0.6 a | 8.0 ± 0.6 b | 7.1 ± 1.1 ab | 8.1 ± 1.3 ab | 7.5 ± 1.0 bc | 6.6 ± 0.7 a | |
8 | 6.1 ± 0.9 a | 9.7 ± 0.4 a | 6.2 ± 0.7 a | 5.3 ± 1.0 a | 4.7 ± 0.6 a | 5.4 ± 0.7 a | 5.7 ± 0.5 a | |
10 | 6.0 ± 0.6 a | 9.4 ± 0.2 a | 10.0 ± 0.6 c | 6.3 ± 1.0 a | 7.2 ± 1.5 ab | 6.5 ± 1.1 ab | 7.4 ± 1.0 a | |
12 | 5.6 ± 0.4 a | 9.9 ± 1.1 a | 10.1 ± 0.7 c | 5.3 ± 0.5 a | 5.8 ± 0.4 a | 6.1 ± 0.5 ab | 7.2 ± 0.4 a | |
G′1Hz (kPa) | 0 | 6061 ± 15 d | 6061 ± 15 c | 6061 ± 15 b | 6061 ± 15 c | 6061 ± 15 d | 6061 ± 15 c | 6061 ± 15 c |
2 | 663 ± 46 abc | 419 ± 32 a | 1201 ± 36 a | 497 ± 3 a | 221 ± 17 a | 208 ± 18 a | 362 ± 40 a | |
4 | 984 ± 23 b | 1517 ± 51 ab | 551 ± 42 a | 1065± 88 ab | 692 ± 27 ab | 906 ± 25 a | 1233 ± 51 ab | |
6 | 1975 ± 98 abc | 1600 ± 46 ab | 1438 ± 45 a | 2087 ± 45 b | 2165 ± 49 bc | 1984 ± 24 b | 1701 ± 19 bc | |
8 | 1899 ± 16 c | 1453 ± 12 ab | 1720 ± 27 a | 1947 ± 71 ab | 2579 ± 74 abc | 2727 ± 41 b | 2250 ± 50 b | |
10 | 1918 ± 43 abc | 1576 ± 22 b | 1351 ± 73 a | 1882 ± 42 b | 1908 ± 18 c | 2245 ± 22 b | 1928 ± 37 b | |
12 | 1985 ± 44 abc | 1607 ± 16 b | 1541 ± 56 a | 2139 ± 40 b | 1759 ± 18 c | 1767 ± 20 b | 1603 ± 19 b |
Parameter | Months | Control | NoHPP/−12 | NoHPP/4 | 400/10 | 400/20 | 600/10 | 600/20 |
---|---|---|---|---|---|---|---|---|
Total aerobic mesophiles | 0 | 3.0 ± 1.9 a | 3.0 ± 1.9 a | 3.0 ± 1.9 a | 2.9 ± 0.0 | 3.0 ± 0.0 | 2.5 ± 0.2 | 2.9 ± 0.0 |
2 | 5.2 ± 4.3 b | 3.9 ± 3.2 abc | 5.0 ± 3.8 b | 4.9 ± 3.7 b | 4.8 ± 4.2 b | 4.8 ± 4.0 b | 3.9 ± 2.9 c | |
4 | 5.4 ± 4.7 b | 3.6 ± 2.5 b | 5.2 ± 3.9 c | 5.1 ± 4.6 ab | 4.9 ± 3.8 b | 4.9 ± 4.2 bc | 3.6 ± 2.7 b | |
6 | 5.4 ± 4.6 b | 3.7 ± 2.9 bc | 5.2 ± 3.6 cd | 5.2 ± 4.7 ab | 5.0 ± 3.8 b | 4.9 ± 4.1 bc | 3.7 ± 2.7 bc | |
8 | 5.4 ± 4.7 b | 3.8 ± 2.7 c | 5.2 ± 4.0 cd | 5.2 ± 4.6 b | 5.0 ± 3.7 b | 5.0 ± 3.9 bc | 3.7 ± 2.5 bc | |
10 | 5.4 ± 4.7 b | 3.8 ± 2.7 c | 5.2 ± 4.0 cd | 5.2 ± 4.6 b | 5.0 ± 3.8 b | 5.0 ± 3.8 bc | 3.7 ± 2.4 bc | |
12 | 5.4 ± 4.7 b | 3.8 ± 2.7 c | 5.3 ± 3.9 d | 5.2 ± 4.6 b | 5.0 ± 4.2 b | 5.0 ± 3.7 c | 3.8 ± 2.2 c | |
Moulds | 0 | <LoD | <LoD | <LoD | <LoD | <LoD | <LoD | <LoD |
2 | <LoD | < LoD | 2.0 ± 0.9 a | <LoD | <LoD | <LoD | <LoD | |
4 | <LoD | 1.4 ± 1.3 a | 2.1 ± 1.4 | 1.4 ± 1.2 a | <LoD | <LoD | <LoD | |
6 | 2.1 ± 2.1 a | 1.3 ± 0.9 a | 2.1 ± 1.4 | 1.4 ± 1.1 a | <LoD | <LoD | <LoD | |
8 | 2.5 ± 2.5 a | 1.3 ± 1.0 a | 2.0 ± 2.2 a | 1.4 ± 1.3 a | 0.7 ± 0.8 a | <LoD | <LoD | |
10 | 2.5 ± 2.5 a | 1.3 ± 1.0 a | 2.1 ± 2.1 a | 1.4 ± 1.3 a | 0.7 ± 0.8 a | <LoD | <LoD | |
12 | 2.6 ± 2.5 a | 1.3 ± 1.0 a | 2.3 ± 2.2 | 1.5 ± 1.4 a | 0.7 ± 0.8 a | <LoD | <LoD | |
Yeasts | 0 | 3.1 ± 2.5 a | 3.1 ± 2.5 abcd | 3.1 ± 2.5 a | < LoD | < LoD | <LoD | <LoD |
2 | 4.0 ± 2.9 b | 2.4 ± 1.3 a | 4.5 ± 3.1 b | 1.9 ± 0.8 a | < LoD | <LoD | <LoD | |
4 | 4.3 ± 4.0 ab | 3.1 ± 2.6 abcd | 4.3 ± 4.0 ab | 2.4 ± 1.6 b | < LoD | <LoD | <LoD | |
6 | 4.9 ± 4.0 d | 2.7 ± 1.3 b | 4.3 ± 3.7 ab | 2.6 ± 2.2 ab | 1.1 ± 1.1 a | 1.1 ± 0.4 | <LoD | |
8 | 4.9 ± 4.0 d | 2.8 ± 1.5 bc | 4.3 ± 3.5 b | 2.6 ± 2.1 ab | 1.0 ± 0.8 a | 1.0 ± 0.8 a | <LoD | |
10 | 4.9 ± 3.9 d | 2.8 ± 1.4 cd | 4.3 ± 3.5 b | 2.6 ± 2.2 ab | 1.0 ± 0.8 a | 1.0 ± 0.8 a | <LoD | |
12 | 4.9 ± 3.9 d | 2.9 ± 1.2 d | 4.4 ± 3.5 b | 2.7 ± 2.1 ab | 1.0 ± 0.8 a | 1.0 ± 0.8 a | <LoD | |
Enterobacteriaceae | 0 | 2.5 ± 1.4 | 2.5 ± 1.4 | 2.5 ± 1.4 | <LoD | <LoD | <LoD | <LoD |
2 | <LoD | <LoD | <LoD | <LoD | <LoD | <LoD | <LoD | |
4 | <LoD | <LoD | <LoD | <LoD | <LoD | <LoD | <LoD | |
6 | <LoD | <LoD | <LoD | <LoD | <LoD | <LoD | <LoD | |
8 | <LoD | <LoD | <LoD | <LoD | <LoD | <LoD | <LoD | |
10 | <LoD | <LoD | <LoD | <LoD | <LoD | <LoD | <LoD | |
12 | <LoD | <LoD | <LoD | <LoD | <LoD | <LoD | <LoD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panda, A.; Coelho, P.; Alvarenga, N.B.; Silva, J.L.d.; Lampreia, C.; Santos, M.T.; Pinto, C.A.; Amaral, R.A.; Saraiva, J.A.; Dias, J. Effect of High Pressure on the Properties of Chocolate Fillings during Long-Term Storage. Foods 2022, 11, 970. https://doi.org/10.3390/foods11070970
Panda A, Coelho P, Alvarenga NB, Silva JLd, Lampreia C, Santos MT, Pinto CA, Amaral RA, Saraiva JA, Dias J. Effect of High Pressure on the Properties of Chocolate Fillings during Long-Term Storage. Foods. 2022; 11(7):970. https://doi.org/10.3390/foods11070970
Chicago/Turabian StylePanda, António, Patrícia Coelho, Nuno B. Alvarenga, João Lita da Silva, Célia Lampreia, Maria Teresa Santos, Carlos A. Pinto, Renata A. Amaral, Jorge A. Saraiva, and João Dias. 2022. "Effect of High Pressure on the Properties of Chocolate Fillings during Long-Term Storage" Foods 11, no. 7: 970. https://doi.org/10.3390/foods11070970
APA StylePanda, A., Coelho, P., Alvarenga, N. B., Silva, J. L. d., Lampreia, C., Santos, M. T., Pinto, C. A., Amaral, R. A., Saraiva, J. A., & Dias, J. (2022). Effect of High Pressure on the Properties of Chocolate Fillings during Long-Term Storage. Foods, 11(7), 970. https://doi.org/10.3390/foods11070970