Addition of Amaranth Flour of Different Particle Sizes at Established Doses in Wheat Flour to Achieve a Nutritional Improved Wheat Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Wheat–Amaranth Flour Preparation
2.3. Dough and Bread Making Preparation
2.4. Proximate Analysis
2.5. Determination of Mineral Content by Atomic Absorption Spectrometry
- E—mineral element concentration, mg/100 g;
- C—the concentration measured on the calibration curve, mg/L;
- F—dilution factor;
- V—sample volume, mL;
- M—sample mass taken in the analysis, g.
2.6. Amino Acid Content Determination
2.7. Baking Characteristics Determination of Flour Samples Formulated
2.7.1. Dynamic Rheological Tests
2.7.2. Empirical Rheological Tests
2.8. Evaluation of Bread Physical and Textural Characteristics
2.9. Bread Colour Measurement
2.10. Bread Sensorial Properties
2.11. Statistical Analysis
3. Results
3.1. Nutritional Characteristics of Wheat Flour and Amaranth Flour Fractions
3.2. The Baking Characteristics of the Optimal Wheat–Amaranth Composite Flour and the Quality of the Bread
3.3. Advanced Characterization of the Bread Obtained from Optimal Wheat–Amaranth Composite Flour for Each Amaranth Flour Particle Size Studied
3.3.1. The Physical Characteristics of Optimal Bread
3.3.2. Texture Parameters of the Optimal Breads
3.3.3. Nutritional Composition and Energy Value of Breads with Amaranth Flour at the Optimal Addition Dose for Each Studied Particle Size
3.3.4. Macro- and Micro-Elements Content of the Optimal Bread Samples
3.3.5. Determining the Amino Acid Content of Optimal Bread Samples
3.3.6. Sensory Analysis of Breads Obtained from Optimal Composite Flours
3.4. Evaluating Relationships between Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WF | wheat flour |
AF | amaranth flour |
O_AL | optimal composite flour with large particle-size amaranth flour |
O_AM | optimal composite flour with medium particle-size amaranth flour |
O_AS | optimal composite flour with small particle-size amaranth flour |
References
- Martinez, M.M.; Gomez, M. Current Trends in the Realm of Baking: When Indulgent Consumers Demand Healthy Sustainable Foods. Foods 2019, 8, 518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vignola, M.B.; Moiraghi, M.; Salvucci, E.; Baroni, M.V.; Perez, G. Whole meal and white flour from Argentine wheat genotypes: Mineral and arabinoxylan differences. J. Cereal Sci. 2016, 71, 217–223. [Google Scholar] [CrossRef]
- Raczyk, M.; Kruszewski, B.; Michałowska, D. Effect of Coconut and Chestnut Flour Supplementations on Texture, Nutritional and Sensory Properties of Baked Wheat Based Bread. Molecules 2021, 26, 4641. [Google Scholar] [CrossRef] [PubMed]
- Raczyk, M.; Polanowska, K.; Kruszewski, B.; Grygier, A.; Michałowska, D. Effect of Spirulina (Arthrospira platensis) Supplementation on Physical and Chemical Properties of Semolina (Triticum durum) Based Fresh Pasta. Molecules 2022, 27, 355. [Google Scholar] [CrossRef]
- Raczyk, M.; Kruszewski, B.; Zachariasz, E. Effect of Tomato, Beetroot and Carrot Juice Addition on Physicochemical, Antioxidant and Texture Properties of Wheat Bread. Antioxidants 2022, 11, 2178. [Google Scholar] [CrossRef]
- Salas-Salvadó, J.; Bulló, M.; Pérez-Heras, A.; Ros, E. Dietary fibre, nuts and cardiovascular diseases. Br. J. Nutr. 2006, 96, S45–S51. [Google Scholar] [CrossRef] [Green Version]
- Ngugi, C.C.; Oyoo-Okoth, E.; Manyala, J.O.; Fitzsimmons, K.; Kimotho, A. Characterization of the nutritional quality of amaranth leaf protein concentrates and suitability of fish meal replacement in Nile tilapia feeds. Aquac. Rep. 2017, 5, 62–69. [Google Scholar] [CrossRef]
- Alonso-Miravalles, L.; O’Mahony, J.A. Composition, Protein Profile and Rheological Properties of Pseudocereal-Based Protein-Rich Ingredients. Foods 2018, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Coțovanu, I.; Mironeasa, S. Impact of Different Amaranth Particle Sizes Addition Level on Wheat Flour Dough Rheology and Bread Features. Foods 2021, 10, 1539. [Google Scholar] [CrossRef]
- Joshi, K.; Kushwaha, A.; Kulshrestha, K. Development and Evaluation of Amaranth-Soy-Wheat Composite Flours. Eur. J. Nutr. Food Saf. 2019, 122–133. [Google Scholar] [CrossRef]
- Schoenlechner, R.; Drausinger, J.; Ottenschlaeger, V.; Jurackova, K.; Berghofer, E. Functional Properties of Gluten-Free Pasta Produced from Amaranth, Quinoa and Buckwheat. Plant Foods Hum. Nutr. 2010, 65, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, M.; Schröter, D.; Esders, S.; Neugart, S.; Farquharson, F.M.; Duncan, S.H.; Schreiner, M.; Louis, P.; Maul, R.; Rohn, S. Chlorogenic acid versus amaranth’s caffeoylisocitric acid—Gut microbial degradation of caffeic acid derivatives. Food Res. Int. 2017, 100, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Penella, J.; Wronkowska, M.; Soral-Smietana, M.; Haros, M. Effect of whole amaranth flour on bread properties and nutritive value. LWT—Food Sci. Technol. 2013, 50, 679–685. [Google Scholar] [CrossRef] [Green Version]
- Iglesias-Puig, E.; Monedero, V.; Haros, M. Bread with whole quinoa flour and bifidobacterial phytases improve contribution to dietary mineral intake and their bioavailability without substantial loss of bread quality. LWT—Food Sci. Technol. 2015, 60, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Brend, Y.; Galili, L.; Badani, H.; Hovav, R.; Galili, S. Total Phenolic Content and Antioxidant Activity of Red and Yellow Quinoa (Chenopodium quinoa Willd.) Seeds as Affected by Baking and Cooking Conditions. Food Nutr. Sci. 2012, 3, 1150–1155. [Google Scholar] [CrossRef] [Green Version]
- Coţovanu, I.; Mironeasa, S. Effects of molecular characteristics and microstructure of amaranth particle sizes on dough rheology and wheat bread characteristics. Sci. Rep. 2022, 12, 1–14. [Google Scholar] [CrossRef]
- Chikpah, S.K.; Korese, J.K.; Hensel, O.; Sturm, B.; Pawelzik, E. Rheological properties of dough and bread quality characteristics as influenced by the proportion of wheat flour substitution with orange-fleshed sweet potato flour and baking conditions. LWT—Food Sci. Technol. 2021, 147, 111515. [Google Scholar] [CrossRef]
- Edun, A.A.; Olatunde, G.O.; Shittu, T.A.; Adeogun, A.I. Flour, dough and bread properties of wheat flour substituted with orange-fleshed sweetpotato flour. J. Culin. Sci. Technol. 2018, 17, 268–289. [Google Scholar] [CrossRef]
- Rosales-Juárez, M.; González-Mendoza, B.; López-Guel, E.C.; Lozano-Bautista, F.; Pérez, J.J.C.; Gutierrez, G.; Farrera-Rebollo, R.; Calderón-Domínguez, G. Changes on Dough Rheological Characteristics and Bread Quality as a Result of the Addition of Germinated and Non-Germinated Soybean Flour. Food Bioprocess Technol. 2007, 1, 152–160. [Google Scholar] [CrossRef]
- Cappelli, A.; Oliva, N.; Cini, E. Stone milling versus roller milling: A systematic review of the effects on wheat flour quality, dough rheology, and bread characteristics. Trends Food Sci. Technol. 2020, 97, 147–155. [Google Scholar] [CrossRef]
- Dhaka, V.; Khatkar, B. Influence of gluten addition on rheological, pasting, thermal, textural properties and bread making quality of wheat varieties. Qual. Assur. Saf. Crop. Foods 2015, 7, 239–249. [Google Scholar] [CrossRef]
- Goesaert, H.; Brijs, K.; Veraverbeke, W.; Courtin, C.; Gebruers, K.; Delcour, J. Wheat flour constituents: How they impact bread quality, and how to impact their functionality. Trends Food Sci. Technol. 2005, 16, 12–30. [Google Scholar] [CrossRef]
- Ma, S.; Wang, Z.; Liu, N.; Zhou, P.; Bao, Q.; Wang, X. Effect of wheat bran dietary fibre on the rheological properties of dough during fermentation and Chinese steamed bread quality. Int. J. Food Sci. Technol. 2020, 56, 1623–1630. [Google Scholar] [CrossRef]
- Mlakar, S.G.; Turinek, M.; Jakop, M.; Bavec, M.; Bavec, F. Nutrition value and use of grain amaranth: Potential future application in bread making. Agricultura 2009, 6, 43–53. [Google Scholar]
- Bodroža-Solarov, M.; Filipčev, B.; Kevresan, Z. Quality of bread supplemented with popped Amaranthus cruentus grain. J. Food Process Eng. 2008, 31, 602–618. [Google Scholar] [CrossRef]
- Sanz-Ponce, N.; Sanz-Penella, J.M.; Haros, M. Whole amaranth flour as potential bread-making ingredient. In Proceedings of the 2009 Conference—Baking Ingredients, Enzymes, and Technology, Barcelona, Spain, 16–17 May 2007. [Google Scholar]
- Coţovanu, I.; Mironeasa, S. Features of Bread Made from Different Amaranth Flour Fractions Partially Substituting Wheat Flour. Appl. Sci. 2022, 12, 897. [Google Scholar] [CrossRef]
- Coțovanu, I.; Stoenescu, G.; Mironeasa, S. Amaranth influence on wheat flour dough rheology: Optimal particle size and amount of flour replacement. J. Microbiol. Biotechnol. Food Sci. 2020, 10, 336–373. [Google Scholar] [CrossRef]
- ICC. Standard Methods of the International Association for Cereal Chemistry. Methods 110/1, 105/2, 136, 104/1; 173 International Association for Cereal Chemistry: Vienna, Austria, 2010. [Google Scholar]
- Dabadé, D.S.; Jacxsens, L.; Miclotte, L.; Abatih, E.; Devlieghere, F.; De Meulenaer, B. Survey of multiple biogenic amines and correlation to microbiological quality and free amino acids in foods. Food Control 2020, 120, 107497. [Google Scholar] [CrossRef]
- Gifty, A.G.; De Meulenaer, B.; Olango, T.M. Variation in tuber proximate composition, sugars, fatty acids and amino acids of eight Oromo dinich (Plectranthus edulis) landraces experimentally grown in Ethiopia. J. Food Compos. Anal. 2018, 67, 191–200. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 19th ed.; AOAC: Washington, DC, USA, 2005. [Google Scholar]
- SR 90:2007; Wheat Flour. Analysis Method. Romanian Standards Association: Bucharest, Romania, 2007.
- SR ISO 11035:2007; Sensory Analysis—Identification and Selection of Descriptors for Establishing a Sensory Profile by a Multidimensional Approach. International Organization for Standardization: Geneva, Switzerland, 1994.
- Alencar, N.M.M.; Steel, C.J.; Alvim, I.D.; de Morais, E.C.; Bolini, H.M.A. Addition of quinoa and amaranth flour in gluten-free breads: Temporal profile and instrumental analysis. LWT—Food Sci. Technol. 2015, 62, 1011–1018. [Google Scholar] [CrossRef]
- Sundarram, A.; Murthy, T.P.K. α-amylase production and applications: A review. J. Appl. Environ. Microbiol. 2014, 2, 166–175. [Google Scholar] [CrossRef]
- Oszvald, M.; Tamás, C.; Rakszegi, M.; Tömösközi, S.; Békés, F.; Tamás, L. Effects of incorporated amaranth albumins on the functional properties of wheat dough. J. Sci. Food Agric. 2009, 89, 882–889. [Google Scholar] [CrossRef]
- D’Amico, S.; Schoenlechner, R. Amaranth: Its unique nutritional and health-promoting attributes. Gluten-Free. Anc. Grains 2017, 6, 131–159. [Google Scholar] [CrossRef]
- Alvarez-Jubete, L.; Arendt, E.K.; Gallagher, E. Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci. Technol. 2010, 21, 106–113. [Google Scholar] [CrossRef]
- Mir, N.A.; Riar, C.S.; Singh, S. Nutritional constituents of pseudo cereals and their potential use in food systems: A review. Trends Food Sci. Technol. 2018, 75, 170–180. [Google Scholar] [CrossRef]
- Rocchetti, G.; Gregorio, R.P.; Lorenzo, J.M.; Barba, F.J.; Oliveira, P.G.; Prieto, M.A.; Simal-Gandara, J.; Mosele, J.I.; Motilva, M.; Tomas, M.; et al. Functional implications of bound phenolic compounds and phenolics–food interaction: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 811–842. [Google Scholar] [CrossRef]
- Venskutonis, P.R.; Kraujalis, P. Nutritional Components of Amaranth Seeds and Vegetables: A Review on Composition, Properties, and Uses. Compr. Rev. Food Sci. Food Saf. 2013, 12, 381–412. [Google Scholar] [CrossRef]
- Steadman, K.; Burgoon, M.; Lewis, B.; Edwardson, S.; Obendorf, R. Buckwheat Seed Milling Fractions: Description, Macronutrient Composition and Dietary Fibre. J. Cereal Sci. 2001, 33, 271–278. [Google Scholar] [CrossRef]
- Miranda-Ramos, K.C.; Sanz-Ponce, N.; Haros, C.M. Evaluation of technological and nutritional quality of bread enriched with amaranth flour. LWT 2019, 114, 108418. [Google Scholar] [CrossRef]
- Dyner, L.; Drago, S.R.; Piñeiro, A.; Sánchez, H.; González, R.; Villaamil, E.; Valencia, M.E. Composition and potential contribution of iron, calcium and zinc of bread and pasta made with wheat and amaranth flours. Arch. Latinoam. Nutr. 2007, 57, 69–78. [Google Scholar]
- Skrbic, B.; Filipčev, B. Nutritional and sensory evaluation of wheat breads supplemented with oleic-rich sunflower seed. Food Chem. 2008, 108, 119–129. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Miranda, M.; Vergara, J.; Uribe, E.; Puente, L.; Martínez, E.A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: A review. J. Sci. Food Agric. 2010, 90, 2541–2547. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.; O’Flaherty, J.; Brunton, N.; Arendt, E.; Gallagher, E. The utilisation of barley middlings to add value and health benefits to white breads. J. Food Eng. 2011, 105, 493–502. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Caboni, M.F. Simultaneous Determination of Phenolic Compounds and Saponins in Quinoa (Chenopodium quinoa Willd) by a Liquid Chromatography–Diode Array Detection–Electrospray Ionization–Time-of-Flight Mass Spectrometry Methodology. J. Agric. Food Chem. 2011, 59, 10815–10825. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Khatkar, B.S. Thermal, pasting and morphological properties of starch granules of wheat (Triticum aestivum L.) varieties. J. Food Sci. Technol. 2017, 54, 2403–2410. [Google Scholar] [CrossRef]
- Hansen, J.Ø.; Skrede, A.; Mydland, L.T.; Øverland, M. Fractionation of rapeseed meal by milling, sieving and air classification—Effect on crude protein, amino acids and fiber content and digestibility. Anim. Feed Sci. Technol. 2017, 230, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Petraru, A.; Ursachi, F.; Amariei, S. Nutritional Characteristics Assessment of Sunflower Seeds, Oil and Cake. Perspective of Using Sunflower Oilcakes as a Functional Ingredient. Plants 2021, 10, 2487. [Google Scholar] [CrossRef]
- Rybicka, I.; Doba, K.; Bińczak, O. Improving the sensory and nutritional value of gluten-free bread. Int. J. Food Sci. Technol. 2019, 54, 2661–2667. [Google Scholar] [CrossRef]
- Meullenet, J.-F.; Lyon, B.G.; Carpenter, J.A.; Lyon, C.E. Relationship between sensory and instrumental texture profile attributes. J. Sens. Stud. 1998, 13, 77–93. [Google Scholar] [CrossRef]
- Coţovanu, I.; Ungureanu-Iuga, M.; Mironeasa, S. Investigation of Quinoa Seeds Fractions and Their Application in Wheat Bread Production. Plants 2021, 10, 2150. [Google Scholar] [CrossRef]
Characteristic | WF | O_AL | O_AM | O_AS |
---|---|---|---|---|
Addition dose (%) | 100 | 9.41 | 9.39 | 7.89 |
FN (s) | 312.00 ± 5.25 axA | 312.22 ± 3.78 a | 317.03 ± 6.11 y | 315.85 ± 4.65 B |
WA (%) | 58.50 ± 0.02 axA | 57.94 ± 0.58 a | 58.68 ± 0.34 x | 59.52 ± 0.03 A |
DT (min) | 1.69 ± 0.75 axA | 3.08 ± 0.75 b | 3.00± 1.05 y | 3.05 ± 0.90 B |
ST (min) | 9.96 ± 0.65 axA | 9.95 ± 0.66 a | 9.50 ± 0.70 x | 10.54 ± 0.70 A |
C1-2 (N∙m) | 0.61 ± 0.02 axA | 0.54 ± 0.01 a | 0.60 ± 0.02 x | 0.62 ± 0.02 A |
C3-2 (N∙m) | 1.41 ± 0.03 axA | 1.30 ± 0.02 a | 1.30 ± 0.04 x | 1.31 ± 0.03 A |
C3-4 (N∙m) | 0.05 ± 0.04 axA | 0.20 ± 0.04 b | 0.165 ± 0.03 y | 0.10 ± 0.01 A |
C5-4 (N∙m) | 1.15 ± 0.01 bxA | 0.88 ± 0.05 a | 0.91 ± 0.11 x | 0.85 ± 0.01 A |
P (mm H2O) | 87.00 ± 5.75 axA | 91.50 ± 3.70 b | 92.88 ± 7.76 y | 95.05 ± 5.40 B |
L (mm) | 91.00 ± 10.50 bxA | 51.47 ± 3.04 a | 58.93 ± 6.37 x | 55.25 ± 14.85 B |
W (10−4 J) | 253.00 ± 20.14 byA | 180.00 ± 11.91 a | 173.60 ± 24.54 x | 180.42 ± 18.65 B |
P/L (adim.) | 0.95 ± 0.05 axA | 1.70 ± 0.25 b | 1.77 ± 0.54 y | 2.02 ± 0.50 B |
H′m (mm) | 62.00 ± 4.25 axA | 75.27 ± 5.20 b | 75.58 ± 3.86 y | 70.95 ± 2.85 B |
VT (mL) | 1168.00 ± 89.56 axA | 1260.57 ± 19.81 a | 1290.19 ± 58.38 y | 1197.50 ± 17.25 B |
VR (mL) | 991.20 ± 85.25 axA | 1160.83 ± 3.74 a | 1158.70 ± 36.53 y | 1195.45 ± 96.45 B |
CR (%) | 84.20 ± 2.50 axA | 90.86 ± 2.77 b | 89.32 ± 1.62 y | 89.75 ± 5.45 B |
G′ (Pa) | 26,370.00 ± 10.00 bxA | 28,901.40 ± 287.25 b | 26,235.03 ± 95.39 y | 22,320.25 ± 10.25 A |
G″ (Pa) | 9488.00 ± 74.58 bxA | 11,413.4 ± 691.37 b | 9975.05 ± 869.51 y | 102,560.05 ± 8.69 B |
tan δ (adim.) | 0.360 ± 0.02 axA | 0.352 ± 0.01 a | 0.345 ± 0.02 x | 0.344 ± 0.02 A |
Tmax (°C) | 83.24 ± 0.55 bxA | 80.47 ± 0.45 a | 80.56 ± 0.96 x | 79.58 ± 0.45 A |
Jcmax (10−5 Pa−1) | 24.50 ± 4.50 axA | 20.58 ± 2.54 a | 20.24 ± 5.31 x | 25.45 ± 3.47 A |
Jrmax (10−5 Pa−1) | 16.62 ± 2.40 axA | 13.11 ± 1.45 a | 17.42 ± 3.04 y | 17.95 ± 2.63 B |
BV (cm3) | 372.20 ± 15.25 bxA | 349.10 ± 6.71 a | 372.92 ± 14.04 x | 341.77 ± 1.50 A |
BF (N) | 7.55 ± 3.00 axA | 9.61 ± 0.71 a | 6.97 ± 3.10 x | 12.55 ± 10.52 B |
Bread Sample | Specific Volume (cm3/g) | Porosity (%) | Elasticity (%) |
---|---|---|---|
WFB | 2.45 ± 0.25 b | 64.22 ± 5.62 c | 91.70 ± 6.52 d |
O_AL | 2.55 ± 0.50 a | 70.48 ± 4.75 a | 95.91 ± 8.52 a |
O_AM | 2.47 ± 0.27 b | 67.33 ± 7.28 b | 94.98 ± 2.45 b |
O_AS | 2.35 ± 0.85 c | 66.89 ± 5.62 c | 94.32 ± 8.45 c |
Bread Sample | Crust Colour Parameters | Crumb Colour Parameters | ||||
---|---|---|---|---|---|---|
L* | a* | b* | L* | a* | b* | |
WFB | 70.35 ± 0.91 a | −1.33 ± 0.22 d | 32.27 ± 0.28 c | 73.94 ± 0.27 a | −4.48 ± 0.03 b | 20.02 ± 0.23 a |
O_AL | 66.8 ± 1.07 b | 2.40 ± 0.16 c | 34.33 ± 0.39 b | 63.05 ± 0.46 b | −3.76 ± 0.02 ab | 19.94 ± 0.54 a |
O_AM | 62.46 ± 0.80 c | 5.89 ± 0.29 a | 37.02 ± 0.27 a | 63.70 ± 0.98 b | −3.37 ± 0.22 a | 21.46 ± 0.54 a |
O_AS | 64.68 ± 0.87 bc | 3.47 ± 0.29 b | 34.94 ± 0.29 b | 65.57 ± 0.38 b | −4.18 ± 0.42 ab | 20.32 ± 0.43 a |
Bread Sample | Springiness (Adim.) | Cohesiveness (Adim.) | Gumminess (N) | Resilience (Adim.) | Masticability (N) |
---|---|---|---|---|---|
WFB | 1.3457 ± 0.27 a | 0.8575 ± 0.01 a | 499.73 ± 4.63 a | 1.8278 ± 0.00 ab | 499.73 ± 4.63 a |
O_AL | 1.0740 ± 0.10 c | 0.8202 ± 0.01 b | 455.43 ± 41.67 a | 1.6270 ± 0.00 b | 455.43 ± 41.67 a |
O_AM | 1.0000 ± 0.00 b | 0.8264 ± 0.02 b | 511.96 ± 11.56 a | 2.1453 ± 0.49 a | 511.96 ± 11.56 a |
O_AS | 1.1200 ± 0.03 b | 0.8314 ± 0.00 b | 498.42 ± 35.62 a | 2.0295 ± 0.06 a | 498.42 ± 35.62 a |
Bread Sample | Moisture (%) | Proteins (%) | Lipids (%) | Ash (%) | Carbohydrates (%) | Energetic Value (kcal) |
---|---|---|---|---|---|---|
WFB | 43.12 ± 0.03 d | 8.35 ± 0.13 bc | 0.01 ± 0.00 b | 0.72 ± 0.02 b | 47.81 ± 0.11 a | 230.31 ± 0.22 a |
O_AL | 44.20 ± 0.07 a | 10.58 ± 0.12 a | 0.17 ± 0.02 a | 0.82 ± 0.02 b | 44.23 ± 0.04 c | 226.32 ± 0.51 b |
O_AM | 43.95 ± 0.03 b | 9.67 ± 0.06 b | 0.17 ± 0.02 a | 0.99 ± 0.01 a | 45.23 ± 0.07 b | 226.65 ± 0.23 b |
O_AS | 43.50 ± 0.03 c | 8.92 ± 0.12 c | 0.04 ± 0.02 b | 0.99 ± 0.01 a | 46.55 ± 0.20 a | 227.75 ± 0.31 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coțovanu, I.; Stroe, S.-G.; Ursachi, F.; Mironeasa, S. Addition of Amaranth Flour of Different Particle Sizes at Established Doses in Wheat Flour to Achieve a Nutritional Improved Wheat Bread. Foods 2023, 12, 133. https://doi.org/10.3390/foods12010133
Coțovanu I, Stroe S-G, Ursachi F, Mironeasa S. Addition of Amaranth Flour of Different Particle Sizes at Established Doses in Wheat Flour to Achieve a Nutritional Improved Wheat Bread. Foods. 2023; 12(1):133. https://doi.org/10.3390/foods12010133
Chicago/Turabian StyleCoțovanu, Ionica, Silviu-Gabriel Stroe, Florin Ursachi, and Silvia Mironeasa. 2023. "Addition of Amaranth Flour of Different Particle Sizes at Established Doses in Wheat Flour to Achieve a Nutritional Improved Wheat Bread" Foods 12, no. 1: 133. https://doi.org/10.3390/foods12010133
APA StyleCoțovanu, I., Stroe, S. -G., Ursachi, F., & Mironeasa, S. (2023). Addition of Amaranth Flour of Different Particle Sizes at Established Doses in Wheat Flour to Achieve a Nutritional Improved Wheat Bread. Foods, 12(1), 133. https://doi.org/10.3390/foods12010133