Disentangling Drivers of Food Waste in Households: Evidence from Nigeria
Abstract
:1. Introduction
2. Theoretical Framework and Literature Review
Analytical Framework of Beta Regression
3. Methodology
3.1. Description of the Study Area
3.2. Sample Selection and Data Collection
Data Analysis
4. Results and Discussion
4.1. Socioeconomic Characteristics of Respondents
4.2. Critical Factors for Food Waste Generation
4.3. Variation in the Average Food Waste Proportion between Urban and Rural Households
4.4. Determinants of Food Waste Proportion among Households in the Study Area
4.4.1. Determinants of Food Waste Proportion among Rural Households
4.4.2. Determinants of Food Waste Proportion among Urban Households
5. The Study Limitations
6. Conclusions and Recommendations
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Slavin, J.L.; Lloyd, B. Health Benefits of Fruits and Vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organisation. Why We Need to EAT Well. Family Nutrition Guide; FAO: Rome, Italy, 2004. [Google Scholar]
- Global Gastros. The Role of Food in Human Culture. The Institute for Culinary Preservation and Research, Arizona. Available online: https://globalgastros.com/food-culture/role-of-food-in-human-culture (accessed on 23 March 2022).
- Food and Agriculture Organisation. Socioeconomic Context and Role of Agriculture: Country Fact Sheet on Food and Agriculture Policy Trends; FAO: Rome, Italy, 2017. [Google Scholar]
- National Bureau of Statistics. National Population Estimates. 2016. Available online: http://nigerianstat.gov.ng/download/474 (accessed on 2 March 2022).
- Global Hunger Index. Nigeria. Available online: https://books.google.co.za/books?hl=en&lr=&id=IIvfQPAUTU8C&oi=fnd&pg=PA1&dq=The+global+hunger+index+in+Nigeria+stands+at+31.1+&ots=-7ofghUwh1&sig=NZPULS6Dq-C1irdD7GUR99aZZGo#v=onepage&q&f=false (accessed on 23 March 2022).
- Fabi, C.; English, A.; Mingione, M.; Jona Lasinio, G.J.F. SDG 12.3. 1: Global Food Loss Index; FAO: Rome, Italy, 2018; Available online: https://www.fao.org/documents/card/en/c/CA2622EN/ (accessed on 15 March 2022).
- United Nations. World Population Projected to Reach 9.6 Billion by 2050. 2013. Available online: https://www.un.org/development/desa/en/news/population/un-report-world-population-projected-to-reach-9-6-billion-by-2050.html (accessed on 15 March 2022).
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; Van Otterdijk, R.; Meybeck, A. Global Food Losses and Food Waste. 2011. Available online: https://www.madr.ro/docs/ind-alimentara/risipa_alimentara/presentation_food_waste.pdf (accessed on 23 March 2022).
- Olowa, O.W.; Olowa, O.A. Analysis of food waste attitude among peri-urban households in Ogun State. Sci. Agric. 2017, 19, 31–38. [Google Scholar]
- Waste Resource and Action Programme. Household Food and Drink Waste in UK 2012. Available online: https://www.circularonline.co.uk/tag/household-food-and-drink-waste-in-the-uk-2012/?gclid=CjwKCAjwi6WSBhA-EiwA6NiokxyaIbwsUEHLIJ5HrlqKrTj_cCClxykzPHdSd6KedLPdiU-A3ZSPPhoCZ8kQAvD_BwE (accessed on 26 March 2022).
- Food and Agriculture Organisation. Global Initiative on Food Loss and Waste Reduction; FAO: Rome, Italy, 2017. [Google Scholar]
- United Nations. Sustainable Development Goals (SDGs). Available online: https://www.gavi.org/our-alliance/global-health-development/sustainable-development-goals?gclid=CjwKCAjwi6WSBhA-EiwA6Niok7EO0uiMJmWqUOgx-e0mu3_v-1k6_e28oL_KXsUQMrhS_Tmr3E2O9hoCFHwQAvD_BwE (accessed on 24 March 2022).
- Akerele, D.; Afolayan, S.O.; Oyawole, F.P.; Sanusi, R.A. Socioeconomic determinants of food waste among households in Abeokuta, Ogun State, Nigeria. Niger. J. Agric. Econ. 2017, 7, 25–35. [Google Scholar]
- Kwame, D.; Adjei, A.; Mensah, O. Alternative Strategies to Reducing Post-Harvest Losses of Rice in Nigeria; Policy Briefing; JMK Consulting Ltd.: Accra, Ghana, 2015. [Google Scholar]
- Lisa, K.; Abba, D.M.; Nura, A. Postharvest loss assessment of maize (Zea mays) along its value chain in Nigeria. J. Stored Prod. Postharvest Res. 2019, 10, 13–19. [Google Scholar]
- Sawicka, B. Post-harvest losses of agricultural produce. Sustain. Dev. 2019, 1, 1–16. [Google Scholar]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Aktas, E.; Sahin, H.; Topaloglu, Z.; Oledinma, A.; Huda, A.K.S.; Irani, Z.; Sharif, A.M.; van’t Wout, T.; Kamrava, M. A consumer behavioural approach to food waste. J. Enterp. Inf. Manag. 2018, 31, 658–673. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Yu, E.; Huang, W.; Wang, Z. Home food waste in China and the associated determinants. J. Agrotech. Econ. 2018, 9, 88–99. [Google Scholar]
- Omotayo, A.O.; Olagunju, K.O.; Omotoso, A.B.; Ogunniyi, A.I.; Otekunrin, O.A.; Daud, A.S. Clean water, sanitation and under-five children diarrhea incidence: Empirical evidence from the South Africa’s General Household Survey. Environ. Sci. Pollut. Res. 2021, 28, 63150–63162. [Google Scholar] [CrossRef] [PubMed]
- Omotayo, A.O.; Omotoso, A.B.; Daud, A.S.; Ogunniyi, A.I.; Olagunju, K.O. What drives households’ payment for waste disposal and recycling behaviours? Empirical evidence from South Africa’s General Household Survey. Int. J. Environ. Res. Public Health 2020, 17, 7188. [Google Scholar] [CrossRef]
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [Green Version]
- Jörissen, J.; Priefer, C.; Bräutigam, K.-R. Food waste generation at household level: Results of a survey among employees of two European research centers in Italy and Germany. Sustainability 2015, 7, 2695–2715. [Google Scholar] [CrossRef] [Green Version]
- Lundqvist, J.; De Fraiture, C.; Molden, D. Saving Water: From Field to Fork: Curbing Losses and Wastage in the Food Chain; Indiana University: Bloomington, IN, USA, 2008; pp. 1–36. [Google Scholar]
- Elawad, E.; Agied, M.; Althani, M.; Abusin, S. Towards Sustainable Food System in Qatar: Household Food Waste and Consumption Behavior. 2018. Available online: https://qspace.qu.edu.qa/handle/10576/6775 (accessed on 14 February 2022).
- Hagle, T.M.; Mitchell, G.E., II. Goodness-of-Fit Measures for Probit and Logit Author. Am. J. Political Sci. 1992, 36, 762–784. [Google Scholar] [CrossRef]
- Stancu, V.; Haugaard, P.; Lähteenmäki, L. Determinants of consumer food waste behaviour: Two routes to food waste. Appetite 2016, 96, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Visschers, V.H.; Wickli, N.; Siegrist, M. Sorting out food waste behaviour: A survey on the motivators and barriers of self-reported amounts of food waste in households. J. Environ. Psychol. 2016, 45, 66–78. [Google Scholar] [CrossRef]
- Sun, S.; Lu, Y.; Gao, H.; Jiang, T.; Du, X.; Shen, T.; Wu, P.; Wang, Y. Impacts of food wastage on water resources and environment in China. J. Clean. Prod. 2018, 185, 732–739. [Google Scholar] [CrossRef]
- Statistical Consulting Group. Introduction to SAS. Available online: https://www.merlot.org/merlot/viewMaterial.htm?id=755513 (accessed on 14 March 2022).
- Gallani, S.; Krishnan, R. Applying the Fractional Response Model to Survey Research in Accounting. 2017. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2642854 (accessed on 15 March 2022).
- Ferrari, S.; Cribari-Neto, F. Beta regression for modelling rates and proportions. J. Appl. Stat. 2004, 31, 799–815. [Google Scholar] [CrossRef]
- Smithson, M.; Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta distributed dependent variables. Psychol. Methods 2006, 11, 54–71. [Google Scholar] [CrossRef] [Green Version]
- Yellareddygari, S.K.R.; Pasche, J.S.; Taylor, R.J.; Hua, S.; Gudmestad, N.C. Beta Regression model for predicting the development of pink rot in potato tubers during storage. Plant Dis. 2016, 100, 1118–1124. [Google Scholar] [CrossRef] [Green Version]
- Stata. Fractional Outcome Regression. Available online: https://www.stata.com/features/overview/fractional-outcome-models/ (accessed on 15 March 2022).
- Ferrari, S.; Zeileis, A. Beta Regression in R. J. Stat. Softw. 2010, 34, 1–24. [Google Scholar]
- Meaney, C.; Moineddin, R. A Monte Carlo simulation study comparing linear regression, beta regression, variable-dispersion beta regression and fractional logit regression at recovering average difference measures in a two sample design. BMC Med. Res. Methodol. 2014, 14, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cepeda-Cuervo, E. Beta regression models: Joint mean and variance modeling. J. Stat. Theory Pract. 2015, 9, 134–145. [Google Scholar] [CrossRef]
- Sadiq, Y.A.; Balogun, G.F.; Anjorin, O.J. Spatial distribution of socio-economic factors in Kogi State, Nigeria: Development issues and implication(s). Int. J. Econ. Manag. Eng. 2016, 10, 3726–3733. [Google Scholar]
- Jimba, M.M. Muslims of Kogi State: A Survey. Nigeria Research Network BACKGROUND Paper No. 2; University of Oxford: Oxford, UK, 2012. [Google Scholar]
- Babalola, T.S.; Afolabi, S.K.; Kadiri, W.O.J.; Ayodele, O.J.; Aruleba, J.A.; Kabba, C. Soil and crop management practices among farmers in Kabba/Bunu Local Government Area, Kogi State. Agro-Sci. J. Trop. Agric. Food Environ. Ext. 2015, 14, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Olawepo, R.A.; Fashagba, I. Rural women and child immunization in West Senatorial Districts of Kogi State, Nigeria. J. Geogr. Earth Sci. 2014, 2, 79–96. [Google Scholar]
- Secondi, L.; Principato, L.; Laureti, T. Household food waste behaviour in EU-27 countries: A multilevel analysis. Food Policy 2015, 56, 25–40. [Google Scholar] [CrossRef]
- Cantaragiu, R. The impact of gender on food waste at the consumer level. Studia Univ. Vasile Goldis Arad Ser. Stiinte Econ. 2019, 29, 41–57. [Google Scholar] [CrossRef] [Green Version]
- Omotayo, A.O. Data on the agricultural household’s dietary diversity and health in the South West geopolitical zone of Nigeria. Data Brief 2020, 30, 105413. [Google Scholar] [CrossRef] [PubMed]
- Omotayo, A.O. Farming households’ environment, nutrition and health interplay in Southwest, Nigeria. Int. J. Sci. Res. Agric. Sci. 2016, 3, 84–98. [Google Scholar] [CrossRef]
- Omotayo, A.O.; Aremu, B.R.; Alamu, O.P. Food utilization, nutrition, health and farming households’ income: A critical review of literature. J. Hum. Ecol. 2016, 56, 171–182. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation. Global Food Losses and Food Waste; SP Group: Rome, Italy, 2011. [Google Scholar]
- Horodyska, J.; Pigat, S.; Wonik, J.; Bompola, F.; Cai, D.; Rehm, C.D.; Gonzalez, T.D. Impact of sociodemographic factors on the consumption of tubers in Brazil. Nutr. J. 2021, 20, 54. [Google Scholar] [CrossRef] [PubMed]
- Scott, G.J.; Rosegrant, M.W.; Ringler, C. Global projections for root and tuber crops to the year 2020. Food Policy 2000, 25, 561–597. [Google Scholar] [CrossRef]
- Omotoso, A.; Daud, A.; Adebayo, R.; Omotayo, A. Socioeconomic determinants of rural households’ food crop production in Ogun state, Nigeria. Appl. Ecol. Environ. Res. 2018, 16, 3627–3635. [Google Scholar] [CrossRef]
- Nambol, K.K.; Namo, O.A.K. The contribution of root and tuber crops to food security: A review. J. Agric. Sci. Technol. 2019, 9, 221–233. [Google Scholar]
- Chakona, G.; Shackleton, C.M. Local setting influences the quantity of household food waste in mid-sized South African towns. PLoS ONE 2017, 12, e0189407. [Google Scholar] [CrossRef] [Green Version]
- Taghipour, H.; Amjad, Z.; Aslani, H.; Armanfar, F.; Dehghanzadeh, R. Characterizing and quantifying solid waste of rural communities. J. Mater. Cycles Waste Manag. 2016, 18, 790–797. [Google Scholar] [CrossRef]
- Qi, D.; Roe, B.E. Household food waste: Multivariate regression and principal components analyses of awareness and attitudes among US consumers. PLoS ONE 2016, 11, e0159250. [Google Scholar] [CrossRef]
- Koivupuro, H.K.; Hartikainen, H.; Silvennoinen, K.; Katajajuuri, J.M.; Heikintalo, N.; Reinikainen, A.; Jalkanen, L. Influence of socio-demographical, behavioural and attitudinal factors on the amount of avoidable food waste generated in Finnish households. Int. J. Consum. Stud. 2018, 36, 183–191. [Google Scholar] [CrossRef]
- Schanes, K.; Dobernig, K.; Gözet, B. Food waste matters—a systematic review of household food waste practices and their policy implications. J. Clean. Prod. 2018, 182, 978–999. [Google Scholar] [CrossRef]
- Parizeau, K.; vonMassow, M.; Martin, R. Household-level dynamics of food waste production and related beliefs, attitudes, and behaviours in Guelph, Ontario. Waste Manag. 2015, 35, 207–217. [Google Scholar] [CrossRef]
- Abdelradi, F. Food waste behaviour at the household level: A conceptual framework. Waste Manag. 2017, 71, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Mallinson, L.J.; Russell, J.M.; Barker, M.E. Attitudes and behaviour towards convenience food and food waste in the United Kingdom. Appetite 2016, 103, 17–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Socioeconomic Characteristics | Rural | Urban | Total | ||||||
---|---|---|---|---|---|---|---|---|---|
Freq. | % | Proportion of FW | Freq. | % | Proportion of FW | Freq. | % | Proportion of FW | |
Sex of respondents | |||||||||
Male | 68 | 46.3 | 7.53 | 81 | 67.5 | 11.95 | 149 | 55.8 | 9.93 |
Female | 79 | 53.7 | 6.77 | 39 | 32.5 | 13.73 | 118 | 44.2 | 9.07 |
Marital status | |||||||||
Single | 31 | 21.1 | 7.80 | 31 | 25.8 | 13.39 | 62 | 23.2 | 10.56 |
Married | 96 | 65.3 | 7.16 | 80 | 66.7 | 12.36 | 176 | 65.9 | 9.52 |
Divorced | 3 | 2.0 | 7.33 | 4 | 3.3 | 15.00 | 7 | 2.6 | 11.71 |
Widowed | 17 | 11.6 | 5.65 | 5 | 4.2 | 7.80 | 22 | 8.2 | 6.14 |
Level of education | |||||||||
No formal education | 5 | 3.4 | 6.40 | - | - | - | 5 | 1.9 | 6.40 |
Primary school | 16 | 10.9 | 5.88 | 3 | 2.5 | 8.33 | 19 | 7.1 | 6.26 |
Secondary education | 40 | 27.2 | 7.88 | 4 | 3.3 | 9.50 | 44 | 16.5 | 8.02 |
OND/NCE | 55 | 37.4 | 6.73 | 22 | 18.3 | 12.11 | 77 | 28.8 | 8.27 |
HND/BSc | 29 | 19.7 | 7.23 | 72 | 60.0 | 12.90 | 101 | 37.8 | 11.28 |
Postgraduate | 1 | 0.7 | 15.00 | 19 | 15.8 | 12.90 | 20 | 7.5 | 13.00 |
Others | 1 | 0.7 | 10.00 | - | - | - | 1 | 0.4 | 10.00 |
Main occupation | |||||||||
Civil Servant | 48 | 32.7 | 7.04 | 60 | 50.0 | 12.23 | 108 | 10.4 | 9.92 |
Artisan | 23 | 15.6 | 7.57 | 16 | 13.3 | 13.91 | 39 | 14.6 | 10.17 |
Farming | 29 | 19.7 | 7.10 | - | - | - | 29 | 10.9 | 7.10 |
Private business | 13 | 8.8 | 8.46 | 20 | 16.7 | 12.30 | 33 | 12.4 | 10.79 |
Trading | 33 | 22.4 | 6.45 | 20 | 16.7 | 12.20 | 53 | 19.9 | 8.62 |
Retired | 1 | 0.7 | 6.00 | 4 | 3.3 | 14.25 | 5 | 1.9 | 12.60 |
Monthly income | |||||||||
At most 50,000 | 116 | 78.9 | 6.82 | 33 | 27.5 | 9.98 | 149 | 55.8 | 7.52 |
50,001–150,000 | 31 | 21.1 | 8.23 | 71 | 59.2 | 13.23 | 102 | 38.2 | 11.72 |
150,001–250,000 | - | - | - | 12 | 10.0 | 13.68 | 12 | 4.5 | 13.68 |
250,001–350,000 | - | - | - | 1 | 0.8 | 25.00 | 1 | 0.4 | 25.00 |
350,001–450,00 | - | - | - | 2 | 1.7 | 12.50 | 2 | 0.7 | 12.50 |
450,001–550,000 | - | - | - | 1 | 0.8 | 20.00 | 1 | 0.4 | 20.00 |
Age | |||||||||
18–27 | 14 | 9.5 | 7.00 | 13 | 10.8 | 11.27 | 22 | 10.1 | 9.06 |
28–37 | 37 | 25.2 | 7.68 | 33 | 27.5 | 13.54 | 70 | 26.2 | 10.44 |
38–47 | 41 | 27.9 | 7.15 | 31 | 25.8 | 12.45 | 72 | 27.0 | 9.43 |
48–57 | 36 | 24.5 | 7.25 | 29 | 24.2 | 11.79 | 65 | 24.3 | 9.28 |
58–67 | 17 | 11.6 | 5.82 | 12 | 10.0 | 14.38 | 29 | 10.9 | 9.36 |
68 and above | 2 | 1.4 | 6.00 | 2 | 1.7 | 4.50 | 4 | 1.5 | 5.25 |
HH size | |||||||||
1–5 | 90 | 61.2 | 7.05 | 70 | 58.3 | 13.17 | 160 | 59.9 | 9.72 |
6–10 | 56 | 38.1 | 7.30 | 47 | 39.2 | 11.41 | 103 | 38.6 | 9.17 |
11–15 | 1 | 0.7 | 5.00 | 2 | 1.7 | 15.00 | 3 | 1.1 | 11.67 |
16 and above | - | - | - | 1 | 0.8 | 15.00 | 1 | 0.4 | 15.00 |
Dependency ratio | |||||||||
0–3 | 112 | 76.2 | 7.50 | 106 | 88.3 | 12.73 | 218 | 81.6 | 10.04 |
4–6 | 29 | 19.7 | 6.07 | 10 | 8.3 | 12.90 | 39 | 14.6 | 7.82 |
Above 6 | 6 | 4.1 | 5.33 | 4 | 3.3 | 6.13 | 10 | 3.7 | 5.65 |
HH food expenditure (₦) | |||||||||
At most 15,000 | 4 | 2.7 | 7.75 | 2 | 1.7 | 6.25 | 6 | 2.2 | 7.25 |
15,001–30,000 | 84 | 57.1 | 7.00 | 31 | 25.8 | 10.70 | 115 | 43.1 | 8.00 |
30,001–45,000 | 50 | 34.0 | 6.74 | 48 | 40.0 | 12.74 | 98 | 36.7 | 9.68 |
45,001–60,000 | 8 | 5.4 | 9.50 | 26 | 21.7 | 13.15 | 34 | 12.7 | 12.29 |
60,001–75,000 | 1 | 0.7 | 15.00 | - | - | - | 1 | 0.4 | 15.00 |
75,001–90,000 | - | - | - | 6 | 5.0 | 16.33 | 6 | 2.2 | 16.33 |
90,001–105,000 | - | - | - | 6 | 5.0 | 12.92 | 6 | 2.2 | 12.92 |
105,001 and above | - | - | - | 1 | 0.8 | 30.00 | 1 | 0.4 | 30.00 |
No. of children between 2–10 years | |||||||||
0–2 | 121 | 82.3 | 7.08 | 100 | 83.3 | 12.59 | 221 | 82.8 | 9.58 |
3–5 | 24 | 16.3 | 7.29 | 17 | 14.2 | 11.99 | 41 | 15.4 | 9.24 |
6 and above | 2 | 1.4 | 7.50 | 3 | 2.5 | 13.33 | 5 | 1.9 | 11.00 |
Total | 147 | 100 | 7.12 | 120 | 100 | 12.52 | 267 | 100 | 9.45 |
Characteristics | Rural | Urban | Total | ||||||
---|---|---|---|---|---|---|---|---|---|
Freq. | % | Proportion of FW | Freq. | % | Proportion of FW | Freq. | % | Proportion of FW | |
Average number of meals per day among households | |||||||||
1–2 | 67 | 45.6 | 7.14 | 41 | 34.2 | 11.07 | 108 | 40.4 | 8.63 |
3–4 | 78 | 53.1 | 7.09 | 76 | 63.3 | 13.15 | 154 | 57.7 | 10.08 |
5 and above | 2 | 1.4 | 8.00 | 3 | 2.5 | 16.67 | 5 | 1.9 | 13.2 |
Average number of times eating out per week | |||||||||
Never | 75 | 51.0 | 6.56 | 41 | 34.2 | 10.81 | 116 | 43.4 | 8.06 |
Less than 2 times | 56 | 38.1 | 7.66 | 64 | 53.3 | 12.75 | 120 | 44.9 | 10.37 |
2–4 times | 14 | 9.5 | 7.93 | 13 | 10.8 | 16.31 | 27 | 10.1 | 11.96 |
Above 5 times | 2 | 1.4 | 7.50 | 2 | 1.7 | 16.00 | 4 | 1.5 | 11.75 |
Household food waste self-categorization | |||||||||
Light | 90 | 61.2 | 6.38 | 69 | 57.5 | 11.31 | 159 | 59.6 | 8.52 |
Moderate | 47 | 32.0 | 8.43 | 46 | 38.3 | 13.91 | 93 | 34.8 | 11.14 |
Heavy | 10 | 6.8 | 7.70 | 5 | 4.2 | 16.50 | 15 | 5.6 | 10.63 |
Methods of disposing food not eaten by household | |||||||||
Feed it to pets and animals | 59 | 47.6 | 7.24 | 42 | 37.2 | 11.39 | 101 | 42.6 | 8.97 |
Give it out | 28 | 22.6 | 6.46 | 26 | 23.0 | 11.09 | 54 | 22.8 | 8.69 |
Throw away/dispose | 35 | 28.2 | 6.80 | 41 | 36.3 | 14.20 | 76 | 32.1 | 10.79 |
Others | 2 | 1.6 | 8.00 | 4 | 3.5 | 12.50 | 6 | 2.5 | 11.00 |
Average number of times food is disposed per week | |||||||||
At most 2 | 116 | 78.9 | 6.59 | 74 | 61.7 | 10.86 | 190 | 71.2 | 8.25 |
3–4 | 29 | 19.7 | 9.21 | 32 | 26.7 | 15.58 | 61 | 22.8 | 12.55 |
5 and above | 2 | 1.4 | 8.00 | 14 | 11.7 | 14.36 | 16 | 6.0 | 13.56 |
Food spoilage and season of the year | |||||||||
Raining | 103 | 70.1 | 7.17 | 76 | 63.3 | 12.41 | 179 | 67.0 | 9.36 |
Dry | 36 | 24.5 | 7.11 | 38 | 31.7 | 12.57 | 74 | 27.7 | 9.92 |
Harmattan | 8 | 5.4 | 7.38 | 6 | 5.0 | 13.67 | 14 | 5.2 | 10.07 |
Food waste and festive period | |||||||||
Yes | 110 | 74.8 | 7.35 | 72 | 60.0 | 12.91 | 182 | 68.2 | 9.55 |
No | 33 | 22.4 | 6.43 | 39 | 32.5 | 11.65 | 72 | 27 | 9.26 |
I do not know | 4 | 2.7 | 6.50 | 9 | 7.5 | 13.24 | 13 | 4.9 | 11.18 |
Reasons for food waste among households | |||||||||
Leftover foods | 99 | 67.3 | 63 | 52.5 | 162 | 59.9 | |||
Lack of proper storage | 79 | 53.7 | 39 | 32.5 | 118 | 43.1 | |||
Preparing more than the need | 53 | 36.1 | 56 | 46.7 | 109 | 41.4 | |||
Burning of food | 33 | 22.4 | 20 | 16.7 | 53 | 19.6 | |||
Buying too much | 17 | 11.6 | 24 | 20.0 | 41 | 15.8 | |||
Bad quality | 14 | 9.5 | 19 | 15.8 | 33 | 12.7 | |||
Wrong preservation method | 28 | 19.0 | 2 | 1.7 | 30 | 10.4 | |||
Growth of mold | 4 | 2.7 | 4 | 3.3 | 8 | 3.0 | |||
Expired food | 1 | 0.7 | 4 | 3.3 | 5 | 2.0 |
Proportion (%) of Household Food Waste/Month | Rural | Urban | Total | |||
---|---|---|---|---|---|---|
Frequency | % | Frequency | % | Frequency | % | |
At most 5 | 64 | 43.5 | 23 | 19.2 | 87 | 32.6 |
6–10 | 73 | 49.7 | 35 | 29.2 | 108 | 40.4 |
11–15 | 8 | 5.4 | 33 | 27.5 | 41 | 15.4 |
16–20 | 2 | 1.4 | 22 | 18.3 | 24 | 9.0 |
21–25 | - | - | 6 | 5.0 | 6 | 2.2 |
Above 25 | - | - | 1 | 0.8 | 1 | 0.4 |
Total | 147 | 100 | 120 | 100 | 267 | 100 |
Mean | 7.1% | 12.5% | 9.5% | |||
S.D | 3.5 | 6.3 | 5.6 | |||
Skewness | 0.7 | 0.3 | 0.9 |
Rural N = 147 | Urban N = 120 | Statistics | |||
---|---|---|---|---|---|
Mean | Standard deviation | Mean | Standard deviation | Z-value | p-value |
0.071 | 0.035 | 0.125 | 0.063 | 2.55 | 0.0054 *** |
Variable | Rural | Urban | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Coeff. | Std. Error | z | p-Value | dy/dx | Coeff. | Std. Error | Z | p-Value | dy/dx | |
Sx(X1) | 0.2092 *** | 0.07499 | 2.79 | 0.005 | 0.01347 | 0.0611 | 0.09541 | 0.64 | 0.522 | 0.00635 |
AgM(X2) | 0.0061 | 0.00497 | 1.23 | 0.218 | 0.00039 | −0.0032 | 0.00604 | −0.52 | 0.602 | −0.00033 |
Mrst(X3) | −0.0645 | 0.08111 | −0.79 | 0.427 | −0.00415 | 0.0823 | 0.10593 | 0.78 | 0.437 | 0.00853 |
SchY(X4) | −0.0096 | 0.00940 | −1.02 | 0.309 | −0.00061 | 0.0082 | 0.01289 | 0.63 | 0.526 | 0.00086 |
WrkEx(X5) | −0.0261 *** | 0.00747 | −3.50 | 0.000 | −0.00167 | −0.0029 | 0.00768 | −0.38 | 0.702 | −0.00031 |
HhS(X6) | 0.0199 | 0.02260 | 0.88 | 0.378 | 0.00127 | −0.0155 | 0.02061 | −0.75 | 0.452 | −0.00162 |
DpdR(X7) | −0.0563 * | 0.03035 | −1.86 | 0.064 | −0.00360 | −0.1613 *** | 0.04541 | −3.55 | 0.000 | −0.01691 |
MntInM(X8) | 3.58 × 106 ** | 1.43 × 106 | 2.51 | 0.012 | 2.29 × 107 | 1.83 × 106 *** | 6.49 × 107 | 2.81 | 0.005 | 1.91 × 107 |
HhFExpM(X9) | 5.48 × 106 | 4.27 × 106 | 1.28 | 0.199 | 3.50 × 107 | 5.98 × 106 ** | 2.68 × 106 | 2.23 | 0.026 | 6.26 × 107 |
HhED(X10) | −0.0224 | 0.05565 | −0.40 | 0.687 | −0.00143 | 0.1744 *** | 0.06449 | 2.70 | 0.007 | 0.01826 |
HhEO(X11) | −0.0265 | 0.03775 | −0.70 | 0.483 | −0.00169 | 0.1747 *** | 0.04487 | 3.89 | 0.000 | 0.01830 |
TrLF(X12) | 0.1765 *** | 0.03640 | 4.85 | 0.000 | 0.01128 | 0.1083 *** | 0.02951 | 3.67 | 0.000 | 0.01134 |
SnY(X13) | −0.00097 | 0.08117 | −0.01 | 0.990 | −0.00006 | 0.1393 | 0.10385 | 1.34 | 0.180 | 0.01439 |
FWFp(X14) | 0.0851 | 0.08992 | 0.95 | 0.344 | 0.00534 | −0.0150 | 0.10081 | −0.15 | 0.882 | −0.00157 |
_cons | −3.0166 | 0.27586 | −10.94 | 0.000 | −3.0352 | 0.37989 | −7.99 | 0.000 | ||
scale cons | 4.3100 | 0.1177 | 36.61 | 0.000 | 3.6948 | 0.1295 | 28.53 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sunday, C.O.; Sowunmi, F.A.; Obayelu, O.A.; Awoyemi, A.E.; Omotayo, A.O.; Ogunniyi, A.I. Disentangling Drivers of Food Waste in Households: Evidence from Nigeria. Foods 2022, 11, 1103. https://doi.org/10.3390/foods11081103
Sunday CO, Sowunmi FA, Obayelu OA, Awoyemi AE, Omotayo AO, Ogunniyi AI. Disentangling Drivers of Food Waste in Households: Evidence from Nigeria. Foods. 2022; 11(8):1103. https://doi.org/10.3390/foods11081103
Chicago/Turabian StyleSunday, Calvin Oluwafemi, Fatai Abiola Sowunmi, Oluwakemi Adeola Obayelu, Abiodun Emmanuel Awoyemi, Abiodun Olusola Omotayo, and Adebayo Isaiah Ogunniyi. 2022. "Disentangling Drivers of Food Waste in Households: Evidence from Nigeria" Foods 11, no. 8: 1103. https://doi.org/10.3390/foods11081103
APA StyleSunday, C. O., Sowunmi, F. A., Obayelu, O. A., Awoyemi, A. E., Omotayo, A. O., & Ogunniyi, A. I. (2022). Disentangling Drivers of Food Waste in Households: Evidence from Nigeria. Foods, 11(8), 1103. https://doi.org/10.3390/foods11081103