Storage Stability and Consumer Acceptability of Dried Apple: Impact of Citric Acid, Potassium Sorbate and Moringa oleifera Leaf Extract Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Materials and Equipment
2.2. Preparation and Drying Procedure of the Apples
2.3. Shelf Life Stability Assessment of the Dried Apple Slices
2.4. Colour Measurement
2.5. Total Acidity Determination
2.6. Water Activity (Aw) Determination
2.7. Moisture Determination
2.8. Microbiological Analysis
2.9. Texture Analysis
2.10. Consumer Acceptability Testing
2.11. Statistical Analysis
3. Results and Discussions
3.1. Impact of the Pre-Treatments on the Colour and Storage Time of the Dried Sliced Apples
3.2. Impact of the Pre-Treatments on the Browning Index (BI), Whitening Index (WI) and Storage Time of the Dried Sliced Apples
3.3. Impact of the Pre-Treatments on the Microbial Count of the Dried Sliced Apples during Storage
3.4. Impact of the Pre-Treatments on the Total Acidity, Water Activity, and Moisture of the Dried Sliced Apples during Storage
3.5. Effect of the Pre-Treatments on the Extensibility and Storage Time of the Dried Sliced Apples
3.6. Consumer Acceptability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, T.K.; Cadwallader, K.R. Ways of Measuring Shelf-Life and Spoilage; Woodhead Publishing Limited: Sawston, UK, 2004; ISBN 9781855739024. [Google Scholar]
- Robertson, G.L. Packaging and Food and Beverage Shelf Life; Woodhead Publishing Limited: Sawston, UK, 2011; ISBN 9781845697013. [Google Scholar]
- Corrêa, S.C.; Clerici, M.T.P.S.; Garcia, J.S.; Ferreira, E.B.; Eberlin, M.N.; Azevedo, L. Evaluation of dehydrated marolo (Annona crassiflora) flour and carpels by freeze-drying and convective hot-air drying. Food Res. Int. 2011, 44, 2385–2390. [Google Scholar] [CrossRef]
- Brewer, S. Effects of Oxidation on Sensory Characteristics of Food Components during Processing and Storage. In Food Oxidants Antioxidants; CRC Press: Boca Raton, FL, USA, 2013; pp. 159–195. [Google Scholar]
- de Bouillé, A.G.; Beeren, C.J.M. 7—Sensory Evaluation Methods for Food and Beverage Shelf Life Assessment. In Stability and Shelf Life Food; Woodhead Publishing Limited: Sawston, UK, 2016; pp. 199–228. [Google Scholar] [CrossRef]
- Miranda, G.; Berna, À.; Salazar, D.; Mulet, A. Sulphur dioxide evolution during dried apricot storage. LWT—Food Sci. Technol. 2009, 42, 531–533. [Google Scholar] [CrossRef]
- Gunduz, S.; Akman, S. Determination of sulphur in various vegetables by solid sampling high-resolution electrothermal molecular absorption spectrometry. Food Chem. 2015, 172, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Alagöz, S.; Türkyilmaz, M.; Taği, Ş.; Özkan, M. Effects of different sorbic acid and moisture levels on chemical and microbial qualities of sun-dried apricots during storage. Food Chem. 2015, 174, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Cárcel, J.A.; García-Pérez, J.V.; Sanjuán, N.; Mulet, A. Influence of pre-treatment and storage temperature on the evolution of the colour of dried persimmon. LWT—Food Sci. Technol. 2010, 43, 1191–1196. [Google Scholar] [CrossRef]
- Schiano, A.N.; Harwood, W.S.; Drake, M.A. A 100-Year Review: Sensory analysis of milk 1. J. Dairy Sci. 2017, 100, 9966–9986. [Google Scholar] [CrossRef] [PubMed]
- Drake, M.A. Invited Review: Sensory Analysis of Dairy Foods. J. Dairy Sci. 2007, 90, 4925–4937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drake, M.A.; Carolina, N. Sensory Evaluation; Elsevier Ltd.: Amsterdam, the Netherlands, 2011; pp. 279–283. [Google Scholar]
- Arendse, W.; Jideani, V. Effects of Some Weak Acids and Moringa oleifera Leaf Extract Powder on the Colour of Dried Apple. Processes 2022, 10, 206. [Google Scholar] [CrossRef]
- Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Effect of natural antibrowning agents on color and related enzymes in fresh-cut fuji apples as an alternative to the use of ascorbic acid. J. Food Sci. 2008, 73, 267–272. [Google Scholar] [CrossRef]
- Li-Qin, Z.; Jie, Z.; Shu-Hua, Z.; Lai-Hui, G. Inhibition of browning on the surface of peach slices by short-term exposure to nitric oxide and ascorbic acid. Food Chem. 2009, 114, 174–179. [Google Scholar] [CrossRef]
- Doymaz, I. Effect of citric acid and blanching pre-treatments on drying and rehydration of Amasya red apples. Food Bioprod. Process. 2010, 88, 124–132. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, Y. Effect of pulsed vacuum and ultrasound osmopretreatments on glass transition temperature, texture, microstructure and calcium penetration of dried apples (Fuji). LWT—Food Sci. Technol. 2008, 41, 1575–1585. [Google Scholar] [CrossRef]
- Excalibur: The Complete Guide to Food Dehydration, 4th ed.; Prentince Hall Trade: Hoboken, NJ, USA, 2012; pp. 9–41. Available online: https://www.amazon.com/Preserve-Naturally-Dehydration-Excalibur-1-Feb-1984/dp/B012HTWZTK (accessed on 18 August 2020).
- Anyasi, T.A.; Jideani, A.I.O.; McHau, G.R.A. Effect of organic acid pretreatment on some physical, functional and antioxidant properties of flour obtained from three unripe banana cultivars. Food Chem. 2015, 172, 515–522. [Google Scholar] [CrossRef]
- Hazervazifeh, A.; Nikbakht, A.M.; Moghaddam, P.A. Novel hybridized drying methods for processing of apple fruit: Energy conservation approach. Energy 2016, 103, 679–687. [Google Scholar] [CrossRef]
- Torrieri, E.; Federico, N. Storage Stability: Shelf Life Testing, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; ISBN 9780123849472. [Google Scholar]
- Bian, Y.; Liu, F.; Chen, F.; Sun, P. Storage stability of three organophosphorus pesticides on cucumber samples for analysis. Food Chem. 2018, 250, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Henríquez, C.; Córdova, A.; Lutz, M.; Saavedra, J. Storage stability test of apple peel powder using two packaging materials: High-density polyethylene and metalized films of high barrier. Ind. Crops Prod. 2013, 45, 121–127. [Google Scholar] [CrossRef]
- Li, C.U.I.; Li-ying, N.I.U.; Da-jing, L.I.; Chun-quan, L.I.U.; Ying-ping, L.I.U.; Chun-ju, L.I.U.; Jiang-feng, S. Effects of different drying methods on quality, bacterial viability and storage stability of probiotic enriched apple snacks. J. Integr. Agric. 2018, 17, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Acevedo, N.C.; Briones, V.; Buera, P.; Aguilera, J.M. Microstructure affects the rate of chemical, physical and color changes during storage of dried apple discs. J. Food Eng. 2008, 85, 222–231. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, M.; Adhikari, B.; Yang, Z. Effect of microwave air spouted drying arranged in two and three-stages on the drying uniformity and quality of dehydrated carrot cubes. J. Food Eng. 2015, 177, 80–89. [Google Scholar] [CrossRef]
- Rocculi, P.; Galindo, F.G.; Mendoza, F.; Wadsö, L.; Romani, S.; Rosa, M.D.; Sjöholm, I. Effects of the application of anti-browning substances on the metabolic activity and sugar composition of fresh-cut potatoes. Postharvest Biol. Technol. 2007, 43, 151–157. [Google Scholar] [CrossRef]
- Krasnova, I.; Dukaļska, L.; Segliņa, D.; Mišina, I.; Kārkliņa, D. Influence of Anti-Browning Inhibitors and Biodegradable Packaging on the Quality of Fresh-Cut Pears. Proc. Latv. Acad. Sci. Sect. B. Nat. Exact, Appl. Sci. 2013, 67, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, A.C.; Gago, C.M.L.; Faleiro, M.L.; Miguel, M.G.C.; Antunes, M.D.C. The effect of edible coatings on the nutritional quality of “Bravo de Esmolfe” fresh-cut apple through shelf-life. LWT—Food Sci. Technol. 2017, 75, 210–219. [Google Scholar] [CrossRef]
- Codex Alimentarius Commision. Working Paper on Elaboration of a Regional Standard for Microbiological Levels in Foods (Prepared by Egypt), CX/NEA 03/16 Food and Agricultural Organization of the United Nations; World Health Organization: Cairo, Egypt, 2003. [Google Scholar]
- Limbo, S.; Piergiovanni, L. Shelf life of minimally processed potatoes: Part 1. Effects of high oxygen partial pressures in combination with ascorbic and citric acids on enzymatic browning. Postharvest Biol. Technol. 2006, 39, 254–264. [Google Scholar] [CrossRef]
- Goyeneche, R.; Agüero, M.V.; Roura, S.; Di Scala, K. Application of citric acid and mild heat shock to minimally processed sliced radish: Color evaluation. Postharvest Biol. Technol. 2014, 93, 106–113. [Google Scholar] [CrossRef]
- Ioannou, I.; Ghoul, M. Prevention of Enzymatic Browning in Fruit and Vegetables. Eur. Sci. J. 2013, 9, 1857–7881. [Google Scholar]
- Barbagallo, R.N.; Chisari, M.; Patanè, C. Use in vivo of natural anti-browning agents against polyphenol oxidase activity in minimally processed eggplant. Chem. Eng. Trans. 2012, 27, 49–54. [Google Scholar] [CrossRef]
- Abd-Elhady, M. Effect of citric acid, calcium lactate and low temperature prefreezing treatment on the quality of frozen strawberry. Ann. Agric. Sci. 2014, 59, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Siddiq, A.; Anwar, F.; Manzoor, M.; Fatima, A. Antioxidant Activity of Different Solvent Extracts of Moringa oleifera Leaves under Accelerated Storage of Sunflower Oil. Asian J. Plant Sci. 2005, 4, 630–635. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.R.; Vijayakumar, M.; Mathela, C.S.; Rao, C.V. In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food Chem. Toxicol. 2009, 47, 2196–2201. [Google Scholar] [CrossRef]
- Vongsak, B.; Sithisarn, P.; Gritsanapan, W. Bioactive contents and free radical scavenging activity of Moringa oleifera leaf extract under different storage conditions. Ind. Crops Prod. 2013, 49, 419–421. [Google Scholar] [CrossRef]
- Das, A.K.; Rajkumar, V.; Verma, A.K.; Swarup, D. Moringa oleifera leaves extract: A natural antioxidant for retarding lipid peroxidation in cooked goat meat patties. Int. J. Food Sci. Technol. 2012, 47, 585–591. [Google Scholar] [CrossRef]
- Mendonca, A.F. Mechanism of Inhibitory Action of Potassium Sorbate in Escherichia coli. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 1992. [Google Scholar]
- Akharume, F.; Singh, K.; Jaczynski, J.; Sivanandan, L. Microbial shelf stability assessment of osmotically dehydrated smoky apples. LWT—Food Sci. Technol. 2018, 90, 61–69. [Google Scholar] [CrossRef]
- Lund, P.A.; De Biase, D.; Liran, O.; Scheler, O.; Mira, N.P.; Cetecioglu, Z.; Fernández, E.N.; Bover-Cid, S.; Hall, R.; Sauer, M.; et al. Understanding How Microorganisms Respond to Acid pH Is Central to Their Control and Successful Exploitation. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Tapia, M.S.; Alzamora, S.M.; Chirife, J. Water Activity in Foods: Fundamentals and Applications, Chapter 10; Barbosa-Cánovas, G.V., Fontana, A.J., Jr., Schmidt, S.J., Labuza, T.P., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2007; ISBN 9780813824086. [Google Scholar] [CrossRef]
- Chirife, J.; Del, M.; Buera, P. Water Activity, Glass Transition and Microbial Stability in Concentrated/Semimoist Food Systems. Food Sci. 1994, 59, 921–927. [Google Scholar] [CrossRef]
- Xu, K.; Wang, A.; Brown, S. Genetic characterization of the Ma locus with pH and titratable acidity in apple. Mol. Breed. 2012, 30, 899–912. [Google Scholar] [CrossRef]
- Soni, N.; Mehta, S.; Satpathy, G.; Gupta, R.K. Estimation of nutritional, phytochemical, antioxidant and antibacterial activity of dried fig (Ficus carica). J. Pharmacogn. Phytochem. 2014, 3, 158–165. [Google Scholar]
- Kutyła-Olesiuk, A.; Nowacka, M.; Wesoły, M.; Ciosek, P. Evaluation of organoleptic and texture properties of dried apples by hybrid electronic tongue. Sens. Actuators B Chem. 2013, 187, 234–240. [Google Scholar] [CrossRef]
- Xiao, M.; Yi, J.; Bi, J.; Zhao, Y.; Peng, J.; Hou, C.; Lyu, J.; Zhou, M. Modification of Cell Wall Polysaccharides during Drying Process Affects Texture Properties of Apple Chips. J. Food Qual. 2018, 2018. [Google Scholar] [CrossRef]
- Djekic, I.; Tomic, N.; Bourdoux, S.; Spilimbergo, S.; Smigic, N.; Udovicki, B.; Ho, G.; Devlieghere, F.; Rajkovic, A. Comparison of three types of drying (supercritical CO2, air and freeze) on the quality of dried apple—Quality index approach. LWT—Food Sci. Technol. 2018, 94, 64–72. [Google Scholar] [CrossRef]
- Li, X.; Wu, X.; Bi, J.; Liu, X.; Li, X.; Guo, C. Polyphenols accumulation effects on surface color variation in apple slices hot air drying process. LWT—Food Sci. Technol. 2019, 108, 421–428. [Google Scholar] [CrossRef]
- Shrestha, L.; Crichton, S.O.J.; Kulig, B.; Kiesel, B.; Hensel, O.; Sturm, B. Comparative analysis of methods and model prediction performance evaluation for continuous online non-invasive quality assessment during drying of apples from two cultivars. Therm. Sci. Eng. Prog. 2020, 18, 100461. [Google Scholar] [CrossRef]
- Chong, C.H.; Law, C.L.; Figiel, A.; Wojdylo, A.; Oziemblowski, M. Colour, phenolic content and antioxidant capacity of some fruits dehydrated by a combination of different methods. Food Chem. 2013, 141, 3889–3896. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.F.; Ahmad, J.; Zhang, H.; Khan, I.; Muhammad, S. Evaluation of phytochemical and medicinal properties of Moringa (Moringa oleifera) as a potential functional food. S. Afr. J. Bot. 2020, 129, 40–46. [Google Scholar] [CrossRef]
- Ntila, S.L.; Ndhlala, A.R.; Mashela, P.W.; Kolanisi, U.; Siwela, M. Supplementation of a complementary white maize soft porridge with Moringa oleifera powder as a promising strategy to increase nutritional and phytochemical values: A research note. S. Afr. J. Bot. 2020, 129, 238–242. [Google Scholar] [CrossRef]
- Chen, C.; Hu, W.; He, Y.; Jiang, A.; Zhang, R. Effect of citric acid combined with UV-C on the quality of fresh-cut apples. Postharvest Biol. Technol. 2016, 111, 126–131. [Google Scholar] [CrossRef]
Microorganisms | Method | Plating Technique | Growth Media | Incubation Temperature | Incubation Period |
---|---|---|---|---|---|
Osmophilic yeast | ISO 21527-2:2008 | Spread | DG 18 | 25 °C | 5 days |
Escherichia coli | ISO 16649-2:2001 | Pour | TBX | 44 °C | 24 h |
Yeast and moulds | NFV 08-059:200 | Pour | YGC | 25 °C | 5 days |
Colour Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|
Lightness (L*) | Redness (a*) | Yellowness (b*) | |||||||
Storage Time (Day) | Storage Time (Day) | Storage Time (Day) | |||||||
Pre-Treatment | 0 | 60 | 120 | 0 | 60 | 120 | 0 | 60 | 120 |
Control | 79.6 ± 3.5 a | 77.2 ± 2.6 a | 75.0 ± 5.6 a | 4.8 ± 2.3 a | 4.8 ± 2.0 a | 7.0 ± 3.3 a | 33.3 ± 4.4 a | 34.2 ± 2.7 a | 33.8 ± 3.6 a |
CMO | 85.6 ± 1.5 b | 85.1 ± 2.6 b | 80.1 ± 2.6 b | 1.5 ± 0.7 b | 0.9 ± 0.9 b | 3.9 ± 2.0 b | 17.9 ± 1.4 b | 21.7 ± 3.2 b | 28.4 ± 4.4 b |
CMOP | 80.8 ± 2.8 a | 80.1 ± 2.9 c | 78.4 ± 2.5 a | 4.0 ± 1.6 a | 3.9 ± 2.0 a | 6.2 ± 1.3 a | 20.5 ± 2.3 b | 21.5 ± 1.9 b | 25.1 ± 2.7 b |
Colour Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|
Lightness (L*) | Redness (a*) | Yellowness (b*) | |||||||
Pre-Treatment | Pre-Treatment | Pre-Treatment | |||||||
Storage Time (Days) | Control | CMO | CMOP | Control | CMO | CMOP | Control | CMO | CMOP |
0 | 79.6 ± 3.5 a | 85.6 ± 1.5 a | 80.8 ± 2.8 a | 4.8 ± 2.3 a | 1.5 ± 0.7 a | 4.0 ± 1.6 a | 33.3 ± 4.4 a | 17.9 ± 1.4 a | 20.5 ± 2.3 a |
60 | 77.2 ± 2.6 b | 85.1 ± 2.6 a | 80.1 ± 2.9 a | 4.8 ± 2.0 a | 0.9 ± 0.9 a | 3.9 ± 2.0 a | 34.2 ± 2.7 a | 21.7 ± 3.2 b | 21.5 ± 1.9 a |
120 | 75.0 ± 5.6 b | 80.1 ± 2.6 b | 78.4 ± 2.5 a | 7.0 ± 3.3 a | 3.9 ± 2.0 b | 6.2 ± 1.3 b | 33.8 ± 3.6 a | 28.4 ± 4.4 c | 25.1 ± 2.7 b |
Browning Index | Whitening Index | |||||
---|---|---|---|---|---|---|
Storage Time (Day) | Storage Time (Day) | |||||
Pre-Treatment | 0 | 60 | 120 | 0 | 60 | 120 |
Control | 57.5 ± 14.0 a | 61.0 ± 9.3 a | 66.1 ± 18.5 a | 60.6 ± 5.6 a | 58.6 ± 3.5 a | 57.2 ± 6.3 a |
CMO | 23.9 ± 2.2 b | 29.4 ± 6.3 b | 46.4 ± 11.0 b | 76.9 ± 1.4 b | 73.6 ± 3.9 b | 65.0 ± 5.0 b |
CMOP | 32.0 ± 5.0 c | 34.0 ± 4.7 b | 43.6 ± 7.5 b | 71.6 ± 2.9 c | 70.4 ± 2.9 c | 66.2 ± 3.7 b |
Browning Index | Whitening Index | |||||
---|---|---|---|---|---|---|
Pre-Treatment | Pre-Treatment | |||||
Storage Time (Days) | Control | CMO | CMOP | Control | CMO | CMOP |
0 | 57.5 ± 14.0 a | 23.9 ± 2.2 a | 32.0 ± 5.0 a | 60.6 ± 5.6 a | 76.9 ± 1.4 a | 71.6 ± 2.9 a |
60 | 61.0 ± 9.3 a | 29.4 ± 6.3 a | 34.0 ± 4.7 a | 58.6 ± 3.5 a | 73.6 ± 3.9 a | 70.4 ± 2.9 a |
120 | 66.1 ± 18.5 a | 46.4 ± 11.0 b | 43.6 ± 7.5 b | 57.2 ± 6.3 a | 65.0 ± 5.0 b | 66.2 ± 3.7 b |
Osmophilic Yeast (cfu/g) | Yeast (cfu/g) | Moulds (cfu/g) | E. coli (cfu/g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Storage Time (Day) | Storage Time (Day) | Storage Time (Day) | Storage Time (Day) | |||||||||
Pre-Treatment | 0 | 60 | 120 | 0 | 60 | 120 | 0 | 60 | 120 | 0 | 60 | 120 |
Control | <100 | <100 | <100 | <1000 | 130 | <10 | 14,000 | <10 | <10 | <10 | <10 | <10 |
CMO | <100 | <100 | <100 | <100 | <10 | <10 | 140 | <10 | <10 | <10 | <10 | <10 |
CMOP | <100 | <100 | <100 | <10 | <10 | <10 | 40 | <10 | <10 | <10 | <10 | <10 |
Total Acidity | Water Activity (AW) | Moisture (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
Storage Time (Day) | Storage Time (Day) | Storage Time (Day) | |||||||
Pre-Treatment | 0 | 60 | 120 | 0 | 60 | 120 | 0 | 60 | 120 |
Control | 2.1 ± 0.2 | 2.9 ± 0.3 | 1.5 ± 0.2 | 0.4 ± 0.0 | 0.3 ± 0.0 | 0.4 ± 0.0 | 7.3 ± 0.7 | 6.5 ± 0.6 | 7.8 ± 0.7 |
CMO | 3.8 ± 0.4 | 4.2 ± 0.5 | 2.9 ± 0.3 | 0.3 ± 0.0 | 0.3 ± 0.0 | 0.5 ± 0.0 | 6.0 ± 0.5 | 6.2 ± 0.6 | 10.4 ± 0.9 |
CMOP | 3.0 ± 0.3 | 4.1 ± 0.5 | 4.1 ± 0.5 | 0.3 ± 0.0 | 0.4 ± 0.0 | 0.4 ± 0.0 | 6.1 ± 0.5 | 7.9 ± 0.7 | 7.7 ± 0.7 |
Extensibility (mm) | |||
---|---|---|---|
Storage Time (day) | |||
Pre-Treatment | 0 | 60 | 120 |
Control | 4.7 ± 0.6 a | 4.5 ± 0.6 a | 6.9 ± 0.6 a |
CMO | 4.1 ± 0.7 a | 5.1 ± 0.4 b | 8.0 ± 0.5 b |
CMOP | 4.7 ± 0.7 a | 6.3 ± 0.3 c | 7.0 ± 0.5 a |
Extensibility (mm) | |||
---|---|---|---|
Pre-Treatment | |||
Storage Time (Day) | Control | CMO | CMOP |
0 | 4.7 ± 0.6 a | 4.1 ± 0.7 a | 4.7 ± 0.7 a |
60 | 4.5 ± 0.6 a | 5.1 ± 0.4 b | 6.3 ± 0.3 b |
120 | 6.9 ± 0.6 b | 8.0 ± 0.5 c | 7.0 ± 0.5 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arendse, W.; Jideani, V. Storage Stability and Consumer Acceptability of Dried Apple: Impact of Citric Acid, Potassium Sorbate and Moringa oleifera Leaf Extract Powder. Foods 2022, 11, 984. https://doi.org/10.3390/foods11070984
Arendse W, Jideani V. Storage Stability and Consumer Acceptability of Dried Apple: Impact of Citric Acid, Potassium Sorbate and Moringa oleifera Leaf Extract Powder. Foods. 2022; 11(7):984. https://doi.org/10.3390/foods11070984
Chicago/Turabian StyleArendse, Washiela, and Victoria Jideani. 2022. "Storage Stability and Consumer Acceptability of Dried Apple: Impact of Citric Acid, Potassium Sorbate and Moringa oleifera Leaf Extract Powder" Foods 11, no. 7: 984. https://doi.org/10.3390/foods11070984
APA StyleArendse, W., & Jideani, V. (2022). Storage Stability and Consumer Acceptability of Dried Apple: Impact of Citric Acid, Potassium Sorbate and Moringa oleifera Leaf Extract Powder. Foods, 11(7), 984. https://doi.org/10.3390/foods11070984