In-Line Estimation of Fat Marbling in Whole Beef Striploins (Longissimus lumborum) by NIR Hyperspectral Imaging. A Closer Look at the Role of Myoglobin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Design
2.1.1. Calibration
- Every whole striploin was scanned with a NIR instrument on both sides, lateral and medial, for a total of 56 measurements. The temperature of the samples was in the range of 5–8 °C.
- Every whole loin was sliced into 12–15 slices of 3 cm thickness, depending on length (Figure 1). Every slice was scanned on one side with the NIR instrument, a total of 412 samples.
- Every slice was then photographed, on the same side as the one scanned with NIR.
- The photos were evaluated by a trained sensory panel that produced a marbling score for each slice.
- IMF was determined in two slices out of 14 loins (the second group of samples). The two slices were cut close to each of the two ends of the loin (Figure 1).
2.1.2. Test in Industry
2.1.3. Effect of Blooming
2.2. NIR Measurements
2.3. Photography of Beef Slices
2.4. Determination of IMF
2.5. Sensory Evaluation of Marbling
2.6. Instrument Calibration
3. Results and Discussion
3.1. Sensory Assessment of Marbling
3.2. NIR Spectra and Fat Estimates
3.3. Modelling of Marbling Based on NIR
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corbin, C.H.; O’Quinn, T.G.; Garmyn, A.J.; Legako, J.F.; Hunt, M.R.; Dinh, T.T.N.; Rathmann, R.J.; Brooks, J.C.; Miller, M.F. Sensory evaluation of tender beef strip loin steaks of varying marbling levels and quality treatments. Meat Sci. 2015, 100, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Killinger, K.M.; Calkins, C.R.; Umberger, W.J.; Feuz, D.M.; Eskridge, K.M. Consumer sensory acceptance and value for beef steaks of similar tenderness, but differing in marbling level. J. Anim. Sci. 2004, 82, 3294–3301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Quinn, T.G.; Brooks, J.C.; Polkinghorne, R.J.; Garmyn, A.J.; Johnson, B.J.; Starkey, J.D.; Rathmann, R.J.; Miller, M.F. Consumer assessment of beef strip loin steaks of varying fat levels. J. Anim. Sci. 2012, 90, 626–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iida, F.; Saitou, K.; Kawamura, T.; Yamaguchi, S.; Nishimura, T. Effect of fat content on sensory characteristics of marbled beef from Japanese Black steers. Anim. Sci. J. 2015, 86, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, D.M. Objective on-line assessment of marbling: A brief review. Aust. J. Exp. Agric. 2004, 44, 681–685. [Google Scholar] [CrossRef]
- Cheng, W.; Cheng, J.; Sun, D.W.; Pu, H. Marbling Analysis for Evaluating Meat Quality: Methods and Techniques. Compr. Rev. Food Sci. Food Saf. 2015, 14, 523–535. [Google Scholar] [CrossRef]
- Muñoz, I.; Rubio-Celorio, M.; Garcia-Gil, N.; Guàrdia, M.D.; Fulladosa, E. Computer image analysis as a tool for classifying marbling: A case study in dry-cured ham. J. Food Eng. 2015, 166, 148–155. [Google Scholar] [CrossRef]
- Lee, B.; Choi, Y.M. Correlation of Marbling Characteristics with Meat Quality and Histochemical Characteristics in Longissimus Thoracis Muscle from Hanwoo Steers. Food Sci. Anim. Resour. 2019, 39, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Faucitano, F.L.; Rivest, J.; Daigle, J.P.; Lévesque, J.; Gariepy, C. Distribution of intramuscular fat content and marbling within the longissimus muscle of pigs. Can. J. Anim. Sci. 2004, 84, 57–61. [Google Scholar] [CrossRef]
- Savell, J.W.; Cross, H.R.; Smith, G.C. Percentage Ether Extractable Fat and Moisture Content of Beef Longissimus Muscle as Related to USDA Marbling Score. J. Food Sci. 1986, 51, 838. [Google Scholar] [CrossRef]
- Cameron, P.J.; Zembayashi, M.; Lunt, D.K.; Mitsuhashi, T.; Mitsumoto, M.; Ozawa, S.; Smith, B. Relationship between Japanese beef marbling standard and intramuscular lipid in the M. longissimus thoracis of Japanese Black and American Wagyu Cattle. Meat Sci. 1994, 38, 361–364. [Google Scholar] [CrossRef]
- O’Farrell, M.; Wold, J.P.; Høy, M.; Tschudi, J.; Schulerud, H. On-line fat content classification of inhomogeneous pork trimmings using multispectral near infrared interactance imaging. J. Near Infrared Spec. 2010, 18, 135–146. [Google Scholar] [CrossRef]
- Wold, J.P.; O’Farrel, M.; Høy, M.; Tschudi, J. On-line determination and control of fat content in batches of beef trimmings by NIR imaging spectroscopy. Meat Sci. 2011, 89, 317–324. [Google Scholar] [CrossRef]
- Wold, J.P.; Bjerke, F.; Måge, I. Automatic control of fat content in multiple batches of meat trimmings by process analytical technology. Fleischwirtschaft 2016, 31, 69–74. [Google Scholar]
- Aredo, V.; Velásquez, L.; Siche, R. Prediction of beef marbling using hyperspectral imaging (HSI) and partial least squares regression (PLSR). Sci. Agropecu. 2017, 8, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Büning-Pfaue, H. Analysis of water in food by near infrared spectroscopy. Food Chem. 2003, 82, 107–115. [Google Scholar] [CrossRef]
- Chung, S.H.; Cerussi, A.E.; Klifa, C.; Baek, H.M.; Birgul, O.; Gulsen, G. In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy. Phys. Med. Biol. 2008, 53, 6713–6727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wold, J.P.; Veiseth-Kent, E.; Høst, V.; Løvland, A. Rapid on-line detection and grading of wooden breast myopathy in chicken fillets by near-infrared spectroscopy. PLoS ONE 2017, 12, e0173384. [Google Scholar] [CrossRef] [PubMed]
- Millar, S.J.; Moss, B.W.; Stevenson, M.H. Some Observations on the Absorption Spectra of Various Myoglobin Derivatives Found in Meat. Meat Sci. 1996, 42, 277–288. [Google Scholar] [CrossRef]
- Mancini, R.A.; Hunt, M.C. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef]
- Bowen, W.J. The absorption spectra and extinction coefficients of myoglobin. J. Biol. Chem. 1949, 179, 235–245. [Google Scholar] [CrossRef]
- Hamaoka, T.; McCully, K.K. Review of early development of near-infrared spectroscopy and recent advancement of studies on muscle oxygenation and oxidative metabolism. J. Physiol. Sci. 2019, 69, 799–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, M.; Ferrari, M.; Quaresima, V. Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. J. Biomed. Opt. 2007, 12, 062104. [Google Scholar]
- Sorland, G.H.; Larsen, P.M.; Lundby, F. Determination of Total Fat and Moisture Content in Meat Using Low Field NMR. Meat Sci. 2004, 66, 543–550. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-trending of Near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Martens, H.; Stark, E. Extended multiplicative signal correction and spectral interference subtraction: New preprocessing methods for near infrared spectroscopy. J. Pharma. Biomed. Anal. 1991, 9, 625–635. [Google Scholar] [CrossRef]
- Nieder, A.; Miller, E.K. Coding of Cognitive Magnitude. Neuron 2003, 37, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Dehaene, S. The neural basis of the Weber-Fechner law: A logarithmic mental number line. Trends Cogn. Sci. 2003, 7, 145–147. [Google Scholar] [CrossRef]
- Seideman, S.C.; Cross, H.R.; Smith, G.C.; Durland, P.R. Factors associated with fresh meat color: A review. J. Food Qual. 1984, 6, 11237. [Google Scholar] [CrossRef]
- Jose, C.; McGilchrist, P. Ageing as a method to increase bloom depth and improve retail color in beef graded AUS-MEAT colur 4. Meat Sci. 2022, 183, 108665. [Google Scholar] [CrossRef]
- Kuenstner, J.T.; Norris, K.H. Spectrophotometry of human hemoglobin in the near infrared region from 1000 to 2500 nm. J. Near Infrared Spectrosc. 1994, 2, 59–65. [Google Scholar] [CrossRef]
- Wold, J.P.; O’Farrell, M.; Andersen, P.V.; Tschudi, J. Optimization of Instrument Design for In-Line Monitoring of Dry Matter Content in Single Potatoes by NIR Interaction Spectroscopy. Foods 2021, 10, 828. [Google Scholar] [CrossRef] [PubMed]
Loin Slices | Calibration (n = 412) | Test In-Line (n = 60) | ||||
---|---|---|---|---|---|---|
#LV a | R2 | RMSECV b | R2 | RMSEP b | Offset | |
Abs | 5 | 0.81 | 1.0 | 0.82 | 0.89 | 0.7 |
SNV | 4 | 0.81 | 1.0 | 0.81 | 0.95 | 1.0 |
EMSC | 2 | 0.26 | 2.1 | 0.15 | 2.20 | 0.1 |
Whole Loins | Calibration (n = 28) | Test In-Line (n = 30) | ||||
Abs | 5 | 0.82 | 0.98 | 0.76 | 1.14 | 0.7 |
SNV | 4 | 0.87 | 0.82 | 0.82 | 0.88 | 0 |
EMSC | 2 | 0.24 | 2.1 | 0.15 | 1.93 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wold, J.P.; Solberg, L.E.; Gaarder, M.Ø.; Carlehøg, M.; Sanden, K.W.; Rødbotten, R. In-Line Estimation of Fat Marbling in Whole Beef Striploins (Longissimus lumborum) by NIR Hyperspectral Imaging. A Closer Look at the Role of Myoglobin. Foods 2022, 11, 1219. https://doi.org/10.3390/foods11091219
Wold JP, Solberg LE, Gaarder MØ, Carlehøg M, Sanden KW, Rødbotten R. In-Line Estimation of Fat Marbling in Whole Beef Striploins (Longissimus lumborum) by NIR Hyperspectral Imaging. A Closer Look at the Role of Myoglobin. Foods. 2022; 11(9):1219. https://doi.org/10.3390/foods11091219
Chicago/Turabian StyleWold, Jens Petter, Lars Erik Solberg, Mari Øvrum Gaarder, Mats Carlehøg, Karen Wahlstrøm Sanden, and Rune Rødbotten. 2022. "In-Line Estimation of Fat Marbling in Whole Beef Striploins (Longissimus lumborum) by NIR Hyperspectral Imaging. A Closer Look at the Role of Myoglobin" Foods 11, no. 9: 1219. https://doi.org/10.3390/foods11091219
APA StyleWold, J. P., Solberg, L. E., Gaarder, M. Ø., Carlehøg, M., Sanden, K. W., & Rødbotten, R. (2022). In-Line Estimation of Fat Marbling in Whole Beef Striploins (Longissimus lumborum) by NIR Hyperspectral Imaging. A Closer Look at the Role of Myoglobin. Foods, 11(9), 1219. https://doi.org/10.3390/foods11091219