Impact of Pasture-Based Diets on the Untargeted Metabolomics Profile of Sarda Sheep Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Milk Samples and Main Characteristics of Feeding System
2.2. Extraction Step of Milk Metabolites from the Different Collected Samples
2.3. UHPLC-QTOF Mass Spectrometry Approach to Profile Milk Metabolites
2.4. Multivariate Statistical Data Analysis
3. Results and Discussion
3.1. Untargeted Screening of Sheep Milk Samples by UHPLC-QTOF-MS
3.2. Discrimination of Milk Samples as a Function of the Different Feeding Strategies (Herbage, Hay, and Concentrate Intake)
3.3. Pathway Analysis of Sheep Milk Samples According to the Herbage Intake
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pulina, G.; Atzori, A.S.; Dimauro, C.; Ibba, I.; Gaias, G.F.; Correddu, F.; Nudda, A. The milk fingerprint of Sardinian dairy sheep: Quality and yield of milk used for Pecorino Romano P.D.O. cheese production on population-based 5-year survey. Ital. J. Anim. Sci. 2021, 20, 171–180. [Google Scholar] [CrossRef]
- Sitzia, M.; Bonanno, A.; Todaro, M.; Cannas, A.; Atzori, A.S.; Francesconi, A.H.D.; Trabalza-Marinucci, M. Feeding and management techniques to favour summer sheep milk and cheese production in the Mediterranean environment. Small Rumin. Res. 2015, 126, 43–58. [Google Scholar] [CrossRef]
- Agradi, S.; Curone, G.; Negroni, D.; Vigo, D.; Brecchia, G.; Bronzo, V.; Panseri, S.; Chiesa, L.M.; Peric, T.; Danes, D.; et al. Determination of Fatty Acids Profile in Original Brown Cows Dairy Products and Relationship with Alpine Pasture Farming System. Animals 2020, 10, 1231. [Google Scholar] [CrossRef] [PubMed]
- Cabiddu, A.; Carrillo, S.; Contini, S.; Spada, S.; Acciaro, M.; Giovanetti, V.; Decandia, M.; Lucini, L.; Bertuzzi, T.; Gallo, A.; et al. Dairy Sheep Grazing Management and Pasture Botanical Composition Affect Milk Macro and Micro Components: A Methodological Approach to Assess the Main Managerial Factors at Farm Level. Animals 2022, 12, 2675. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, A.; Shinde, A.K.; Singh, R. Sheep milk: A pertinent functional food. Small Rumin. Res. 2019, 181, 6–11. [Google Scholar] [CrossRef]
- Rocchetti, G.; O’Callaghan, T.F. Application of metabolomics to assess milk quality and traceability. Curr. Opin. Food Sci. 2021, 40, 168–178. [Google Scholar] [CrossRef]
- Caboni, P.; Murgia, A.; Porcu, A.; Manis, C.; Ibba, I.; Contu, M.; Scano, P. A metabbolomics comparison between sheep’s and goat’s milk. Food Res. Int. 2019, 119, 869–875. [Google Scholar] [CrossRef]
- Manis, C.; Scano, P.; Nudda, A.; Carta, S.; Pulina, G.; Caboni, P. LC-QTOF/MS Untargeted Metabolomics of Sheep Milk under Cocoa Husks Enriched Diet. Dairy 2021, 2, 112–121. [Google Scholar] [CrossRef]
- Rocchetti, G.; Gallo, A.; Nocetti, M.; Lucini, L.; Masoero, F. Milk metabolomics based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to discriminate different cows feeding regimens. Food Res. Int. 2020, 134, 109279. [Google Scholar] [CrossRef]
- Rocchetti, G.; Lucini, L.; Gallo, A.; Masoero, F.; Trevisan, M.; Giuberti, G. Untargeted metabolomics reveals differences in chemical fingerprints between PDO and non-PDO Grana Padano cheeses. Food Res. Int. 2018, 113, 407–413. [Google Scholar] [CrossRef]
- Salek, R.M.; Steinbeck, C.; Viant, M.R.; Goodacre, R.; Dunn, W.B. The role of reporting standards for metabolite annotation and identification in metabolomic studies. GigaScience 2013, 2, 2047–2217X. [Google Scholar] [CrossRef] [PubMed]
- Foroutan, A.; Guo, A.C.; Vazquez-Fresno, R.; Lipfert, M.; Zhang, L.; Zheng, J.; Badran, H.; Budinski, Z.; Mandal, R.; Ametaj, B.N.; et al. Chemical Composition of Commercial Cow’s Milk. J. Agric. Food Chem. 2019, 67, 4897–4914. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Zhou, G.; Ewald, J.; Chang, L.; Hacariz, O.; Basu, N.; Xia, J. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 2022, 17, 1735–1761. [Google Scholar] [CrossRef]
- Bellassi, P.; Rocchetti, G.; Nocetti, M.; Lucini, L.; Masoero, F.; Morelli, L. A Combined Metabolomic and Metagenomic Approach to Discriminate Raw Milk for the Production of Hard Cheese. Foods 2021, 10, 109. [Google Scholar] [CrossRef] [PubMed]
- Bencini, R.; Pulina, G. The quality of sheep milk: A review. Aust. J. Exp. Agric. 1997, 37, 485–504. [Google Scholar] [CrossRef]
- Cabiddu, A.; Addis, M.; Pinna, G.; Spada, S.; Fiori, M.; Sitzia, M.; Pirisi, A.; Piredda, G.; Molle, G. The inclusion of a daisy plant (Chrysanthenum coronarium) in dairy sheep diet. 1: Effect on milk and cheese fatty acid composition with particular reference to C18:2 cis-9, tans-11. Livest. Sci. 2006, 101, 57–67. [Google Scholar] [CrossRef]
- Morand-Fehr, P.; Fedele, V.; Decandia, M.; Le Frileux, Y. Influence of farming and feeding systems on composition and quality of goat and sheep milk. Small Rumin. Res. 2007, 68, 20–34. [Google Scholar] [CrossRef]
- Haenlein, G.F.W.; Wendorff, W.L. Sheep milk. In Handbook of Milk of Non-Bovine Mammals; Park, Y.W., Haenlein, G.F.W., Eds.; Blackwell Publishing: Ames, IA, USA, 2006; pp. 137–194. [Google Scholar]
- Collob, M.; Bisig, W.; Butikofer, U.; Sieber, R.; Bregy, M.; Etter, L. Seasonal variation in the fatty acid composition of milk supplied to dairies in the mountain regions of Switzerland. Dairy Sci. Technol. 2008, 88, 631–647. [Google Scholar] [CrossRef] [Green Version]
- Biondi, L.; Valvo, M.A.; Di Gloria, M.; Scinardo Tenghi, E.; Galofaro, V.; Priolo, A. Changes in ewe milk fatty acids following turning out to pasture. Small Rumin. Res. 2008, 75, 17–23. [Google Scholar] [CrossRef]
- Conte, G.; Palombo, V.; Serra, A.; Correddu, F.; D’Andrea, M.; Macciotta, N.P.P.; Mele, M. Study of the Fatty Acid Profile of Milk in Different Sheep Breeds: Evaluation by Multivariate Factorial Analysis. Animals 2022, 12, 722. [Google Scholar] [CrossRef]
- Cabiddu, A.; Decandia, M.; Addis, M.; Piredda, G.; Pirisi, A.; Molle, G. Managing Mediterranean pastures in order to enhance the level of beneficial fatty acids in sheep milk. Small Rumin. Res. 2005, 59, 169–180. [Google Scholar] [CrossRef]
- Barlowska, J.; Szwajkowska, M.; Litwinczuk, Z.; Król, J. Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr. Rev. Food Sci. Food Saf. 2011, 10, 291–302. [Google Scholar] [CrossRef]
- Luciano, G.; Natalello, A.; Mattioli, S.; Pauselli, M.; Sebastiani, B.; Niderkorn, V.; Copani, G.; Benhissi, H.; Amanpour, A.; Valenti, B. Fedding lambs with silage mixtures of grass, sainfoin and red clover improves meat oxidative stability under high oxidative challenge. Meat Sci. 2019, 156, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, R.; Meléndez-Martínez, A.J.; Vicario, I.M.; Alcalde, M.J. Effect of pasture and concentrate diets on concentrations of carotenoids, vitamin A and vitamin E in plasma and adipose tissue of lambs. J. Food Compos. Anal. 2014, 36, 59–65. [Google Scholar] [CrossRef]
- Nudda, A.; Cannas, A.; Correddu, F.; Atzori, A.S.; Lunesu, M.F.; Battacone, G.; Pulina, G. Sheep and goats respond differently to feeding strategies directed to improve the fatty acid profile of milk fat. Animals 2020, 10, 1290. [Google Scholar] [CrossRef]
- Zhu, D.; Kebede, B.; McComb, K.; Hayman, A.; Chen, G.; Frew, R. Milk biomarkers in relation to inherent and external factors based on metabolomics. Trends Food Sci. Technol. 2021, 109, 51–64. [Google Scholar] [CrossRef]
- Mariaca, R.G.; Berger, T.F.H.; Gauch, R.; Imhof, M.I.; Jeangros, B.; Bosset, J.O. Occurrence of volatile mono- and sesquiterpenoids in highland and lowland plant species as possible precursors for flavor compounds in milk and dairy products. J. Agric. Food Chem. 1997, 45, 4423–4434. [Google Scholar] [CrossRef]
- Buccioni, A.; Decandia, M.; Minieri, S.; Molle, G.; Cabiddu, A. Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed Sci. Technol. 2012, 174, 1–25. [Google Scholar] [CrossRef]
- Cabiddu, A.; Addis, M.; Fiori, M.; Spada, S.; Decandia, M.; Molle, G. Pros and cons of the supplementation with oilseed enriched concentrates on milk fatty acid profile of dairy sheep grazing Mediterranean pastures. Small Rumin. Res. 2017, 147, 63–72. [Google Scholar] [CrossRef]
- Clarke, H.J.; Fitzpatrick, E.; Hennessy, D.; O’Sullivan, M.G.; Kerry, J.P.; Kilcawley, K.N. The influence of pasture and non-pasture-based feeding systems on the aroma of raw bovine milk. Front. Nutr. 2022, 9, 841454. [Google Scholar] [CrossRef]
- Croissant, A.E.; Washburn, S.P.; Dean, L.L.; Drake, M.A. Chemical Properties and Consumer Perception of Fluid Milk from Conventional and Pasture-Based Production Systems. J. Dairy Sci. 2007, 90, 4942–4953. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, T.F.; Vázquez-Fresno, R.; Serra-Cayuela, A.; Dong, E.; Mandal, R.; Hennessy, D.; McAuliffe, S.; Dillon, P.; Wishart, D.S.; Stanton, C.; et al. Pasture Feeding Changes the Bovine Rumen and Milk Metabolome. Metabolites 2018, 8, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landi, N.; Ragucci, S.; Di Maro, A. Amino Acid Composition of Milk from Cow, Sheep and Goat Raised in Ailano and Valle Agricola, Two Localities of “Alto Casertano” (Campania Region). Foods 2021, 10, 2431. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.W.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef] [Green Version]
- Cabiddu, A.; Satta, M.; Salis, L.; Niolu, M.; Decandia, M.; Carrillo, S.; Contini, S.; Acciaro, M.; Giovanetti, V.; Cabizza, M. Seasonal changes of milk phytanic acid content in Sarda sheep grazing on Mediterranean natural pasture. In Proceedings of the 2022 Joint Seminar of the FAO CIHEAM “Alternative Feed Resources and Their Management for Transiting Towards a Sustainable Ruminant Production”, Catania, Italy, 27–29 September 2022; Università degli Studi di Catania: Catania, Italy, 2022. [Google Scholar]
- Cabiddu, A.; Delgadillo-Puga, C.; Decandia, M.; Molle, G. Extensive Ruminant Production Systems and Milk Quality with Emphasis on Unsaturated Fatty Acids, Volatile Compounds, Antioxidant Protection Degree and Phenol Content. Animals 2019, 9, 771. [Google Scholar] [CrossRef] [Green Version]
- Nozière, P.; Graulet, B.; Lucas, A.; Martin, B.; Grolier, P.; Doreau, M. Carotenoids for ruminants: From forages to dairy products. Anim. Feed Sci. Technol. 2006, 131, 418–450. [Google Scholar] [CrossRef]
- Faulkner, H.; O’Collaghan, T.F.; McAuliffe, S.; Hennessy, D.; Stanton, C.; O’Sullivan, M.G.; Kerry, J.P.; Kilcawley, K.N. Effect of different forage types on the volatile and sensory properties of bovine milk. J. Dairy Sci. 2018, 101, 1034–1047. [Google Scholar] [CrossRef]
- Cabiddu, A.; Lee, M.R.F.; Decandia, M.; Molle, G.; Salis, L.; Vargiu, M.; Winters, A.L. Characterization of polyphenol oxidase activity in a range of forage ecotypes with different phenol substrates. A new insight for PPO and protein-bound phenol evaluation. Grass Forage Sci. 2013, 69, 678–692. [Google Scholar] [CrossRef]
- Scano, P.; Carta, P.; Ibba, I.; Manis, C.; Caboni, P. An Untargeted Metabolomic Comparison of Milk Composition from Sheep Kept Under Different Grazing Systems. Dairy 2020, 1, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Angeles-Hernandez, J.C.; Vieyra Alberto, R.; Kebreab, E.; Appuhamy, J.A.D.R.N.; Dougherty, H.C.; Castelan-Ortega, O.; Gonzalez-Ronquillo, M. Effect of forage to concentrate ratio and fat supplementation on milk composition in dairy sheep: A meta-analysis. Livest. Sci. 2020, 238, 104069. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, X.; Zhang, J.; Zhang, Q.; Tana. Comparison of three feeding regimens on blood fatty acids metabolites of Wujumqin sheep in inner Mongolia. Animals 2021, 11, 1080. [Google Scholar] [CrossRef] [PubMed]
- Lock, A.L.; Teles, N.M.; Perfield, J.W., II; Bauman, D.E.; Sinclair, L.A. A conjugated linoleic acid supplement containing trans-10, cis-12 reduces milk fat synthesis in lactating sheep. J. Dairy. Sci. 2006, 89, 1525–1532. [Google Scholar] [PubMed] [Green Version]
- Balthazar, C.F.; Guimarães, J.T.; Rocha, R.S.; Pimentel, T.C.; Neto, R.P.; Tavares, M.I.B.; Graça, J.S.; Alves Filho, E.G.; Freitas, M.Q.; Esmerino, E.A.; et al. Nuclear magnetic resonance as an analytical tool for monitoring the quality and authenticity of dairy foods. Trends Food Sci. Technol. 2021, 108, 84–91. [Google Scholar] [CrossRef]
- Li, Q.; Yu, Z.; Zhu, D.; Meng, X.; Pang, X.; Liu, Y.; Frew, R.; Chen, H.; Chen, G. The application of NMR-based milk metabolite analysis in milk authenticity identification. J. Sci. Food Agric. 2017, 97, 2875–2882. [Google Scholar] [CrossRef] [PubMed]
Pasture | Hay | Concentrate | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Jan | March | May | July | SEM | Hay | SEM | Conc HCP | Conc. Starch | SEM | |
DM (%) | 18.65 | 19.81 | 22.63 | 67.11 | 3.30 | 83.13 | 1.38 | 88.73 | 87.21 | 0.40 |
Ash (%DM) | 12.02 | 12.62 | 9.59 | 7.66 | 0.48 | 7.89 | 0.40 | 5.46 | 3.00 | 0.52 |
EE (%DM) | 3.12 | 2.92 | 3.09 | 2.43 | 0.15 | 1.92 | 0.07 | 3.19 | 2.94 | 0.29 |
CP (%DM) | 16.69 | 16.49 | 13.16 | 5.96 | 0.95 | 8.41 | 0.81 | 15.57 | 9.05 | 0.67 |
NDF (%DM) | 52.36 | 43.77 | 48.24 | 68.18 | 1.93 | 65.35 | 1.42 | 24.73 | 15.71 | 2.15 |
ADF (%DM) | 27.07 | 21.51 | 26.51 | 38.93 | 1.25 | 40.42 | 0.80 | 10.74 | 6.00 | 1.10 |
ADL (%DM) | 3.58 | 2.14 | 2.63 | 4.88 | 0.27 | 6.19 | 0.34 | 1.34 | 0.51 | 0.18 |
TPC (%DM) | 1.18 | 1.65 | 1.99 | 1.22 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Starch (%DM) | - | - | - | - | 0.00 | 0.00 | 0.00 | 38.36 | 55.2 | 3.56 |
Sampling | HeI | Conc. | Hay | Standing Hay |
---|---|---|---|---|
January | 44.32 | 31.08 | 24.85 | 0.00 |
March | 67.66 | 22.28 | 13.68 | 0.00 |
May | 85.32 | 16.80 | 0.98 | 0.00 |
July | 0.00 | 19.58 | 2.97 | 77.44 |
Class | Discriminant Marker (OPLS-DA) | VIP Score (OPLS-DA) | Log2FC (HeI vs. No-HeI) | p-Value (ANOVA) |
---|---|---|---|---|
Lipids and derivatives | 20:5 Cholesteryl ester | 1.37 ± 1.06 | −3.28 | 0.0189 |
Stearidonic acid | 1.10 ± 0.48 | 2.32 | p > 0.05 | |
TG(4:0/15:0/16:0) | 1.47 ± 0.95 | 1.65 | 0.0136 | |
Alpha-Linolenic acid * | 1.43 ± 1.13 | 2.42 | p > 0.05 | |
TG(4:0/10:0/14:0) | 1.21 ± 0.36 | 4.86 | p > 0.05 | |
DG(12:0/20:2(11Z,14Z)/0:0) * | 1.13 ± 1.02 | 11.71 | 0.0252 | |
DG(12:0/20:1(11Z)/0:0) * | 1.19 ± 0.52 | 12.16 | 0.0389 | |
DG(14:0/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) | 1.48 ± 1.08 | 12.84 | 0.0385 | |
Hydroxybutyrylcarnitine | 1.24 ± 0.80 | 13.19 | 0.0282 | |
Vitamin K1 | 1.65 ± 0.67 | 14.88 | 0.0028 | |
DG(14:0/20:1(11Z)/0:0) * | 1.23 ± 0.99 | 15.01 | 0.0476 | |
LogFC (avg) = 7.98 | ||||
Aminoacids and derivatives | N-hydroxy-L-tyrosine | 1.65 ± 1.02 | −1.30 | p > 0.05 |
Arg-Thr-Lys-Arg | 1.34 ± 0.89 | −1.20 | 0.0297 | |
2-Aminooctanoic acid | 1.22 ± 1.09 | −0.75 | p > 0.05 | |
2,4-Diaminobutyric acid | 1.52 ± 1.18 | −0.52 | p > 0.05 | |
Taurine | 1.07 ± 0.63 | 9.15 | p > 0.05 | |
L-Tyrosine | 1.31 ± 0.31 | 10.76 | 0.0095 | |
Pro-Ile | 1.06 ± 0.62 | 11.13 | p > 0.05 | |
L-Phenylalanine | 1.67 ± 1.11 | 12.07 | 0.0191 | |
LogFC (avg) = 4.92 | ||||
Sugars and derivatives | D-Glucose * | 1.63 ± 0.97 | −1.62 | p > 0.05 |
Threonic acid | 1.76 ± 0.91 | −0.94 | 0.0013 | |
Glyceric acid | 1.23 ± 0.95 | −0.47 | 0.0136 | |
Alpha-lactose * | 1.46 ± 0.79 | 0.41 | 0.0266 | |
Galactitol * | 1.17 ± 0.93 | 11.69 | 0.0201 | |
LogFC (avg) = 1.81 | ||||
Phenolics and metabolites | 4-aminobenzoic acid | 1.83 ± 1.23 | −0.85 | p > 0.05 |
Hippuric acid | 1.69 ± 0.96 | 1.30 | p > 0.05 | |
5-(3′,5′-dihydroxyphenyl)- gamma-valerolactone 3-O-glucuronide | 1.36 ± 0.77 | 9.60 | 0.0292 | |
Coumaric acid * | 1.41 ± 0.81 | 10.33 | p > 0.050 | |
3,4,5,4′-Tetramethoxystilbene | 1.16 ± 1.01 | 16.24 | 0.0498 | |
LogFC (avg) = 7.32 | ||||
Carotenoids and metabolites | Lutein * | 1.59 ± 0.95 | 13.19 | 0.0088 |
Cresol * | 1.59 ± 0.61 | 2.23 | 0.0227 | |
LogFC (avg) = 7.71 | ||||
Other compounds | 3-Methylfuran | 1.45 ± 0.84 | −1.61 | p > 0.05 |
Hypoxanthine | 1.72 ± 0.82 | −0.93 | 0.0059 | |
Inosine | 1.80 ± 0.57 | −0.76 | 0.0010 | |
Uracil | 1.93 ± 0.84 | 2.76 | 0.0006 | |
Benzyl methyl sulfide | 1.10 ± 1.05 | 4.58 | 0.0427 | |
5-Methoxyindoleacetate | 1.86 ± 0.77 | 11.59 | 0.0058 | |
LogFC (avg) = 2.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocchetti, G.; Becchi, P.P.; Salis, L.; Lucini, L.; Cabiddu, A. Impact of Pasture-Based Diets on the Untargeted Metabolomics Profile of Sarda Sheep Milk. Foods 2023, 12, 143. https://doi.org/10.3390/foods12010143
Rocchetti G, Becchi PP, Salis L, Lucini L, Cabiddu A. Impact of Pasture-Based Diets on the Untargeted Metabolomics Profile of Sarda Sheep Milk. Foods. 2023; 12(1):143. https://doi.org/10.3390/foods12010143
Chicago/Turabian StyleRocchetti, Gabriele, Pier Paolo Becchi, Lorenzo Salis, Luigi Lucini, and Andrea Cabiddu. 2023. "Impact of Pasture-Based Diets on the Untargeted Metabolomics Profile of Sarda Sheep Milk" Foods 12, no. 1: 143. https://doi.org/10.3390/foods12010143
APA StyleRocchetti, G., Becchi, P. P., Salis, L., Lucini, L., & Cabiddu, A. (2023). Impact of Pasture-Based Diets on the Untargeted Metabolomics Profile of Sarda Sheep Milk. Foods, 12(1), 143. https://doi.org/10.3390/foods12010143